Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Conjugates of Curcumin with Graphene and Carbon Nanotubes: A Review on Biomedical Applications

Author(s): Majid Rezayi*, Pegah Mahmoodi*, Hadis Langari, Behzad Behnam and Amirhossein Sahebkar*

Volume 27, Issue 40, 2020

Page: [6849 - 6863] Pages: 15

DOI: 10.2174/0929867326666191113145745

Price: $65

conference banner
Abstract

In the last decade, the use of carbon nanotubes and graphenes has been on the rise for various nanobiotechnological applications. Owing to their special characteristics, these two nanostructures of carbon allotropes have been studied for their capacity in the detection and treatment of many diseases. On the other hand, curcumin, a well-known antioxidant and anticancer natural product, is being extensively studied for numerous medicinal applications. Interestingly, many reports have shown great potentials of conjugates of curcumin and carbon nanotubes or graphenes. These conjugates, when properly designed and functionalized with biomolecules, could represent the valuable properties of each component alone while they could be effective in overcoming the poor solubility issues of both curcumin and Carbon Nanomaterials (CNMs). In this case, curcumin conjugates with CNMs seem to be very promising in biosensing applications and the detection of many biomolecules, especially, curcumin has been reported to be very effective with these conjugates. Also, the delivery of curcumin using functionalized SWCNTs was evaluated for its ability to load and release curcumin, to protect curcumin from degradation and to enhance its solubility. It is proposed that other properties of these conjugates are still to be discovered and the interdisciplinary approaches among biology, medicine, chemistry, and material engineering will accelerate the applications of these novel materials. This review aims to summarize the findings on the applications of CNM conjugates of curcumin.

Keywords: Curcumin, graphene, carbon nanomaterials, conjugates, medicinal applications, nanobiotechnology.

[1]
Manolova, Y.; Deneva, V.; Antonov, L.; Drakalska, E.; Momekova, D.; Lambov, N. The effect of the water on the curcumin tautomerism: a quantitative approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 815-820.
[http://dx.doi.org/10.1016/j.saa.2014.05.096] [PMID: 24973669]
[2]
Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. review Phytother. Res., 2018, 32(6), 985-995.
[http://dx.doi.org/10.1002/ptr.6054] [PMID: 29480523]
[3]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[4]
Akram, M.; Shahab-Uddin, A.A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: a review article. Rom. J Biol. Plant Biol., 2010, 55(2), 65-70.
[5]
Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr. Med. Chem., 2010, 17(3), 190-197.
[http://dx.doi.org/10.2174/092986710790149738] [PMID: 20214562]
[6]
Aggarwal, B.B.; Surh, Y.J.; Shishodia, S. The molecular targets and therapeutic uses of curcumin in health and disease, 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5]
[7]
Kawamori, T.; Lubet, R.; Steele, V.E.; Kelloff, G.J.; Kaskey, R.B.; Rao, C.V.; Reddy, B.S. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res., 1999, 59(3), 597-601.
[PMID: 9973206]
[8]
Mukhopadhyay, A.; Basu, N.; Ghatak, N.; Gujral, P.K. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions, 1982, 12(4), 508-515.
[http://dx.doi.org/10.1007/BF01965935] [PMID: 7180736]
[9]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Karimian, M.S.; Majeed, M.; Sahebkar, A. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology, 2017, 25(1), 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[10]
Panahi, Y.; Alishiri, G.H.; Parvin, S.; Sahebkar, A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J. Diet. Suppl., 2016, 13(2), 209-220.
[http://dx.doi.org/10.3109/19390211.2015.1008611] [PMID: 25688638]
[11]
Panahi, Y.; Ghanei, M.; Hajhashemi, A.; Sahebkar, A. Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J. Diet. Suppl., 2016, 13(1), 93-105.
[http://dx.doi.org/10.3109/19390211.2014.952865] [PMID: 25171552]
[12]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: a randomized controlled trial. J. Cardiovasc. Pharmacol., 2016, 68(3), 223-229.
[http://dx.doi.org/10.1097/FJC.0000000000000406] [PMID: 27124606]
[13]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[14]
Sahebkar, A.; Serban, M.C.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods, 2015, 18, 898-909.
[http://dx.doi.org/10.1016/j.jff.2015.01.005]
[15]
Mohajeri, M.; Behnam, B.; Cicero, A.F.G.; Sahebkar, A. Protective effects of curcumin against aflatoxicosis: a comprehensive review. J. Cell. Physiol., 2018, 233(4), 3552-3577.
[http://dx.doi.org/10.1002/jcp.26212] [PMID: 29034472]
[16]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[17]
Karimian, M.S.; Pirro, M.; Majeed, M.; Sahebkar, A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev., 2017, 33, 55-63.
[http://dx.doi.org/10.1016/j.cytogfr.2016.10.001] [PMID: 27743775]
[18]
Sahebkar, A.; Cicero, A.F.G.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res., 2016, 107, 234-242.
[http://dx.doi.org/10.1016/j.phrs.2016.03.026] [PMID: 27025786]
[19]
Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]
[20]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[21]
Hatamipour, M.; Ramezani, M.; Tabassi, S.A.S.; Johnston, T.P.; Ramezani, M.; Sahebkar, A. Demethoxycurcumin: a naturally occurring curcumin analogue with antitumor properties. J. Cell. Physiol., 2018, 233(12), 9247-9260.
[http://dx.doi.org/10.1002/jcp.27029] [PMID: 30076727]
[22]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti‐inflammatory agent: implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442]] [PMID: 30317564]
[23]
Momtazi-Borojeni, A.A.; Ghasemi, F.; Hesari, A.; Majeed, M.; Caraglia, M.; Sahebkar, A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr. Pharm. Des., 2018, 24(19), 2121-2128.
[http://dx.doi.org/10.2174/1381612824666180522105202] [PMID: 29788875]
[24]
Ali, B.H.; Marrif, H.; Noureldayem, S.A.; Bakheit, A.O.; Blundene, G. Some biological properties of curcumin: a review. Nat. Prod. Commun., 2006, 1, 509-521.
[http://dx.doi.org/10.1177/1934578X0600100613]
[25]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[26]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[27]
Panahi, Y.; Ahmadi, Y.; Teymouri, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J. Cell. Physiol., 2018, 233(1), 141-152.
[http://dx.doi.org/10.1002/jcp.25756] [PMID: 28012169]
[28]
Randviir, E.P.; Brownson, D.A.; Banks, C.E. A decade of graphene research: production, applications and outlook. Mater. Today, 2014, 17(9), 426-432.
[http://dx.doi.org/10.1016/j.mattod.2014.06.001]
[29]
Jain, K.K. Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin. Drug Discov., 2012, 7(11), 1029-1037.
[http://dx.doi.org/10.1517/17460441.2012.722078] [PMID: 22946637]
[30]
Rezaee, M.; Behnam, B.; Banach, M.; Sahebkar, A. The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol. Adv., 2018, 36(8), 2232-2247.
[http://dx.doi.org/10.1016/j.biotechadv.2018.10.010] [PMID: 30342084]
[31]
Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J. Cell. Physiol., 2018, 234(1), 298-319.
[http://dx.doi.org/10.1002/jcp.26899] [PMID: 30078182]
[32]
Mohajeri, M.; Behnam, B.; Barreto, G.E.; Sahebkar, A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer’s disease? Pharmacol. Res., 2019, 143, 186-203.
[http://dx.doi.org/10.1016/j.phrs.2019.03.023] [PMID: 30943430]
[33]
Ahmadi, H.; Ramezani, M.; Yazdian-Robati, R.; Behnam, B.; Razavi Azarkhiavi, K.; Hashem Nia, A.; Mokhtarzadeh, A.; Matbou Riahi, M.; Razavi, B.M.; Abnous, K. Acute toxicity of functionalized single wall carbon nanotubes: a biochemical, histopathologic and proteomics approach. Chem. Biol. Interact., 2017, 275, 196-209.
[http://dx.doi.org/10.1016/j.cbi.2017.08.004] [PMID: 28807745]
[34]
Behnam, B.; Shier, W.T.; Nia, A.H.; Abnous, K.; Ramezani, M. Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int. J. Pharm., 2013, 454(1), 204-215.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.057] [PMID: 23856161]
[35]
Hashem Nia, A.; Behnam, B.; Taghavi, S.; Oroojalian, F.; Eshghi, H.; Shier, W.T.; Abnous, K.; Ramezani, M. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube-succinate- polyethylenimine conjugates as non-viral gene carriers. MedChemComm, 2016, 8(2), 364-375.
[http://dx.doi.org/10.1039/C6MD00481D] [PMID: 30108752]
[36]
Meng, L.; Zhang, X.; Lu, Q.; Fei, Z.; Dyson, P.J. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials, 2012, 33(6), 1689-1698.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.004] [PMID: 22137127]
[37]
Moon, H.K.; Lee, S.H.; Choi, H.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 2009, 3(11), 3707-3713.
[http://dx.doi.org/10.1021/nn900904h] [PMID: 19877694]
[38]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[39]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[40]
Wu, J.; Wang, Y.S.; Yang, X.Y.; Liu, Y.Y.; Yang, J.R.; Yang, R.; Zhang, N. Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology, 2012, 23(35)355101
[http://dx.doi.org/10.1088/0957-4484/23/35/355101] [PMID: 22875697]
[41]
Yang, X.X.; Li, C.M.; Li, Y.F.; Wang, J.; Huang, C.Z. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale, 2017, 9(41), 16086-16092.
[http://dx.doi.org/10.1039/C7NR06520E] [PMID: 29034936]
[42]
Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; de la Guardia, M.; Shadjou, N.; Mokhtarzadeh, A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater. Sci. Eng. C, 2017, 74, 568-581.
[http://dx.doi.org/10.1016/j.msec.2016.12.125] [PMID: 28254332]
[43]
Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H.; Zhang, Y.; Zhang, Z. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv., 2014, 21(5), 379-387.
[http://dx.doi.org/10.3109/10717544.2013.848246] [PMID: 24160816]
[44]
World Health Organization Global Status Report on Alcohol and Health, 2014, 390
[45]
Haumann, J.; Joosten, E.B.A.; Everdingen, M.H.J.V.D.B. Pain prevalence in cancer patients: status quo or opportunities for improvement? Curr. Opin. Support. Palliat. Care, 2017, 11(2), 99-104.
[http://dx.doi.org/10.1097/SPC.0000000000000261] [PMID: 28306569]
[46]
Aggarwal, B.B.; Shishodia, S.; Sandur, S.K.; Pandey, M.K.; Sethi, G. Inflammation and cancer: how hot is the link? Biochem. Pharmacol., 2006, 72(11), 1605-1621.
[http://dx.doi.org/10.1016/j.bcp.2006.06.029] [PMID: 16889756]
[47]
Sinha, R.; Anderson, D.E.; McDonald, S.S.; Greenwald, P. Cancer risk and diet in India. J. Postgrad. Med., 2003, 49(3), 222-228.
[PMID: 14597785]
[48]
Sa, G.; Das, T. Anti cancer effects of curcumin: cycle of life and death. Cell Div., 2008, 3, 14.
[http://dx.doi.org/10.1186/1747-1028-3-14] [PMID: 18834508]
[49]
Some, S.; Gwon, A.R.; Hwang, E.; Bahn, G.H.; Yoon, Y.; Kim, Y.; Kim, S.H.; Bak, S.; Yang, J.; Jo, D.G.; Lee, H. Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci. Rep., 2014, 4, 6314.
[http://dx.doi.org/10.1038/srep06314] [PMID: 25204358]
[50]
Hatamie, S.; Akhavan, O.; Sadrnezhaad, S.K.; Ahadian, M.M.; Shirolkar, M.M.; Wang, H.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C, 2015, 55, 482-489.
[http://dx.doi.org/10.1016/j.msec.2015.05.077] [PMID: 26117780]
[51]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[52]
Muthoosamy, K.; Abubakar, I.B.; Bai, R.G.; Loh, H-S.; Manickam, S. Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci. Rep., 2016, 6, 32808.
[http://dx.doi.org/10.1038/srep32808] [PMID: 27597657]
[53]
Barua, S.; Chattopadhyay, P.; Phukan, M.M.; Konwar, B.K.; Islam, J.; Karak, N. Biocompatible hyperbranched epoxy/silver-reduced graphene oxide-curcumin nanocomposite as an advanced antimicrobial material. RSC Advances, 2014, 4, 47797-47805.
[http://dx.doi.org/10.1039/C4RA07802K]
[54]
Ray, P.; Gautam, V.; Singh, R. Methicillin-resistant Staphylococcus aureus (MRSA) in developing and developed countries: implications and solutions. Reg. Health Forum, 2011, 15(1), 74-82.
[55]
Bugli, F.; Cacaci, M.; Palmieri, V.; Di Santo, R.; Torelli, R.; Ciasca, G.; Di Vito, M.; Vitali, A.; Conti, C.; Sanguinetti, M.; De Spirito, M.; Papi, M. Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant Staphylococcus aureus. Interface Focus, 2018, 8(3)20170059
[http://dx.doi.org/10.1098/rsfs.2017.0059] [PMID: 29696091]
[56]
Yuan, S.; Zeng, L.; Zhuang, Y.; Hou, Q.; Song, M. Functionalized single-walled carbon nanotubes for the improved solubilization and delivery of curcumin. Fuller. Nanotub. Carbon Nanostruct., 2016, 24, 13-19.
[http://dx.doi.org/10.1080/1536383X.2015.1088007]
[57]
Chen, G.Y.; Pang, D.W.; Hwang, S.M.; Tuan, H.Y.; Hu, Y.C. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 2012, 33(2), 418-427.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.071] [PMID: 22014460]
[58]
Shin, S.R.; Li, Y.C.; Jang, H.L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y.S.; Tamayol, A.; Khademhosseini, A. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev.,, 2016, 105(Pt B), 225-274.
[http://dx.doi.org/10.1016/j.addr.2016.03.007]
[59]
Mitra, T.; Manna, P.J.; Raja, S.; Gnanamani, A.; Kundu, P. Curcumin loaded nano graphene oxide reinforced fish scale collagen-a 3D scaffold biomaterial for wound healing applications. RSC Advances, 2015, 5, 98653-98665.
[http://dx.doi.org/10.1039/C5RA15726A]
[60]
Singh, N.; Sachdev, A.; Gopinath, P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol., 2018, 18(3), 1534-1541.
[http://dx.doi.org/10.1166/jnn.2018.14222] [PMID: 29448627]
[61]
Koupaei Malek, S.; Gabris, M.A.; Jume, Hadi . B.; Baradaran, R.; Aziz, M.; Karim, K.J.B.A.; Rashidi Nodeh, H. Adsorption and in vitro release study of curcumin form polyethyleneglycol functionalized multi walled carbon nanotube: kinetic and isotherm study. Daru, 2019, 27(1), 9-20.
[http://dx.doi.org/10.1007/s40199-018-0232-2] [PMID: 30554368]
[62]
Vernot, E.; MacEwen, J.; Bruner, R.; Haun, C.; Kinkead, E.; Prentice, D. Hall, III A.; Schmidt, R.; Eason, R.; Hubbard, G.; Young, J. Long-term inhalation toxicity of hydrazine. Toxicol. Sci., 1985, 5(6 Pt. 1), 1050-1064.
[http://dx.doi.org/10.1093/toxsci/5.6part1.1050]
[63]
Zheng, L.; Song, J.F. Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sens. Actuators B Chem., 2009, 135, 650-655.
[http://dx.doi.org/10.1016/j.snb.2008.09.035]
[64]
Tang, L.; Tang, J.; Zeng, G.; Yang, G.; Xie, X.; Zhou, Y.; Pang, Y.; Fang, Y.; Wang, J.; Xiong, W. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect. Appl. Surf. Sci., 2015, 333, 220-228.
[http://dx.doi.org/10.1016/j.apsusc.2015.02.025]
[65]
Saravanakumar, A.; Ganesh, M.; Jayaprakash, J.; Jang, H.T. Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J. Ind. Eng. Chem., 2015, 28, 277-281.
[http://dx.doi.org/10.1016/j.jiec.2015.03.003]
[66]
Li, S.; Du, D.; Huang, J.; Tu, H.; Yang, Y.; Zhang, A. One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst (Lond.), 2013, 138(9), 2761-2768.
[http://dx.doi.org/10.1039/c3an36497f] [PMID: 23482907]
[67]
Ragu, S.; Chen, S.M.; Ranganathan, P.; Rwei, S.P. Fabrication of a novel nickel-curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int. J. Electrochem. Sci., 2016, 11, 9133-9144.
[http://dx.doi.org/10.20964/2016.11.09]
[68]
Laakso, M.; Kesäniemi, A.; Kervinen, K.; Jauhiainen, M.; Pyörälä, K. Relation of coronary heart disease and apolipoprotein E phenotype in patients with non-insulin dependent diabetes. BMJ, 1991, 303(6811), 1159-1162.
[http://dx.doi.org/10.1136/bmj.303.6811.1159] [PMID: 1747611]
[69]
Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: a review. Biochimie, 2018, 147, 13-24.
[http://dx.doi.org/10.1016/j.biochi.2017.12.015] [PMID: 29307704]
[70]
Takeda, M.; Martínez, R.; Kudo, T.; Tanaka, T.; Okochi, M.; Tagami, S.; Morihara, T.; Hashimoto, R.; Cacabelos, R. Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin. Neurosci., 2010, 64(6), 592-607.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02148.x] [PMID: 21105952]
[71]
Clark, L.F.; Kodadek, T. The immune system and neuroinflammation as potential sources of blood-based biomarkers for Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. ACS Chem. Neurosci., 2016, 7(5), 520-527.
[http://dx.doi.org/10.1021/acschemneuro.6b00042] [PMID: 27046268]
[72]
Mars, A.; Hamami, M.; Bechnak, L.; Patra, D.; Raouafi, N. Curcumin-graphene quantum dots for dual mode sensing platform: electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal. Chim. Acta, 2018, 1036, 141-146.
[http://dx.doi.org/10.1016/j.aca.2018.06.075] [PMID: 30253824]
[73]
Safdarian, M.; Hashemi, P.; Naderlou, M. In-line cold column trapping of organic phase in dispersive liquid-liquid microextraction: enrichment and determination of curcumin in human serum. J. Chromatogr. A, 2012, 1244, 14-19.
[http://dx.doi.org/10.1016/j.chroma.2012.04.059] [PMID: 22609163]
[74]
Gupta, N.K.; Nahata, A.; Dixit, V.K. Development of a spectrofluorimetric method for the determination of curcumin. Asian J. Tradit. Med., 2010, 5(1), 12-18.
[75]
Shrivastava, A.N.; Rodriguez, P.C.; Triller, A.; Renner, M. Dynamic micro-organization of P2X7 receptors revealed by PALM based single particle tracking. Front. Cell. Neurosci., 2013, 7, 232.
[http://dx.doi.org/10.3389/fncel.2013.00232] [PMID: 24324402]
[76]
Maleki, A.; Nematollahi, D.; Clausmeyer, J.; Henig, J.; Plumeré, N.; Schuhmann, W. Electrodeposition of catechol on glassy carbon electrode and its electrocatalytic activity toward NADH oxidation. Electroanalysis, 2012, 24, 1932-1936.
[http://dx.doi.org/10.1002/elan.201200251]
[77]
Wudarska, E.; Chrzescijanska, E.; Kusmierek, E.; Rynkowski, J. Voltammetric studies of acetylsalicylic acid electrooxidation at platinum electrode. Electrochim. Acta, 2013, 93, 189-194.
[http://dx.doi.org/10.1016/j.electacta.2013.01.107]
[78]
Rezayi, M.; Karazhian, R.; Abdollahi, Y.; Narimani, L.; Sany, S.B.T.; Ahmadzadeh, S.; Alias, Y. Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples. Sci. Rep., 2014, 4, 4664.
[http://dx.doi.org/10.1038/srep04664] [PMID: 24722576]
[79]
Rezayi, M.; Heng, L.Y.; Kassim, A.; Ahmadzadeh, S.; Abdollahi, Y.; Jahangirian, H. Immobilization of tris(2 pyridyl) methylamine in a PVC-membrane sensor and characterization of the membrane properties. Chem. Cent. J., 2012, 6(1), 40.
[http://dx.doi.org/10.1186/1752-153X-6-40] [PMID: 22564322]
[80]
Rezayi, M.; Heng, L.Y.; Kassim, A.; Ahmadzadeh, S.; Abdollahi, Y.; Jahangirian, H. Immobilization of ionophore and surface characterization studies of the titanium(III) ion in a PVC-membrane sensor. Sensors (Basel), 2012, 12(7), 8806-8814.
[http://dx.doi.org/10.3390/s120708806] [PMID: 23012518]
[81]
Abraham, A.A.; Rezayi, M.; Manan, N.S.; Narimani, L.; Rosli, A.N.B.; Alias, Y. A novel potentiometric sensor based on 1, 2-Bis (N′-benzoylthioureido) benzene and reduced graphene oxide for determination of lead (II) cation in raw milk. Electrochim. Acta, 2015, 165, 221-231.
[http://dx.doi.org/10.1016/j.electacta.2015.03.003]
[82]
Said, N.R.; Rezayi, M.; Narimani, L.; Al-Mohammed, N.N.; Manan, N.S.A.; Alias, Y. A new N-heterocyclic carbene ionophore in plasticizer-free polypyrrole membrane for determining Ag+ in tap water. Electrochim. Acta, 2016, 197, 10-22.
[http://dx.doi.org/10.1016/j.electacta.2016.02.173]
[83]
Daneshgar, P.; Norouzi, P.; Moosavi-Movahedi, A.A.; Ganjali, M.R.; Haghshenas, E.; Dousty, F.; Farhadi, M. Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. J. Appl. Electrochem., 2009, 39, 1983.
[http://dx.doi.org/10.1007/s10800-009-9908-0]
[84]
Stanić, Z.; Voulgaropoulos, A.; Girousi, S. Electroanalytical study of the antioxidant and antitumor agent curcumin. Electroanalysis, 2008, 20, 1263-1266.
[http://dx.doi.org/10.1002/elan.200804177]]
[85]
Ziyatdinova, G.; Nizamova, A.; Budnikov, H. Voltammetric determination of curcumin in spices. J. Anal. Chem., 2012, 67, 591-594.
[http://dx.doi.org/10.1134/S1061934812040132]
[86]
Kotan, G.; Kardaş, F.; Yokuş, Ö.A.; Akyıldırım, O.; Saral, H.; Eren, T.; Yola, M.L.; Atar, N. A novel determination of curcumin via Ru@ Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods, 2016, 8, 401-408.
[http://dx.doi.org/10.1039/C5AY02950C]
[87]
Zhang, D.; Ouyang, X.; Ma, J.; Li, L.; Zhang, Y. Electrochemical behavior and voltammetric determination of curcumin at electrochemically reduced graphene oxide modified glassy carbon electrode. Electroanalysis, 2016, 28, 749-756.
[http://dx.doi.org/10.1002/elan.201500494]
[88]
Jain, R.; Haque, A.; Verma, A. Voltammetric quantification of surfactant stabilized curcumin at MWCNT/GCE sensor. J. Mol. Liq., 2017, 230, 600-607.
[http://dx.doi.org/10.1016/j.molliq.2017.01.051]
[89]
Reeves, A.E.; Wickstrom, E.; Vinogradov, S.V. Curcumin-combretastatin nanocells as breast cancer cytotoxic and antiangiogenic agent, 2008.
[http://dx.doi.org/10.21236/ADA494015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy