Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

New Entrants into Clinical Trials for Targeted Therapy of Breast Cancer: An Insight

Author(s): Priyanka Verma, Pooja Mittal, Archana Singh* and Indrakant K. Singh*

Volume 19, Issue 18, 2019

Page: [2156 - 2176] Pages: 21

DOI: 10.2174/1871520619666191018172926

Price: $65

conference banner
Abstract

Breast cancer is too complex with various different molecular alterations involved in its pathogenesis and progression. Over the decade, we have seen a surge in the development of drugs for bimolecular targets and for the signal transduction pathways involved in the treatment line of breast cancer. These drugs, either alone or in combination with conventional treatments like chemotherapy, hormone therapy and radiotherapy, will help oncologists to get a better insight and do the needful treatment. These novel therapies bring various challenges along with them, which include the dosage selection, patient selection, schedule of treatment and weighing of clinical benefits over side effects. In this review, we highlight the recently studied target molecules that have received indications in breast carcinoma, both in the localized and in an advanced state and about their inhibitors which are in clinical development which can give the immense potential to clinical care in the near future.

Keywords: Breast cancer, drug targets, inhibitors, drug design, EGFR, notch, CDK4/6, androgen receptor, aromatase.

Graphical Abstract
[1]
Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Avilable form. https://www.ncbi.nlm.nih.gov/pubmed/25220842 (Accessed on: Sep 24, 2018)
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Chabner, B.A.; Roberts, T.G., Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[4]
Schwartsmann, G.; Winograd, B.; Pinedo, H.M. The main steps in the development of anticancer agents. Radiother. Oncol., 1988, 12(4), 301-313.
[http://dx.doi.org/10.1016/0167-8140(88)90020-5] [PMID: 3055073]
[5]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--An update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[6]
Yarden, Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur. J. Cancer, 2001, 37(37)(Suppl. 4), S3-S8.
[http://dx.doi.org/10.1016/S0959-8049(01)00230-1] [PMID: 11597398]
[7]
Hynes, N.E.; MacDonald, G.; Erb, B. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol., 2009, 21(2), 177-184.
[http://dx.doi.org/10.1016/j.ceb.2008.12.010] [PMID: 19208461]
[8]
Burgess, A.W. EGFR family: Structure physiology signalling and therapeutic targets. Growth Factors, 2008, 26(5), 263-274.
[http://dx.doi.org/10.1080/08977190802312844] [PMID: 18800267]
[9]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[10]
Lee, H-H.; Wang, Y-N.; Hung, M-C. Non-canonical signaling mode of the epidermal growth factor receptor family. Am. J. Cancer Res., 2015, 5(10), 2944-2958.
[PMID: 26693051]
[11]
Rimawi, M.F.; Shetty, P.B.; Weiss, H.L.; Schiff, R.; Osborne, C.K.; Chamness, G.C.; Elledge, R.M. Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer, 2010, 116(5), 1234-1242.
[http://dx.doi.org/10.1002/cncr.24816] [PMID: 20082448]
[12]
Shigematsu, H.; Gazdar, A.F. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int. J. Cancer, 2006, 118(2), 257-262.
[http://dx.doi.org/10.1002/ijc.21496] [PMID: 16231326]
[13]
Gan, H.K.; Kaye, A.H.; Luwor, R.B. The EGFRvIII variant in glioblastoma multiforme. J. Clin. Neurosci., 2009, 16(6), 748-754.
[http://dx.doi.org/10.1016/j.jocn.2008.12.005] [PMID: 19324552]
[14]
Bronte, G.; Terrasi, M.; Rizzo, S.; Sivestris, N.; Ficorella, C.; Cajozzo, M.; Di Gaudio, F.; Gulotta, G.; Siragusa, S.; Gebbia, N.; Russo, A. EGFR genomic alterations in cancer: prognostic and predictive values. Front. Biosci. (Elite Ed.), 2011, 3, 879-887.
[PMID: 21622099]
[15]
Bierie, B.; Moses, H.L. Transforming growth factor β (TGF-β) and inflammation in cancer. Cytokine Growth Factor Rev., 2010, 21(1), 49-59.
[http://dx.doi.org/10.1016/j.cytogfr.2009.11.008] [PMID: 20018551]
[16]
Sheen, Y.Y.; Kim, M-J.; Park, S-A.; Park, S-Y.; Nam, J-S. Targeting the transforming growth factor-β signaling in cancer therapy. Biomol. Ther. (Seoul), 2013, 21(5), 323-331.
[http://dx.doi.org/10.4062/biomolther.2013.072] [PMID: 24244818]
[17]
Padua, D.; Massagué, J. Roles of TGFbeta in metastasis. Cell Res., 2009, 19(1), 89-102.
[http://dx.doi.org/10.1038/cr.2008.316] [PMID: 19050696]
[18]
Katz, L.H.; Li, Y.; Chen, J-S.; Muñoz, N.M.; Majumdar, A.; Chen, J.; Mishra, L. Targeting TGF-β signaling in cancer. Expert Opin. Ther. Targets, 2013, 17(7), 743-760.
[http://dx.doi.org/10.1517/14728222.2013.782287] [PMID: 23651053]
[19]
Tian, F.; Byfield, S.D.; Parks, W.T.; Stuelten, C.H.; Nemani, D.; Zhang, Y.E.; Roberts, A.B. Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res., 2004, 64(13), 4523-4530.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0030] [PMID: 15231662]
[20]
Oft, M.; Akhurst, R.J.; Balmain, A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat. Cell Biol., 2002, 4(7), 487-494.
[http://dx.doi.org/10.1038/ncb807] [PMID: 12105419]
[21]
Gorska, A.E.; Jensen, R.A.; Shyr, Y.; Aakre, M.E.; Bhowmick, N.A.; Moses, H.L. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am. J. Pathol., 2003, 163(4), 1539-1549.
[http://dx.doi.org/10.1016/S0002-9440(10)63510-9] [PMID: 14507660]
[22]
Muraoka-Cook, R.S.; Kurokawa, H.; Koh, Y.; Forbes, J.T.; Roebuck, L.R.; Barcellos-Hoff, M.H.; Moody, S.E.; Chodosh, L.A.; Arteaga, C.L. Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res., 2004, 64(24), 9002-9011.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2111] [PMID: 15604265]
[23]
Yang, Y-A.; Dukhanina, O.; Tang, B.; Mamura, M.; Letterio, J.J.; MacGregor, J.; Patel, S.C.; Khozin, S.; Liu, Z-Y.; Green, J.; Anver, M.R.; Merlino, G.; Wakefield, L.M. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest., 2002, 109(12), 1607-1615.
[http://dx.doi.org/10.1172/JCI200215333] [PMID: 12070308]
[24]
Yingling, J.M.; Blanchard, K.L.; Sawyer, J.S. Development of TGF-beta signalling inhibitors for cancer therapy. Nat. Rev. Drug Discov., 2004, 3(12), 1011-1022.
[http://dx.doi.org/10.1038/nrd1580] [PMID: 15573100]
[25]
Kuenen-Boumeester, V.; Van der Kwast, T.H.; Claassen, C.C.; Look, M.P.; Liem, G.S.; Klijn, J.G.; Henzen-Logmans, S.C. The clinical significance of androgen receptors in breast cancer and their relation to histological and cell biological parameters. Eur. J. Cancer Oxf. Engl. 1990, 1996, 32A(9), 1560-1565.
[26]
Moinfar, F.; Okcu, M.; Tsybrovskyy, O.; Regitnig, P.; Lax, S.F.; Weybora, W.; Ratschek, M.; Tavassoli, F.A.; Denk, H. Androgen receptors frequently are expressed in breast carcinomas: Potential relevance to new therapeutic strategies. Cancer, 2003, 98(4), 703-711.
[http://dx.doi.org/10.1002/cncr.11532] [PMID: 12910513]
[27]
Vera-Badillo, F.E.; Templeton, A.J.; de Gouveia, P.; Diaz-Padilla, I.; Bedard, P.L.; Al-Mubarak, M.; Seruga, B.; Tannock, I.F.; Ocana, A.; Amir, E. Androgen receptor expression and outcomes in early breast cancer: A systematic review and meta-analysis. J. Natl. Cancer Inst., 2014, 106(1)djt319
[http://dx.doi.org/10.1093/jnci/djt319] [PMID: 24273215]
[28]
Wilson, R.H.; Evans, T.J.; Middleton, M.R.; Molife, L.R.; Spicer, J.; Dieras, V.; Roxburgh, P.; Giordano, H.; Jaw-Tsai, S.; Goble, S.; Plummer, R. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br. J. Cancer, 2017, 116(7), 884-892.
[http://dx.doi.org/10.1038/bjc.2017.36] [PMID: 28222073]
[29]
Birrell, S.N.; Butler, L.M.; Harris, J.M.; Buchanan, G.; Tilley, W.D. Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. FASEB J., 2007, 21(10), 2285-2293.
[http://dx.doi.org/10.1096/fj.06-7518com] [PMID: 17413000]
[30]
Zhu, X.; Li, H.; Liu, J.P.; Funder, J.W. Androgen stimulates mitogen-activated protein kinase in human breast cancer cells. Mol. Cell. Endocrinol., 1999, 152(1-2), 199-206.
[http://dx.doi.org/10.1016/S0303-7207(99)00031-3] [PMID: 10432237]
[31]
Peters, A.A.; Buchanan, G.; Ricciardelli, C.; Bianco-Miotto, T.; Centenera, M.M.; Harris, J.M.; Jindal, S.; Segara, D.; Jia, L.; Moore, N.L.; Henshall, S.M.; Birrell, S.N.; Coetzee, G.A.; Sutherland, R.L.; Butler, L.M.; Tilley, W.D. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res., 2009, 69(15), 6131-6140.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0452] [PMID: 19638585]
[32]
Wong, Y.C.; Xie, B. The role of androgens in mammary carcinogenesis. Ital. J. Anat. Embryol., 2001, 106(2)(Suppl. 1), 111-125.
[PMID: 11729946]
[33]
Hickey, T.E.; Robinson, J.L.L.; Carroll, J.S.; Tilley, W.D. Minireview: The androgen receptor in breast tissues: Growth inhibitor, tumor suppressor, oncogene? Mol. Endocrinol., 2012, 26(8), 1252-1267.
[http://dx.doi.org/10.1210/me.2012-1107] [PMID: 22745190]
[34]
SEER Cancer Statistics Review, 1975-2009 - Previous Version - SEER Cancer Statistics Review Available form. https://seer.cancer.gov/archive/csr/1975_2009_pops09/index.html (Accessed on: Oct 16, 2018)
[35]
Chottanapund, S.; Van Duursen, M.B.M.; Navasumrit, P.; Hunsonti, P.; Timtavorn, S.; Ruchirawat, M.; Van den Berg, M. Effect of androgens on different breast cancer cells co-cultured with or without breast adipose fibroblasts. J. Steroid Biochem. Mol. Biol., 2013, 138, 54-62.
[http://dx.doi.org/10.1016/j.jsbmb.2013.03.007]
[36]
Zhao, T.P.; He, G.F. A phase II clinical trial of flutamide in the treatment of advanced breast cancer. Tumori, 1988, 74(1), 53-56.
[http://dx.doi.org/10.1177/030089168807400109] [PMID: 3354065]
[37]
Perrault, D.J.; Logan, D.M.; Stewart, D.J.; Bramwell, V.H.; Paterson, A.H.; Eisenhauer, E.A.; Phase, I.I. Phase II study of flutamide in patients with metastatic breast cancer. A National Cancer Institute of Canada Clinical Trials Group study. Invest. New Drugs, 1988, 6(3), 207-210.
[http://dx.doi.org/10.1007/BF00175399] [PMID: 3192386]
[38]
Doane, A.S.; Danso, M.; Lal, P.; Donaton, M.; Zhang, L.; Hudis, C.; Gerald, W.L. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene, 2006, 25(28), 3994-4008.
[http://dx.doi.org/10.1038/sj.onc.1209415] [PMID: 16491124]
[39]
Cochrane, D.R.; Bernales, S.; Jacobsen, B.M.; Cittelly, D.M.; Howe, E.N.; D’Amato, N.C.; Spoelstra, N.S.; Edgerton, S.M.; Jean, A.; Guerrero, J.; Gómez, F.; Medicherla, S.; Alfaro, I.E.; McCullagh, E.; Jedlicka, P.; Torkko, K.C.; Thor, A.D.; Elias, A.D.; Protter, A.A.; Richer, J.K. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res., 2014, 16(1), R7.
[http://dx.doi.org/10.1186/bcr3599] [PMID: 24451109]
[40]
Toren, P.J.; Kim, S.; Pham, S.; Mangalji, A.; Adomat, H.; Guns, E.S.T.; Zoubeidi, A.; Moore, W.; Gleave, M.E. Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer. Mol. Cancer Ther., 2015, 14(1), 59-69.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0521] [PMID: 25351916]
[41]
CYP17 Lyase and Androgen Receptor Inhibitor Treatment With Seviteronel Trial (INO-VT-464-006; NCT02580448) - Full Text View - ClinicalTrials.gov Available from. https://clinicaltrials.gov/ct2/show/NCT02580448 (Accessed on: Oct 16, 2018)
[42]
Beatson, G.T. On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment, with illustrative cases. Trans. Medico-Chir. Soc. Edinb., 1896, 15, 153-179.
[43]
Howell, A.; Dowsett, M. Recent advances in endocrine therapy of breast cancer. BMJ, 1997, 315(7112), 863-866.
[http://dx.doi.org/10.1136/bmj.315.7112.863] [PMID: 9353509]
[44]
Iacopetta, D.; Rechoum, Y.; Fuqua, S.A. The role of androgen receptor in breast cancer. Drug Discov. Today Dis. Mech., 2012, 9(1-2), e19-e27.
[http://dx.doi.org/10.1016/j.ddmec.2012.11.003] [PMID: 26568765]
[45]
Powles, T.J.; Hickish, T.; Kanis, J.A.; Tidy, A.; Ashley, S. Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J. Clin. Oncol., 1996, 14(1), 78-84.
[http://dx.doi.org/10.1200/JCO.1996.14.1.78] [PMID: 8558225]
[47]
Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; Daly, M.; Wieand, S.; Tan-Chiu, E.; Ford, L.; Wolmark, N. Tamoxifen for prevention of breast cancer: Report of the national surgical adjuvant breast and bowel project P-1 study. J. Natl. Cancer Inst., 1998, 90(18), 1371-1388.
[http://dx.doi.org/10.1093/jnci/90.18.1371] [PMID: 9747868]
[48]
DeFriend, D.J.; Anderson, E.; Bell, J.; Wilks, D.P.; West, C.M.; Mansel, R.E.; Howell, A. Effects of 4-hydroxytamoxifen and a novel pure antioestrogen (ICI 182780) on the clonogenic growth of human breast cancer cells in vitro. Br. J. Cancer, 1994, 70(2), 204-211.
[http://dx.doi.org/10.1038/bjc.1994.281] [PMID: 8054267]
[49]
Cuzick, J.; Forbes, J.; Edwards, R.; Baum, M.; Cawthorn, S.; Coates, A.; Hamed, A.; Howell, A.; Powles, T. IBIS investigators. First results from the International Breast Cancer Intervention Study (IBIS-I): A randomised prevention trial. Lancet, 2002, 360(9336), 817-824.
[http://dx.doi.org/10.1016/S0140-6736(02)09962-2] [PMID: 12243915]
[50]
Dowsett, M.; Haynes, B.P. Hormonal effects of aromatase inhibitors: focus on premenopausal effects and interaction with tamoxifen. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 255-263.
[http://dx.doi.org/10.1016/S0960-0760(03)00365-0] [PMID: 14623519]
[51]
Amé, J-C.; Spenlehauer, C.; de Murcia, G. The PARP Superfamily. BioEssays News Rev. Mol. Cell. Dev. Biol., 2004, 26(8), 882-893.
[http://dx.doi.org/10.1002/bies.20085]
[52]
De Vos, M.; Schreiber, V.; Dantzer, F. The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art. Biochem. Pharmacol., 2012, 84(2), 137-146.
[http://dx.doi.org/10.1016/j.bcp.2012.03.018] [PMID: 22469522]
[53]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[54]
Caldecott, K.W. Single-strand break repair and genetic disease. Nat. Rev. Genet., 2008, 9(8), 619-631.
[http://dx.doi.org/10.1038/nrg2380] [PMID: 18626472]
[55]
Ali, A.A.E.; Timinszky, G.; Arribas-Bosacoma, R.; Kozlowski, M.; Hassa, P.O.; Hassler, M.; Ladurner, A.G.; Pearl, L.H.; Oliver, A.W. The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat. Struct. Mol. Biol., 2012, 19(7), 685-692.
[http://dx.doi.org/10.1038/nsmb.2335] [PMID: 22683995]
[56]
Rulten, S.L.; Fisher, A.E.O.; Robert, I.; Zuma, M.C.; Rouleau, M.; Ju, L.; Poirier, G.; Reina-San-Martin, B.; Caldecott, K.W. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell, 2011, 41(1), 33-45.
[http://dx.doi.org/10.1016/j.molcel.2010.12.006] [PMID: 21211721]
[57]
Pommier, Y.; O’Connor, M.J.; de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med., 2016, 8(362)362ps17
[http://dx.doi.org/10.1126/scitranslmed.aaf9246] [PMID: 27797957]
[58]
Murai, J.; Zhang, Y.; Morris, J.; Ji, J.; Takeda, S.; Doroshow, J.H.; Pommier, Y. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J. Pharmacol. Exp. Ther., 2014, 349(3), 408-416.
[http://dx.doi.org/10.1124/jpet.113.210146] [PMID: 24650937]
[59]
Lyons, T.G.; Robson, M.E. Resurrection of PARP inhibitors in breast cancer. J. Natl. Compr. Canc. Netw., 2018, 16(9), 1150-1156.
[http://dx.doi.org/10.6004/jnccn.2018.7031] [PMID: 30181424]
[60]
Dent, R.A.; Lindeman, G.J.; Clemons, M.; Wildiers, H.; Chan, A.; McCarthy, N.J.; Singer, C.F.; Lowe, E.S.; Kemsley, K.; Carmichael, J. Safety and efficacy of the oral PARP inhibitor olaparib (AZD2281) in combination with paclitaxel for the first- or second-line treatment of patients with metastatic triple-negative breast cancer: Results from the safety cohort of a phase I/II multicenter trial. J. Clin. Oncol., 2010, 28(Suppl. 15), 1018-1018.
[http://dx.doi.org/10.1200/jco.2010.28.15_suppl.1018]
[61]
Lee, J-M.; Hays, J.L.; Annunziata, C.M.; Noonan, A.M.; Minasian, L.; Zujewski, J.A.; Yu, M.; Gordon, N.; Ji, J.; Sissung, T.M.; Figg, W.D.; Azad, N.; Wood, B.J.; Doroshow, J.; Kohn, E.C. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J. Natl. Cancer Inst., 2014, 106(6)dju089
[http://dx.doi.org/10.1093/jnci/dju089] [PMID: 24842883]
[62]
Balmaña, J.; Tung, N.M.; Isakoff, S.J.; Graña, B.; Ryan, P.D.; Saura, C.; Lowe, E.S.; Frewer, P.; Winer, E.; Baselga, J.; Garber, J.E. Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann. Oncol., 2014, 25(8), 1656-1663.
[http://dx.doi.org/10.1093/annonc/mdu187] [PMID: 24827126]
[63]
Somlo, G.; Frankel, P.H.; Luu, T.H.; Ma, C.X.; Arun, B.; Garcia, A.A.; Cigler, T.; Cream, L.; Harvey, H.A.; Sparano, J.A. Efficacy of the PARP Inhibitor (PI) ABT-888 (Veliparib [Vel] either with carboplatin (carb) or as a single agent followed by post-progression therapy in combination with carb in patients (Pts) with BRCA1- or BRCA2- (BRCA)-associated metastatic breast cancer (MBC). J. Clin. Oncol., 2015, 33(Suppl. 15), 520-520.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.520]
[64]
Miller, K.; Tong, Y.; Jones, D.R.; Walsh, T.; Danso, M.A.; Ma, C.X.; Silverman, P.; King, M-C.; Badve, S.S.; Perkins, S.M. Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple negative breast cancer: Final efficacy results of hoosier oncology group BRE09-146. J. Clin. Oncol., 2015, 33(Suppl. 15), 1082-1082.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.1082]
[65]
Mehta, M.P.; Wang, D.; Wang, F.; Kleinberg, L.; Brade, A.; Robins, H.I.; Turaka, A.; Leahy, T.; Medina, D.; Xiong, H.; Mostafa, N.M.; Dunbar, M.; Zhu, M.; Qian, J.; Holen, K.; Giranda, V.; Curran, W.J. Veliparib in combination with whole brain radiation therapy in patients with brain metastases: Results of a phase 1 study. J. Neurooncol., 2015, 122(2), 409-417.
[http://dx.doi.org/10.1007/s11060-015-1733-1] [PMID: 25682091]
[66]
Halford, S.E.R.; Cruickshank, G.; Dunn, L.; Erridge, S.; Godfrey, L.; Herbert, C.; Jefferies, S.; Lopez, J.S.; McBain, C.; Pittman, M. Results of the OPARATIC trial: A phase I dose escalation study of olaparib in combination with Temozolomide (TMZ) in Patients with Relapsed Glioblastoma (GBM). J. Clin. Oncol., 2017, 35(Suppl. 15), 2022-2022.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.2022]
[67]
Chornenkyy, Y.; Agnihotri, S.; Yu, M.; Buczkowicz, P.; Rakopoulos, P.; Golbourn, B.; Garzia, L.; Siddaway, R.; Leung, S.; Rutka, J.T.; Taylor, M.D.; Dirks, P.B.; Hawkins, C. Poly-ADP-Ribose polymerase as a therapeutic target in pediatric diffuse intrinsic pontine glioma and pediatric high-grade astrocytoma. Mol. Cancer Ther., 2015, 14(11), 2560-2568.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0282] [PMID: 26351319]
[68]
Strasser, A.; Cory, S.; Adams, J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J., 2011, 30(18), 3667-3683.
[http://dx.doi.org/10.1038/emboj.2011.307] [PMID: 21863020]
[69]
Vaux, D.L.; Cory, S.; Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 1988, 335(6189), 440-442.
[http://dx.doi.org/10.1038/335440a0] [PMID: 3262202]
[70]
McDonnell, T.J.; Deane, N.; Platt, F.M.; Nunez, G.; Jaeger, U.; McKearn, J.P.; Korsmeyer, S.J. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell, 1989, 57(1), 79-88.
[http://dx.doi.org/10.1016/0092-8674(89)90174-8] [PMID: 2649247]
[71]
Dawson, S.J.; Makretsov, N.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Baglietto, L.; Severi, G.; Giles, G.G.; McLean, C.A.; Callagy, G.; Green, A.R.; Ellis, I.; Gelmon, K.; Turashvili, G.; Leung, S.; Aparicio, S.; Huntsman, D.; Caldas, C.; Pharoah, P. BCL2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer, 2010, 103(5), 668-675.
[http://dx.doi.org/10.1038/sj.bjc.6605736] [PMID: 20664598]
[72]
Oakes, S.R.; Vaillant, F.; Lim, E.; Lee, L.; Breslin, K.; Feleppa, F.; Deb, S.; Ritchie, M.E.; Takano, E.; Ward, T.; Fox, S.B.; Generali, D.; Smyth, G.K.; Strasser, A.; Huang, D.C.; Visvader, J.E.; Lindeman, G.J. Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 2766-2771.
[http://dx.doi.org/10.1073/pnas.1104778108] [PMID: 21768359]
[73]
Cao, X.; Yap, J.L.; Newell-Rogers, M.K.; Peddaboina, C.; Jiang, W.; Papaconstantinou, H.T.; Jupitor, D.; Rai, A.; Jung, K-Y.; Tubin, R.P.; Yu, W.; Vanommeslaeghe, K.; Wilder, P.T.; MacKerell, A.D., Jr; Fletcher, S.; Smythe, R.W. The novel BH3 α-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein-protein interactions with Bak. Mol. Cancer, 2013, 12(1), 42.
[http://dx.doi.org/10.1186/1476-4598-12-42] [PMID: 23680104]
[74]
Yang, J.; Ikezoe, T.; Nishioka, C.; Yokoyama, A. Over-expression of Mcl-1 impairs the ability of ATRA to induce growth arrest and differentiation in acute promyelocytic leukemia cells. Apoptosis, 2013, 18(11), 1403-1415.
[http://dx.doi.org/10.1007/s10495-013-0872-0] [PMID: 23760752]
[75]
Kharbanda, S.; Saxena, S.; Yoshida, K.; Pandey, P.; Kaneki, M.; Wang, Q.; Cheng, K.; Chen, Y.N.; Campbell, A.; Sudha, T.; Yuan, Z.M.; Narula, J.; Weichselbaum, R.; Nalin, C.; Kufe, D. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J. Biol. Chem., 2000, 275(1), 322-327.
[http://dx.doi.org/10.1074/jbc.275.1.322] [PMID: 10617621]
[76]
Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular survival: A play in three Akts. Genes Dev., 1999, 13(22), 2905-2927.
[http://dx.doi.org/10.1101/gad.13.22.2905] [PMID: 10579998]
[77]
Ellis, M.J.; Perou, C.M. The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov., 2013, 3(1), 27-34.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0462] [PMID: 23319768]
[78]
Polivka, J., Jr; Janku, F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol. Ther., 2014, 142(2), 164-175.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.004] [PMID: 24333502]
[79]
Engelman, J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer, 2009, 9(8), 550-562.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
[80]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[81]
Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov., 2014, 13(2), 140-156.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[82]
Janku, F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat. Rev., 2017, 59, 93-101.
[http://dx.doi.org/10.1016/j.ctrv.2017.07.005] [PMID: 28779636]
[83]
Janku, F.; Hong, D.S.; Fu, S.; Piha-Paul, S.A.; Naing, A.; Falchook, G.S.; Tsimberidou, A.M.; Stepanek, V.M.; Moulder, S.L.; Lee, J.J.; Luthra, R.; Zinner, R.G.; Broaddus, R.R.; Wheler, J.J.; Kurzrock, R. Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors. Cell Rep., 2014, 6(2), 377-387.
[http://dx.doi.org/10.1016/j.celrep.2013.12.035] [PMID: 24440717]
[84]
Janku, F.; Tsimberidou, A.M.; Garrido-Laguna, I.; Wang, X.; Luthra, R.; Hong, D.S.; Naing, A.; Falchook, G.S.; Moroney, J.W.; Piha-Paul, S.A.; Wheler, J.J.; Moulder, S.L.; Fu, S.; Kurzrock, R. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther., 2011, 10(3), 558-565.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0994] [PMID: 21216929]
[85]
Hyman, D.M.; Smyth, L.M.; Donoghue, M.T.A.; Westin, S.N.; Bedard, P.L.; Dean, E.J.; Bando, H.; El-Khoueiry, A.B.; Pérez-Fidalgo, J.A.; Mita, A.; Schellens, J.H.M.; Chang, M.T.; Reichel, J.B.; Bouvier, N.; Selcuklu, S.D.; Soumerai, T.E.; Torrisi, J.; Erinjeri, J.P.; Ambrose, H.; Barrett, J.C.; Dougherty, B.; Foxley, A.; Lindemann, J.P.O.; McEwen, R.; Pass, M.; Schiavon, G.; Berger, M.F.; Chandarlapaty, S.; Solit, D.B.; Banerji, U.; Baselga, J.; Taylor, B.S. AKT inhibition in solid tumors with AKT1 mutations. J. Clin. Oncol., 2017, 35(20), 2251-2259.
[http://dx.doi.org/10.1200/JCO.2017.73.0143] [PMID: 28489509]
[86]
Iyer, G.; Hanrahan, A.J.; Milowsky, M.I.; Al-Ahmadie, H.; Scott, S.N.; Janakiraman, M.; Pirun, M.; Sander, C.; Socci, N.D.; Ostrovnaya, I.; Viale, A.; Heguy, A.; Peng, L.; Chan, T.A.; Bochner, B.; Bajorin, D.F.; Berger, M.F.; Taylor, B.S.; Solit, D.B. Genome sequencing identifies a basis for everolimus sensitivity. Science, 2012, 338(6104), 221.
[http://dx.doi.org/10.1126/science.1226344] [PMID: 22923433]
[87]
Kwiatkowski, D.J.; Choueiri, T.K.; Fay, A.P.; Rini, B.I.; Thorner, A.R.; de Velasco, G.; Tyburczy, M.E.; Hamieh, L.; Albiges, L.; Agarwal, N.; Ho, T.H.; Song, J.; Pignon, J.C.; Barrios, P.M.; Michaelson, M.D.; Van Allen, E.; Krajewski, K.M.; Porta, C.; Pal, S.; Bellmunt, J.; McDermott, D.F.; Heng, D.Y.C.; Gray, K.P.; Signoretti, S. Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin. Cancer Res., 2016, 22(10), 2445-2452.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2631] [PMID: 26831717]
[88]
Wagle, N.; Grabiner, B.C.; Van Allen, E.M.; Amin-Mansour, A.; Taylor-Weiner, A.; Rosenberg, M.; Gray, N.; Barletta, J.A.; Guo, Y.; Swanson, S.J.; Ruan, D.T.; Hanna, G.J.; Haddad, R.I.; Getz, G.; Kwiatkowski, D.J.; Carter, S.L.; Sabatini, D.M.; Jänne, P.A.; Garraway, L.A.; Lorch, J.H. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N. Engl. J. Med., 2014, 371(15), 1426-1433.
[http://dx.doi.org/10.1056/NEJMoa1403352] [PMID: 25295501]
[89]
Krueger, D.A.; Care, M.M.; Holland, K.; Agricola, K.; Tudor, C.; Mangeshkar, P.; Wilson, K.A.; Byars, A.; Sahmoud, T.; Franz, D.N. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med., 2010, 363(19), 1801-1811.
[http://dx.doi.org/10.1056/NEJMoa1001671] [PMID: 21047224]
[90]
Cheng, H.; Zou, Y.; Ross, J.S.; Wang, K.; Liu, X.; Halmos, B.; Ali, S.M.; Liu, H.; Verma, A.; Montagna, C.; Chachoua, A.; Goel, S.; Schwartz, E.L.; Zhu, C.; Shan, J.; Yu, Y.; Gritsman, K.; Yelensky, R.; Lipson, D.; Otto, G.; Hawryluk, M.; Stephens, P.J.; Miller, V.A.; Piperdi, B.; Perez-Soler, R. RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from treatment with mTORC1/2 inhibitors. Cancer Discov., 2015, 5(12), 1262-1270.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0971] [PMID: 26370156]
[91]
Grabiner, B.C.; Nardi, V.; Birsoy, K.; Possemato, R.; Shen, K.; Sinha, S.; Jordan, A.; Beck, A.H.; Sabatini, D.M. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov., 2014, 4(5), 554-563.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0929] [PMID: 24631838]
[92]
Moulder, S.; Helgason, T.; Janku, F.; Wheler, J.; Moroney, J.; Booser, D.; Albarracin, C.; Morrow, P.K.; Atkins, J.; Koenig, K.; Gilcrease, M.; Kurzrock, R. Inhibition of the phosphoinositide 3-kinase pathway for the treatment of patients with metastatic metaplastic breast cancer. Ann. Oncol., 2015, 26(7), 1346-1352.
[http://dx.doi.org/10.1093/annonc/mdv163] [PMID: 25878190]
[93]
Moulder, S.; Moroney, J.; Helgason, T.; Wheler, J.; Booser, D.; Albarracin, C.; Morrow, P.K.; Koenig, K.; Kurzrock, R. Responses to liposomal Doxorubicin, bevacizumab, and temsirolimus in metaplastic carcinoma of the breast: Biologic rationale and implications for stem-cell research in breast cancer. J. Clin. Oncol., 2011, 29(19), e572-e575.
[http://dx.doi.org/10.1200/JCO.2010.34.0604] [PMID: 21482991]
[94]
Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; Kovacevic, Z.; Lesovoy, V.; Schmidt-Wolf, I.G.; Barbarash, O.; Gokmen, E.; O’Toole, T.; Lustgarten, S.; Moore, L.; Motzer, R.J. Global ARCC Trial. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med., 2007, 356(22), 2271-2281.
[http://dx.doi.org/10.1056/NEJMoa066838] [PMID: 17538086]
[95]
Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; Urbanowitz, G.; Berg, W.J.; Kay, A.; Lebwohl, D.; Ravaud, A. RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet, 2008, 372(9637), 449-456.
[http://dx.doi.org/10.1016/S0140-6736(08)61039-9] [PMID: 18653228]
[96]
Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; Beck, J.T.; Ito, Y.; Yardley, D.; Deleu, I.; Perez, A.; Bachelot, T.; Vittori, L.; Xu, Z.; Mukhopadhyay, P.; Lebwohl, D.; Hortobagyi, G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med., 2012, 366(6), 520-529.
[http://dx.doi.org/10.1056/NEJMoa1109653] [PMID: 22149876]
[97]
Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; Ghia, P.; Eradat, H.; Ervin, T.; Lamanna, N.; Coiffier, B.; Pettitt, A.R.; Ma, S.; Stilgenbauer, S.; Cramer, P.; Aiello, M.; Johnson, D.M.; Miller, L.L.; Li, D.; Jahn, T.M.; Dansey, R.D.; Hallek, M.; O’Brien, S.M. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2014, 370(11), 997-1007.
[http://dx.doi.org/10.1056/NEJMoa1315226] [PMID: 24450857]
[98]
Gopal, A.K.; Kahl, B.S.; de Vos, S.; Wagner-Johnston, N.D.; Schuster, S.J.; Jurczak, W.J.; Flinn, I.W.; Flowers, C.R.; Martin, P.; Viardot, A.; Blum, K.A.; Goy, A.H.; Davies, A.J.; Zinzani, P.L.; Dreyling, M.; Johnson, D.; Miller, L.L.; Holes, L.; Li, D.; Dansey, R.D.; Godfrey, W.R.; Salles, G.A. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med., 2014, 370(11), 1008-1018.
[http://dx.doi.org/10.1056/NEJMoa1314583] [PMID: 24450858]
[99]
Khan, K.H.; Yap, T.A.; Yan, L.; Cunningham, D. Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin. J. Cancer, 2013, 32(5), 253-265.
[http://dx.doi.org/10.5732/cjc.013.10057] [PMID: 23642907]
[100]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[101]
Awada, A.; Cardoso, F.; Fontaine, C.; Dirix, L.; De Grève, J.; Sotiriou, C.; Steinseifer, J.; Wouters, C.; Tanaka, C.; Zoellner, U. The oral MTOR inhibitor RAD001 (Everolimus) in combination with letrozole in patients with advanced breast cancer: Results of a phase I study with pharmacokinetics. Eur. J. Cancer Oxf. Engl. 1990, 2008, 44(1), 84-91.
[http://dx.doi.org/10.1016/j.ejca.2007.10.003]
[102]
Chen, Y.L.; Law, P-Y.; Loh, H.H. Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr. Med. Chem. Anticancer Agents, 2005, 5(6), 575-589.
[http://dx.doi.org/10.2174/156801105774574649] [PMID: 16305480]
[103]
Mayer, I.A.; Abramson, V.G.; Isakoff, S.J.; Forero, A.; Balko, J.M.; Kuba, M.G.; Sanders, M.E.; Yap, J.T.; Van den Abbeele, A.D.; Li, Y.; Cantley, L.C.; Winer, E.; Arteaga, C.L. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol., 2014, 32(12), 1202-1209.
[http://dx.doi.org/10.1200/JCO.2013.54.0518] [PMID: 24663045]
[104]
Abstract P5-19-02: Selective PI3K and dual PI3K/mTOR inhibitors enhance the efficacy of endocrine therapies in breast cancer models |Cancer Research Available from. http://cancerres.aacrjournals.org/content/72/24_Supplement/P5-19-02.short (Accessed on: Oct 19, 2018.)
[105]
Chen, X.; Zhao, M.; Hao, M.; Sun, X.; Wang, J.; Mao, Y.; Zu, L.; Liu, J.; Shen, Y.; Wang, J.; Shen, K. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol. Cancer Res., 2013, 11(10), 1269-1278.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0212] [PMID: 23814023]
[106]
Dowling, R.J.O.; Topisirovic, I.; Fonseca, B.D.; Sonenberg, N. Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochim. Biophys. Acta, 2010, 1804(3), 433-439.
[http://dx.doi.org/10.1016/j.bbapap.2009.12.001] [PMID: 20005306]
[107]
Bhola, N.E.; Jansen, V.M.; Koch, J.P.; Li, H.; Formisano, L.; Williams, J.A.; Grandis, J.R.; Arteaga, C.L. Treatment of triple-negative breast cancer with TORC1/2 inhibitors sustains a drug-resistant and notch-dependent cancer stem cell population. Cancer Res., 2016, 76(2), 440-452.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1640-T] [PMID: 26676751]
[108]
Montemurro, F.; Valabrega, G.; Aglietta, M. Lapatinib: A dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin. Biol. Ther., 2007, 7(2), 257-268.
[http://dx.doi.org/10.1517/14712598.7.2.257] [PMID: 17250463]
[109]
Arnold, A.; Papanikolaou, A. Cyclin D1 in breast cancer pathogenesis. J. Clin. Oncol., 2005, 23(18), 4215-4224.
[http://dx.doi.org/10.1200/JCO.2005.05.064] [PMID: 15961768]
[110]
Yu, Q.; Geng, Y.; Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature, 2001, 411(6841), 1017-1021.
[http://dx.doi.org/10.1038/35082500] [PMID: 11429595]
[111]
Yu, Q.; Sicinska, E.; Geng, Y.; Ahnström, M.; Zagozdzon, A.; Kong, Y.; Gardner, H.; Kiyokawa, H.; Harris, L.N.; Stål, O.; Sicinski, P. Requirement for CDK4 kinase function in breast cancer. Cancer Cell, 2006, 9(1), 23-32.
[http://dx.doi.org/10.1016/j.ccr.2005.12.012] [PMID: 16413469]
[112]
O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol., 2016, 13(7), 417-430.
[http://dx.doi.org/10.1038/nrclinonc.2016.26] [PMID: 27030077]
[113]
Sharpless, N.E.; Sherr, C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer, 2015, 15(7), 397-408.
[http://dx.doi.org/10.1038/nrc3960] [PMID: 26105537]
[114]
Narita, M.; Nũnez, S.; Heard, E.; Narita, M.; Lin, A.W.; Hearn, S.A.; Spector, D.L.; Hannon, G.J.; Lowe, S.W. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 2003, 113(6), 703-716.
[http://dx.doi.org/10.1016/S0092-8674(03)00401-X] [PMID: 12809602]
[115]
CDK4/6 inhibitors: Game changers in the management of hormone receptor–positive advanced breast cancer? |Cancer Network Available from. http://www.cancernetwork.com/breast-cancer/cdk46-inhibitors-game-changers-management-hormone-receptorpositive-advanced-breast-cancer/page/0/1 (Accessed on: Oct 19, 2018.)
[116]
Yuan, X.; Wu, H.; Xu, H.; Xiong, H.; Chu, Q.; Yu, S.; Wu, G.S.; Wu, K. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett., 2015, 369(1), 20-27.
[http://dx.doi.org/10.1016/j.canlet.2015.07.048] [PMID: 26341688]
[117]
Espinoza, I.; Miele, L. Notch inhibitors for cancer treatment. Pharmacol. Ther., 2013, 139(2), 95-110.
[http://dx.doi.org/10.1016/j.pharmthera.2013.02.003] [PMID: 23458608]
[118]
Kopan, R.; Ilagan, M.X.G. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 2009, 137(2), 216-233.
[http://dx.doi.org/10.1016/j.cell.2009.03.045] [PMID: 19379690]
[119]
Shutter, J.R.; Scully, S.; Fan, W.; Richards, W.G.; Kitajewski, J.; Deblandre, G.A.; Kintner, C.R.; Stark, K.L. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev., 2000, 14(11), 1313-1318.
[PMID: 10837024]
[120]
Brou, C.; Logeat, F.; Gupta, N.; Bessia, C.; LeBail, O.; Doedens, J.R.; Cumano, A.; Roux, P.; Black, R.A.; Israël, A. A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Mol. Cell, 2000, 5(2), 207-216.
[http://dx.doi.org/10.1016/S1097-2765(00)80417-7] [PMID: 10882063]
[121]
Mumm, J.S.; Schroeter, E.H.; Saxena, M.T.; Griesemer, A.; Tian, X.; Pan, D.J.; Ray, W.J.; Kopan, R. A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell, 2000, 5(2), 197-206.
[http://dx.doi.org/10.1016/S1097-2765(00)80416-5] [PMID: 10882062]
[122]
Guo, H.; Lu, Y.; Wang, J.; Liu, X.; Keller, E.T.; Liu, Q.; Zhou, Q.; Zhang, J. Targeting the Notch signaling pathway in cancer therapeutics. Thorac. Cancer, 2014, 5(6), 473-486.
[http://dx.doi.org/10.1111/1759-7714.12143] [PMID: 26767041]
[123]
Li, K.; Li, Y.; Wu, W.; Gordon, W.R.; Chang, D.W.; Lu, M.; Scoggin, S.; Fu, T.; Vien, L.; Histen, G.; Zheng, J.; Martin-Hollister, R.; Duensing, T.; Singh, S.; Blacklow, S.C.; Yao, Z.; Aster, J.C.; Zhou, B.B. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem., 2008, 283(12), 8046-8054.
[http://dx.doi.org/10.1074/jbc.M800170200] [PMID: 18182388]
[124]
Smith, D.C.; Eisenberg, P.D.; Manikhas, G.; Chugh, R.; Gubens, M.A.; Stagg, R.J.; Kapoun, A.M.; Xu, L.; Dupont, J.; Sikic, B. A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin. Cancer Res., 2014, 20(24), 6295-6303.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1373] [PMID: 25324140]
[125]
Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035), 843-850.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[126]
Pohl, S-G.; Brook, N.; Agostino, M.; Arfuso, F.; Kumar, A.P.; Dharmarajan, A. Wnt signaling in triple-negative breast cancer. Oncogenesis, 2017, 6(4)e310
[http://dx.doi.org/10.1038/oncsis.2017.14] [PMID: 28368389]
[127]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[128]
Wang, B.; Tian, T.; Kalland, K-H.; Ke, X.; Qu, Y. Targeting Wnt/β-Catenin signaling for cancer immunotherapy. Trends Pharmacol. Sci., 2018, 39(7), 648-658.
[http://dx.doi.org/10.1016/j.tips.2018.03.008] [PMID: 29678298]
[129]
Gangrade, A.; Pathak, V.; Augelli-Szafran, C.E.; Wei, H-X.; Oliver, P.; Suto, M.; Buchsbaum, D.J. Preferential inhibition of Wnt/β-Catenin signaling by novel benzimidazole compounds in triple-negative breast cancer. Int. J. Mol. Sci., 2018, 19(5)E1524
[http://dx.doi.org/10.3390/ijms19051524] [PMID: 29783777]
[130]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[131]
Polakis, P. Wnt signaling and cancer. Genes Dev., 2000, 14(15), 1837-1851.
[PMID: 10921899]
[132]
Fischer, M.M.; Cancilla, B.; Yeung, V.P.; Cattaruzza, F.; Chartier, C.; Murriel, C.L.; Cain, J.; Tam, R.; Cheng, C-Y.; Evans, J.W.; O’Young, G.; Song, X.; Lewicki, J.; Kapoun, A.M.; Gurney, A.; Yen, W.C.; Hoey, T. WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Sci. Adv., 2017, 3(6)e1700090
[http://dx.doi.org/10.1126/sciadv.1700090] [PMID: 28691093]
[133]
Liu, J.; Pan, S.; Hsieh, M.H.; Ng, N.; Sun, F.; Wang, T.; Kasibhatla, S.; Schuller, A.G.; Li, A.G.; Cheng, D.; Li, J.; Tompkins, C.; Pferdekamper, A.; Steffy, A.; Cheng, J.; Kowal, C.; Phung, V.; Guo, G.; Wang, Y.; Graham, M.P.; Flynn, S.; Brenner, J.C.; Li, C.; Villarroel, M.C.; Schultz, P.G.; Wu, X.; McNamara, P.; Sellers, W.R.; Petruzzelli, L.; Boral, A.L.; Seidel, H.M.; McLaughlin, M.E.; Che, J.; Carey, T.E.; Vanasse, G.; Harris, J.L. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20224-20229.
[http://dx.doi.org/10.1073/pnas.1314239110] [PMID: 24277854]
[134]
Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev., 2018, 62, 50-60.
[135]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[136]
Ahmad, D.A.J.; Negm, O.H.; Alabdullah, M.L.; Mirza, S.; Hamed, M.R.; Band, V.; Green, A.R.; Ellis, I.O.; Rakha, E.A. Clinicopathological and prognostic significance of mitogen-activated protein kinases (MAPK) in breast cancers. Breast Cancer Res. Treat., 2016, 159(3), 457-467.
[http://dx.doi.org/10.1007/s10549-016-3967-9] [PMID: 27592113]
[137]
Liu, F.; Yang, X.; Geng, M.; Huang, M. Targeting ERK, an Achilles’ heel of the MAPK pathway, in cancer therapy. Acta Pharm. Sin. B, 2018, 8(4), 552-562.
[http://dx.doi.org/10.1016/j.apsb.2018.01.008] [PMID: 30109180]
[138]
Santen, R.J.; Song, R.X.; McPherson, R.; Kumar, R.; Adam, L.; Jeng, M-H.; Yue, W. The role of mitogen-activated protein (MAP) kinase in breast cancer. J. Steroid Biochem. Mol. Biol., 2002, 80(2), 239-256.
[http://dx.doi.org/10.1016/S0960-0760(01)00189-3] [PMID: 11897507]
[139]
Normanno, N.; De Luca, A.; Maiello, M.R.; Campiglio, M.; Napolitano, M.; Mancino, M.; Carotenuto, A.; Viglietto, G.; Menard, S. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J. Cell. Physiol., 2006, 207(2), 420-427.
[http://dx.doi.org/10.1002/jcp.20588] [PMID: 16419029]
[140]
Patnaik, A.; Haluska, P.; Tolcher, A.W.; Erlichman, C.; Papadopoulos, K.P.; Lensing, J.L.; Beeram, M.; Molina, J.R.; Rasco, D.W.; Arcos, R.R.; Kelly, C.S.; Wijayawardana, S.R.; Zhang, X.; Stancato, L.F.; Bell, R.; Shi, P.; Kulanthaivel, P.; Pitou, C.; Mulle, L.B.; Farrington, D.L.; Chan, E.M.; Goetz, M.P. A First-in-Human Phase I Study of the Oral p38 MAPK inhibitor, ralimetinib (LY2228820 Dimesylate), in patients with advanced cancer. Clin. Cancer Res., 2016, 22(5), 1095-1102.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1718] [PMID: 26581242]
[141]
LoRusso, P.M.; Krishnamurthi, S.S.; Rinehart, J.J.; Nabell, L.M.; Malburg, L.; Chapman, P.B.; DePrimo, S.E.; Bentivegna, S.; Wilner, K.D.; Tan, W.; Ricart, A.D. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin. Cancer Res., 2010, 16(6), 1924-1937.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1883] [PMID: 20215549]
[142]
Bedognetti, D.; Roelands, J.; Decock, J.; Wang, E.; Hendrickx, W. The MAPK hypothesis: Immune-regulatory effects of MAPK-pathway genetic dysregulations and implications for breast cancer immunotherapy. Emerg. Top. Life Sci., 2017, 1(5), 429.
[http://dx.doi.org/10.1042/ETLS20170142]
[143]
Dankner, M.; Lajoie, M.; Moldoveanu, D.; Nguyen, T-T.; Savage, P.; Rajkumar, S.; Huang, X.; Lvova, M.; Protopopov, A.; Vuzman, D. Dual MAPK inhibition is an effective therapeutic strategy for a subset of class II BRAF mutant melanomas. Clin. Cancer Res., 2018, 24(24), 6483-6494.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3384]
[144]
Nagaria, T.S.; Shi, C.; Leduc, C.; Hoskin, V.; Sikdar, S.; Sangrar, W.; Greer, P.A. Combined targeting of Raf and Mek synergistically inhibits tumorigenesis in triple negative breast cancer model systems. Oncotarget, 2017, 8(46), 80804-80819.
[http://dx.doi.org/10.18632/oncotarget.20534] [PMID: 29113345]
[145]
Burotto, M.; Chiou, V.L.; Lee, J-M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer, 2014, 120(22), 3446-3456.
[http://dx.doi.org/10.1002/cncr.28864] [PMID: 24948110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy