Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Genetic Disorders of Surfactant Deficiency and Neonatal Lung Disease

Author(s): Maria Papale, Giuseppe Fabio Parisi*, Amelia Licari, Raffaella Nenna and Salvatore Leonardi

Volume 15, Issue 3, 2019

Page: [210 - 220] Pages: 11

DOI: 10.2174/1573398X15666191022101620

conference banner
Abstract

Pulmonary surfactant is a heterogeneous combination of lipids and proteins, which prevents alveolar collapse at the end of expiration cycle by decreasing the alveolar surface tension at the air-liquid interface. At birth, the expression of surfactant is very important for normal lung function and it is strictly correlated to gestational age. The best known genetic mutations associated with the onset of respiratory distress in preterm and full-term newborns and with interstitial lung disease later in childhood are those involving the phospholipid transporter (ABCA3) or surfactant proteins C and B (SP-C and SP-B) genes. In particular, mutations in the SP-B gene induce respiratory distress in neonatal period, while alterations on gene encoding for SP-C are commonly associated with diffuse lung disease in children or in adults. Both clinical phenotypes are present, if genetic mutations interest even the phospholipid transporter ABCA3 ambiguity in the sentence. Interstitial lung disease in children (chILD) is defined as a mixed category of mainly chronic and rare respiratory disorders with increased mortality and morbidity. Although genetic alterations are mainly responsible for the onset of these diseases, however, there are also other pathogenic factors that contribute to increase the severity of clinical presentation. In this review, we analyze all clinical features of these rare pulmonary diseases in neonatal and in pediatric age.

Keywords: ABCA3, genetics, granulocyte macrophage colony-stimulating factor (GM-CSF), neonatal lung disease, pediatric interstitial lung disease, surfactant proteins C and B, surfactant proteins.

Graphical Abstract
[1]
Bernhard W. Lung surfactant: Function and composition in the context of development and respiratory physiology. Ann Anat 2016; 208: 146-50.
[http://dx.doi.org/10.1016/j.aanat.2016.08.003] [PMID: 27693601]
[2]
Nogee LM. Genetic basis of children’s interstitial lung disease. Pediatr Allergy Immunol Pulmonol 2010; 23(1): 15-24.
[http://dx.doi.org/10.1089/ped.2009.0024] [PMID: 22087432]
[3]
Haagsman HP, Diemel RV. Surfactant-associated proteins: functions and structural variation. Comp Biochem Physiol A Mol Integr Physiol 2001; 129(1): 91-108.
[http://dx.doi.org/10.1016/S1095-6433(01)00308-7] [PMID: 11369536]
[4]
Soudra SH, Kalapalatha K. Acute respiratory failure in asthma. Indian J Crit Care Med 2005; 4(9): 150-5.
[5]
Flume PA. Pulmonary complications of cystic fibrosis. Respir Care 2009; 54(5): 618-27.
[http://dx.doi.org/10.4187/aarc0443] [PMID: 19393106]
[6]
Wert SE, Whitsett JA, Nogee LM. Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol 2009; 12(4): 253-74.
[http://dx.doi.org/10.2350/09-01-0586.1] [PMID: 19220077]
[7]
Weaver TE, Conkright JJ. Function of surfactant proteins B and C. Annu Rev Physiol 2001; 63: 555-78.
[http://dx.doi.org/10.1146/annurev.physiol.63.1.555]
[8]
Han S, Mallampalli RK. The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc 2015; 765-74.
[9]
Gower WA, Nogee LM. Surfactant dysfunction. Paediatr Respir Rev 2011; 12(4): 223-9.
[http://dx.doi.org/10.1016/j.prrv.2011.01.005] [PMID: 22018035]
[10]
Hamvas A, Cole FS, Nogee LM. Genetic disorders of surfactant proteins. Neonatology 2007; 91(4): 311-7.
[http://dx.doi.org/10.1159/000101347] [PMID: 17575475]
[11]
Nogee LM, Garnier G, Dietz HC, Singer L, Murphy AM, deMello DE, et al. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 1994; 93: 1860-3.
[http://dx.doi.org/10.1172/JCI117173]
[12]
Hamvas A. Inherited surfactant protein-B deficiency and surfactant protein-C associated disease: clinical features and evaluation. Semin Perinatol 2006; 30(6): 316-26.
[http://dx.doi.org/10.1053/j.semperi.2005.11.002] [PMID: 17142157]
[13]
Nogee LM, deMello DE, Dehner LP, Colten HR. De ciency of pulmonary surfactant protein B in congenital alveolar proteinosis. N Engl J Med 1993; 328: 406.
[http://dx.doi.org/10.1056/NEJM199302113280606] [PMID: 8421459]
[14]
Schürch D, Ospina OL, Cruz A, Pérez-Gil J. Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films. Biophys J 2010; 99(10): 3290-9.
[http://dx.doi.org/10.1016/j.bpj.2010.09.039] [PMID: 21081077]
[15]
Thouvenin G, Abou Taam R, Flamein F, et al. Characteristics of disorders associated with genetic mutations of surfactant protein C. Arch Dis Child 2010; 95(6): 449-54.
[http://dx.doi.org/10.1136/adc.2009.171553] [PMID: 20403820]
[16]
Hamvas A, Nogee LM, White FV, Schuler P, Hackett BP, Huddleston CB, et al. Progressive lung disease and surfactant dysfunction with a deletion in surfactant protein C gene. Am J Respir Cell Mol Biol 2004; 30: 771-6.
[17]
Kroner C, Reu S, Teusch V, Schams A, Grimmelt AC, Barker MJ, et al. Genotype alone does not predict the clinical course of SFTPC deficiency in paediatric patients. Eur Respir J 2015; 197-206.
[18]
Nogee LM, Dunbar AE III, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 2001; 344: 573-9.
[http://dx.doi.org/10.1056/NEJM200102223440805]
[19]
Poterjoy BS, Vibert Y, Sola-Visner M, McGowan J, Visner G, Nogee LM. Neonatal respiratory failure due to a novel mutation in the surfactant protein C gene. J Perinatol : Official journal of the California Perinatal Association 2010; 151-3.
[20]
Delestrain C, Simon S, Aissat A, Medina R, Decrouy X, Nattes E, et al. Deciphering the mechanism of Q145H SFTPC mutation unmasks a splicing defect and explains the severity of the phenotype. Eur J Hum Genet 2017; 25: 779-82.
[http://dx.doi.org/10.1038/ejhg.2017.36]
[21]
Salerno T, Peca D, Menchini L, Schiavino A, Boldrini R, Esposito F, et al. Surfactant protein C-associated & interstitial lung disease; three different phenotypes of the same SFTPC mutation. Ital J Pediatr 2016; 42: 23.
[http://dx.doi.org/10.1186/s13052-016-0235-x]
[22]
Hawkins A, Guttentag SH, Deterding R, FunKhouser WK, Goralski JL, Chatterjee S, et al. A non-BRICHOS SFTPC mutant (SP-CI73T) linked to interstitial lung disease promotes a late block in macroautophagy disrupting cellular proteostasis and mitophagy. Am J Physiol Lung Cell Mol Physiol 2015; 308: L33-47.
[http://dx.doi.org/10.1152/ajplung.00217.2014]
[23]
Avital A, Hevroni A, Godfrey S, Cohen S, Maayan C, Nusair S, et al. Natural history of five children with surfactant protein C mutations and interstitial lung disease. Pediatr Pulmonol 2014; 49: 1097-105.
[http://dx.doi.org/10.1002/ppul.22971]
[24]
Litao MK, Hayes D Jr, Chiwane S, Nogee LM, Kurland G, Guglani L. A novel surfactant protein C gene mutation associated with progressive respiratory failure in infancy. Pediatr Pulmonol 2017; 52: 57-68.
[http://dx.doi.org/10.1002/ppul.23493]
[25]
Crossno PF, Polosukhin VV, Blackwell TS, et al. Identification of early interstitial lung disease in an individual with genetic variations in ABCA3 and SFTPC. Chest 2010; 137(4): 969-73.
[http://dx.doi.org/10.1378/chest.09-0790] [PMID: 20371530]
[26]
Somaschini M, Nogee LM, Sassi I, et al. Unexplained neonatal respiratory distress due to congenital surfactant deficiency. J Pediatr 2007; 150(6): 649-53. 653.e1
[http://dx.doi.org/10.1016/j.jpeds.2007.03.008] [PMID: 17517255]
[27]
Ban N, Matsumura Y, Sakai H, Takanezawa Y, Sasaki M, Arai H, et al. ABCA3 as a lipid transporter in pulmonary surfactant biogenesis. J Biol Chem 2007; 9628-34.
[28]
Doan ML, Guillerman RP, Dishop MK, et al. Clinical, radiological and pathological features of ABCA3 mutations in children. Thorax 2008; 63(4): 366-73.
[http://dx.doi.org/10.1136/thx.2007.083766] [PMID: 18024538]
[29]
Flamein F, Riffault L, Muselet-Charlier C, et al. Molecular and cellular characteristics of ABCA3 mutations associated with diffuse parenchymal lung diseases in children. Hum Mol Genet 2012; 21(4): 765-75.
[http://dx.doi.org/10.1093/hmg/ddr508] [PMID: 22068586]
[30]
Gonçalves JP, Pinheiro L, Costa M, Silva A, Gonçalves A, Pereira A. Novel ABCA3 mutations as a cause of respiratory distress in a term newborn. Gene 2014; 534(2): 417-20.
[http://dx.doi.org/10.1016/j.gene.2013.11.015] [PMID: 24269975]
[31]
Peca D, Cutrera R, Masotti A, Boldrini R, Danhaive O. ABCA3, a key player in neonatal respiratory transition and genetic disorders of the surfactant system. Biochem Soc Trans 2015; 43(5): 913-9.
[http://dx.doi.org/10.1042/BST20150100] [PMID: 26517903]
[32]
Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med 2004; 350: 1296-303.
[http://dx.doi.org/10.1056/NEJMoa032178]
[33]
Wambach JA, Casey AM, Fishman MP, et al. Genotype-phenotype correlations for infants and children with ABCA3 deficiency. Am J Respir Crit Care Med 2014; 189(12): 1538-43.
[http://dx.doi.org/10.1164/rccm.201402-0342OC] [PMID: 24871971]
[34]
Beers MF, Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res 2017; 367(3): 481-93.
[http://dx.doi.org/10.1007/s00441-016-2554-z] [PMID: 28025703]
[35]
Kroner C, Wittmann T, Reu S, Teusch V, Klemme M, Rauch D, et al. Lung disease caused by ABCA3 mutations. Thorax 2017; 72: 213-20.
[36]
Wambach JA, Wegner DJ, Depass K, et al. Single ABCA3 mutations increase risk for neonatal respiratory distress syndrome. Pediatrics 2012; 130: e1575-82.
[http://dx.doi.org/10.1542/peds.2012-0918]
[37]
Hayes D Jr, Lloyd EA, Fitch JA, Bush A. ABCA3 transporter deficiency. Am J Respir Crit Care Med 2012; 186: 807.
[38]
Anandarajan M, Paulraj S, Tubman R. ABCA3 Deficiency: An unusual cause of respiratory distress in the newborn. Ulster Med J 2009; 78(1): 51-2.
[PMID: 19252731]
[39]
Bullard JE, Wert SE, Nogee LM. ABCA3 deficiency: Neonatal respiratory failure and interstitial lung disease. Semin Perinatol 2006; 30(6): 327-34.
[http://dx.doi.org/10.1053/j.semperi.2005.12.001] [PMID: 17142158]
[40]
Wambach JA, Yang P, Wegner DJ, et al. Functional characteri-zation of ATP-binding cassette transporter A3 mutations from infants with respiratory distress syndrome. Am J Respir Cell Mol Biol 2016; 55: 716-21.
[http://dx.doi.org/10.1165/rcmb.2016-0008OC]
[41]
Monti S, Nicoletti A, Cantasano A, Krude H, Cassio A. NKX2.1-Related Disorders: A novel mutation with mild clinical presentation. Ital J Pediatr 2015; 41: 45.
[http://dx.doi.org/10.1186/s13052-015-0150-6]
[42]
Nettore IC, Mirra P, Ferrara AM, et al. Identification and functional characterization of a novel mutation in the NKX2-1 gene: comparison with the data in the literature. Thyroid 2013; 23(6): 675-82.
[http://dx.doi.org/10.1089/thy.2012.0267] [PMID: 23379327]
[43]
Nóbrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marín O. Post mitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 2008; 59(5): 733-45.
[http://dx.doi.org/10.1016/j.neuron.2008.07.024] [PMID: 18786357]
[44]
Hamvas A, Deterding RR, Wert SE, et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1. Chest 2013; 144: 794-804.
[http://dx.doi.org/10.1378/chest.12-2502]
[45]
Shetty VB, Kiraly-Borri C, Lamont P, Bikker H, Choong CS. NKX2-1 mutations in brain-lung-thyroid syndrome: A case series of four patients. J Pediatr Endocrinol Metab 2014; 27(3-4): 373-8.
[http://dx.doi.org/10.1515/jpem-2013-0109] [PMID: 24129101]
[46]
Williamson S, Kirkpatrick M, Greene S, Goudie D. A novel mutation of NKX2-1 affecting 2 generations with hypothyroidism and choreoathetosis: part of the spectrum of brain-thyroid-lung syndrome. J Child Neurol 2014; 29(5): 666-9.
[http://dx.doi.org/10.1177/0883073813518243] [PMID: 24453141]
[47]
Salerno T, Peca D, Meschini L, et al. Respiratory Insufficiency in a Newborn with Congenital Hypothyroidism Due to a New Mutation of TTF-1/NKX2.1 Gene. Pediatr Pulmonol 2014; 49: 42-4.
[48]
Stanley E, Lieschke GJ, Grail D, et al. Granulocyte/macrophage colony-stimulating factor deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proce Natl Acad Sci 1994; 91: 5592-6.
[http://dx.doi.org/10.1073/pnas.91.12.5592]
[49]
Hildebrandt J, Yalcin E, Bresser HG, et al. Characterization of CSF2RA mutation related juvenile pulmonary alveolar proteinosis. Orphanet J Rare Dis 2014; 9(1): 171.
[http://dx.doi.org/10.1186/s13023-014-0171-z]
[50]
Enaud L, Hadchouel A, Coulomb A, et al. Pulmonary alveolar proteinosis in children on La Reunion Island: a new inherited disorder? Orphanet J Rare Dis 2014; 9: 85.
[http://dx.doi.org/10.1186/1750-1172-9-85]
[51]
Uchida K, Nakata K, Carey B, et al. Standardized serum GM-CSF autoantibody testing for the routine clinical diagnosis of autoimmune pulmonary alveolar proteinosis. J Immunol Methods 2014; 402(1-2): 57-70.
[http://dx.doi.org/10.1016/j.jim.2013.11.011] [PMID: 24275678]
[52]
Hercus TR, Thomas D, Guthridge MA, et al. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 2009; 114(7): 1289-98.
[http://dx.doi.org/10.1182/blood-2008-12-164004] [PMID: 19436055]
[53]
Committee on Fetus and Newborn. Respiratory support in preterm infants at birth. American Academy of Pediatrics. Pediatrics 2014; 133: 171-4.
[http://dx.doi.org/10.1542/peds.2013-3442]
[54]
Polin RA, Carlo WA. Committee on Fetus and Newborn. Surfactant replacement therapy for preterm and term neonates with respiratory distress American Academy of Pediatrics. Pediatrics 2014; 133: 156-63.
[http://dx.doi.org/10.1542/peds.2013-3443]
[55]
Lord A, Shapiro AJ, Saint-Martin C, Claveau M, Melancon S, Wintermark P. Filamin A mutation may be associated with diffuse lung disease mimicking bronchopulmonary dysplasia in premature newborns. Respir Care 2014; 59: 171-7.
[http://dx.doi.org/10.4187/respcare.02847]
[56]
Fan LL, Deterding RR, Langston C. Pediatric interstitial lung disease revisited. Pediatr Pulmonol 2008; 38: 369-78.
[57]
Vece TJ, Young LR. Update on diffuse lung disease in children. Chest 2016; 149(3): 836-45.
[http://dx.doi.org/10.1378/chest.15-1986] [PMID: 26502226]
[58]
Bush A, Cunningham S, de Blic J, et al. European protocols for the diagnosis and initial treatment of interstitial lung disease in children. Thorax 2015; 70: 1078-84.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207349]
[59]
Kurland G, Deterding RR, Hagood JS, et al. An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med 2013; 188: 376-94.
[60]
Deutsch GH, Young LR, Deterding RR, et al. Diffuse lung disease in young children: Application of a novel classification scheme. Am J Respir Crit Care Med 2007; 176: 1120-8.
[http://dx.doi.org/10.1164/rccm.200703-393OC]
[61]
Hime NJ, Zurynski Y, Fitzgerald D, et al. Childhood interstitial lung disease: A systematic review. Pediatr Pulmonol 2015; 50: 1383-92.
[62]
Griese M. Chronic interstitial lung disease in children. Eur Respir Rev 2018; 27(147) 170100
[http://dx.doi.org/10.1183/16000617.0100-2017] [PMID: 29436403]
[63]
Nathan N, Taam RA, Epaud R, et al. French RespiRare® Group. A national internet-linked based database for pediatric interstitial lung diseases: the French network. Orphanet J Rare Dis 2012; 7: 40.
[http://dx.doi.org/10.1186/1750-1172-7-40] [PMID: 22704798]
[64]
Winter J, Essmann S, Kidszun A, et al. Neonatal respiratory insufficiency caused by an (homozygous) ABCA3-stop mutation: a systematic evaluation of therapeutic options. Klin Padiatr 2014; 226(2): 53-8.
[http://dx.doi.org/10.1055/s-0033-1363687] [PMID: 24633979]
[65]
Clement A, Nathan N, Epaud R, Fauroux B, Corvol H. Interstitial lung diseases in children. Orphanet J Rare Dis 2010; 5: 22.
[http://dx.doi.org/10.1186/1750-1172-5-22] [PMID: 20727133]
[66]
Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond) 2009; 116(1): 27-35.
[http://dx.doi.org/10.1042/CS20080068] [PMID: 19037882]
[67]
Gupta A, Zheng SL. Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate. Arch Dis Child 2017; 102(1): 84-90.
[http://dx.doi.org/10.1136/archdischild-2012-303143] [PMID: 27417306]
[68]
Turcu S, Ashton E, Jenkins L, Gupta A, Mok Q. Genetic testing in children with surfactant dysfunction. Arch Dis Child 2013; 98(7): 490-5.
[http://dx.doi.org/10.1136/archdischild-2012-303166] [PMID: 23625987]
[69]
Kitazawa H, Kure S. Interstitial lung disease in childhood: clinical and genetic aspects. Clin Med Insights Circ Respir Pulm Med 2015; 9(Suppl. 1): 57-68.
[http://dx.doi.org/10.4137/CCRPM.S23282] [PMID: 26512209]
[70]
Saddi V, Beggs S, Bennetts B, et al. Childhood interstitial lung diseases in immunocompetent children in Australia and New Zealand: a decade’s experience. Orphanet J Rare Dis 2017; 12(1): 133.
[http://dx.doi.org/10.1186/s13023-017-0637-x] [PMID: 28743279]
[71]
Soares JJ, Deutsch GH, Moore PE, et al. Childhood interstitial lung diseases: an 18-year retrospective analysis. Pediatrics 2013; 132(4): 684-91.
[http://dx.doi.org/10.1542/peds.2013-1780] [PMID: 24081995]
[72]
Long FR, Castile RG. Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 2001; 31(6): 413-22.
[http://dx.doi.org/10.1007/s002470100462] [PMID: 11436888]
[73]
Rabach I, Poli F, Zennaro F, Germani C, Ventura A, Barbi E. Is treatment with hydroxychloroquine effective in surfactant protein C deficiency? Arch Bronconeumol 2013; 49(5): 213-5.
[http://dx.doi.org/10.1016/j.arbr.2012.08.013] [PMID: 23137777]
[74]
Griese M, Seidl E, Hengst M, Reu S, Rock H, Anthony G, et al. International management platform for children’s interstitial lung disease (chILD-EU). Thorax 2018; 73: 231-9.
[http://dx.doi.org/10.1136/thoraxjnl-2017-210519]
[75]
Braun S, Ferner M, Kronfeld K, Griese M. Hydroxychloroquine in children with interstitial (diffuse parenchymal) lung diseases. Pediatr Pulmonol 2015; 50(4): 410-9.
[http://dx.doi.org/10.1002/ppul.23133] [PMID: 25491573]
[76]
Clement A, de Blic J, Epaud R, et al. Management of children with interstitial lung diseases: the difficult issue of acute exacerbations. Eur Respir J 2016; 48: 1559-63.
[http://dx.doi.org/10.1183/13993003.01900-2016]
[77]
Rama JA, Fan LL, Faro A, et al. Lung transplantation for childhood diffuse lung disease. Pediatr Pulmonol 2013; 48: 490-6.
[78]
Raghavendran K, Willson D, Notter RH. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit Care Clin 2011; 27(3): 525-59.
[http://dx.doi.org/10.1016/j.ccc.2011.04.005] [PMID: 21742216]
[79]
Moretti C, Papoff P, Barbara CS, Liberati C, Guidotti M, Midulla F. Sufarctant therapy for acute respiratory distress in children. Acta Biomed 2013; 84(Suppl. 1): 18-21.
[80]
C Gizzi, P Papoff, C.S Barbàra, G Cangiano, F Midulla, C Moretti. Old and new uses of surfactant. J Matern Fetal Neonatal Med 2010; 23(Suppl. 3): 41-4.

© 2024 Bentham Science Publishers | Privacy Policy