Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advances in Characterizing Natural Products that Regulate Autophagy

Author(s): Qian Zhao, Cheng Peng, Chuan Zheng, Xiang-Hong He, Wei Huang* and Bo Han*

Volume 19, Issue 18, 2019

Page: [2177 - 2196] Pages: 20

DOI: 10.2174/1871520619666191015104458

Price: $65

conference banner
Abstract

Autophagy, an intricate response to nutrient deprivation, pathogen infection, Endoplasmic Reticulum (ER)-stress and drugs, is crucial for the homeostatic maintenance in living cells. This highly regulated, multistep process has been involved in several diseases including cardiovascular and neurodegenerative diseases, especially in cancer. It can function as either a promoter or a suppressor in cancer, which underlines the potential utility as a therapeutic target. In recent years, increasing evidence has suggested that many natural products could modulate autophagy through diverse signaling pathways, either inducing or inhibiting. In this review, we briefly introduce autophagy and systematically describe several classes of natural products that implicated autophagy modulation. These compounds are of great interest for their potential activity against many types of cancer, such as ovarian, breast, cervical, pancreatic, and so on, hoping to provide valuable information for the development of cancer treatments based on autophagy.

Keywords: Autophagy, cancer, natural products, inhibit, activate, anticancer.

Graphical Abstract
[1]
Tan, W.; Lu, J.; Huang, M.; Li, Y.; Chen, M.; Wu, G.; Gong, J.; Zhong, Z.; Xu, Z.; Dang, Y.; Guo, J.; Chen, X.; Wang, Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin. Med., 2011, 6(1), 27.
[http://dx.doi.org/10.1186/1749-8546-6-27] [PMID: 21777476]
[2]
Singh, P.; Tomar, R.S.; Rath, S.K. Anticancer potential of the histone deacetylase inhibitor-like effects of flavones, a subclass of polyphenolic compounds: A review. Mol. Biol. Rep., 2015, 42(11), 1515-1531.
[http://dx.doi.org/10.1007/s11033-015-3881-y] [PMID: 26033434]
[3]
Wang, N.; Feng, Y. Elaborating the role of natural products-induced autophagy in cancer treatment: Achievements and artifacts in the state of the art. BioMed Res. Int., 2015, 2015(4)934207
[http://dx.doi.org/10.1155/2015/934207] [PMID: 25821829]
[4]
Xie, T.; Song, S.; Li, S.; Ouyang, L.; Xia, L.; Huang, J. Review of natural product databases. Cell Prolif., 2015, 48(4), 398-404.
[http://dx.doi.org/10.1111/cpr.12190] [PMID: 26009974]
[5]
Zhang, X.; Chen, L.X.; Ouyang, L.; Cheng, Y.; Liu, B. Plant natural compounds: Targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif., 2012, 45(5), 466-476.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00833.x] [PMID: 22765290]
[6]
Giuliani, C.M.; Dass, C.R. Autophagy and cancer: Taking the ‘toxic’ out of cytotoxics. J. Pharm. Pharmacol., 2013, 65(6), 777-789.
[http://dx.doi.org/10.1111/jphp.12034] [PMID: 23647671]
[7]
Lu, J.J.; Bao, J.L.; Chen, X.P.; Huang, M.; Wang, Y.T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012(5)485042
[http://dx.doi.org/10.1155/2012/485042] [PMID: 22988474]
[8]
Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol., 2013, 45(12), 2821-2831.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[9]
Clarke, P.G.H. Developmental cell death: Morphological diversity and multiple mechanisms. Anat. Embryol. (Berl.), 1990, 181(3), 195-213.
[http://dx.doi.org/10.1007/BF00174615] [PMID: 2186664]
[10]
Deter, R.L.; De Duve, C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol., 1967, 33(2), 437-449.
[http://dx.doi.org/10.1083/jcb.33.2.437] [PMID: 4292315]
[11]
Lleo, A.; Invernizzi, P.; Selmi, C.; Coppel, R.L.; Alpini, G.; Podda, M.; Mackay, I.R.; Gershwin, M.E. Autophagy: Highlighting a novel player in the autoimmunity scenario. J. Autoimmun., 2007, 29(2-3), 61-68.
[http://dx.doi.org/10.1016/j.jaut.2007.06.003] [PMID: 17693057]
[12]
Levine, B.; Klionsky, D.J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell, 2004, 6(4), 463-477.
[http://dx.doi.org/10.1016/S1534-5807(04)00099-1] [PMID: 15068787]
[13]
Rabinowitz, J.D.; White, E. Autophagy and metabolism. Science, 2010, 330(6009), 1344-1348.
[http://dx.doi.org/10.1126/science.1193497] [PMID: 21127245]
[14]
Yang, Z.; Klionsky, D.J. Eaten alive: A history of macroautophagy. Nat. Cell Biol., 2010, 12(9), 814-822.
[http://dx.doi.org/10.1038/ncb0910-814] [PMID: 20811353]
[15]
Chen, S.; Rehman, S.K.; Zhang, W.; Wen, A.; Yao, L.; Zhang, J. Autophagy is a therapeutic target in anticancer drug resistance. Biochim. Biophys. Acta, 2010, 1806(2), 220-229.
[PMID: 20637264]
[16]
Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer, 2005, 5(9), 726-734.
[http://dx.doi.org/10.1038/nrc1692] [PMID: 16148885]
[17]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[18]
Lum, J.J.; Bauer, D.E.; Kong, M.; Harris, M.H.; Li, C.; Lindsten, T.; Thompson, C.B. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005, 120(2), 237-248.
[http://dx.doi.org/10.1016/j.cell.2004.11.046] [PMID: 15680329]
[19]
Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov., 2012, 11(9), 709-730.
[http://dx.doi.org/10.1038/nrd3802] [PMID: 22935804]
[20]
Sridhar, S.; Botbol, Y.; Macian, F.; Cuervo, A.M. Autophagy and disease: Always two sides to a problem. J. Pathol., 2012, 226(2), 255-273.
[http://dx.doi.org/10.1002/path.3025] [PMID: 21990109]
[21]
Williams, A.; Sarkar, S.; Cuddon, P.; Ttofi, E.K.; Saiki, S.; Siddiqi, F.H.; Jahreiss, L.; Fleming, A.; Pask, D.; Goldsmith, P.; O’Kane, C.J.; Floto, R.A.; Rubinsztein, D.C. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol., 2008, 4(5), 295-305.
[http://dx.doi.org/10.1038/nchembio.79] [PMID: 18391949]
[22]
Spencer, B.; Potkar, R.; Trejo, M.; Rockenstein, E.; Patrick, C.; Gindi, R.; Adame, A.; Wyss-Coray, T.; Masliah, E. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci., 2009, 29(43), 13578-13588.
[http://dx.doi.org/10.1523/JNEUROSCI.4390-09.2009] [PMID: 19864570]
[23]
Batlevi, Y.; La Spada, A.R. Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol. Dis., 2011, 43(1), 46-51.
[http://dx.doi.org/10.1016/j.nbd.2010.09.009] [PMID: 20887789]
[24]
He, C.; Bassik, M.C.; Moresi, V.; Sun, K.; Wei, Y.; Zou, Z.; An, Z.; Loh, J.; Fisher, J.; Sun, Q.; Korsmeyer, S.; Packer, M.; May, H.I.; Hill, J.A.; Virgin, H.W.; Gilpin, C.; Xiao, G.; Bassel-Duby, R.; Scherer, P.E.; Levine, B. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 2012, 481(7382), 511-515.
[http://dx.doi.org/10.1038/nature10758] [PMID: 22258505]
[25]
Münz, C. Macroautophagy during innate immune activation. Front. Microbiol., 2011, 2, 72.
[http://dx.doi.org/10.3389/fmicb.2011.00072] [PMID: 21747792]
[26]
Levine, B.; Mizushima, N.; Virgin, H.W. Autophagy in immunity and inflammation. Nature, 2011, 469(7330), 323-335.
[http://dx.doi.org/10.1038/nature09782] [PMID: 21248839]
[27]
Rubinsztein, D.C.; Mariño, G.; Kroemer, G. Autophagy and aging. Cell, 2011, 146(5), 682-695.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[28]
Yamaguchi, O.; Otsu, K. Role of autophagy in aging. J. Cardiovasc. Pharmacol., 2012, 60(3), 242-247.
[http://dx.doi.org/10.1097/FJC.0b013e31824cc31c] [PMID: 22343371]
[29]
Choi, K.S. Autophagy and cancer. Exp. Mol. Med., 2012, 44(2), 109-120.
[http://dx.doi.org/10.3858/emm.2012.44.2.033] [PMID: 22257886]
[30]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20(9), 757-769.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[31]
Wang, N.; Feng, Y.; Zhu, M.; Tsang, C-M.; Man, K.; Tong, Y.; Tsao, S-W. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. J. Cell. Biochem., 2010, 111(6), 1426-1436.
[http://dx.doi.org/10.1002/jcb.22869] [PMID: 20830746]
[32]
Hou, Q.; Tang, X.; Liu, H.; Tang, J.; Yang, Y.; Jing, X.; Xiao, Q.; Wang, W.; Gou, X.; Wang, Z. Berberine induces cell death in human hepatoma cells in vitro by downregulating CD147. Cancer Sci., 2011, 102(7), 1287-1292.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01933.x] [PMID: 21443647]
[33]
Sun, Y.; Xia, M.; Yan, H.; Han, Y.; Zhang, F.; Hu, Z.; Cui, A.; Ma, F.; Liu, Z.; Gong, Q.; Chen, X.; Gao, J.; Bian, H.; Tan, Y.; Li, Y.; Gao, X. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br. J. Pharmacol., 2018, 175(2), 374-387.
[http://dx.doi.org/10.1111/bph.14079] [PMID: 29065221]
[34]
Sun, Y.; Yu, J.; Liu, X.; Zhang, C.; Cao, J.; Li, G.; Liu, X.; Chen, Y.; Huang, H. Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas. Biomed. Pharmacother., 2018, 102, 699-710.
[http://dx.doi.org/10.1016/j.biopha.2018.03.132] [PMID: 29604589]
[35]
Domitrović, R.; Cvijanović, O.; Pernjak-Pugel, E.; Škoda, M.; Mikelić, L.; Crnčević-Orlić, Z. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem. Toxicol., 2013, 62(6), 397-406.
[http://dx.doi.org/10.1016/j.fct.2013.09.003] [PMID: 24025684]
[36]
Bode, A.M.; Dong, Z. The two faces of capsaicin. Cancer Res., 2011, 71(8), 2809-2814.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3756] [PMID: 21487045]
[37]
Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin. Toxicol. Pathol., 2012, 40(6), 847-873.
[http://dx.doi.org/10.1177/0192623312444471] [PMID: 22563012]
[38]
Choi, C-H.; Jung, Y-K.; Oh, S-H. Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol. Pharmacol., 2010, 78(1), 114-125.
[http://dx.doi.org/10.1124/mol.110.063495] [PMID: 20371669]
[39]
Ramos-Torres, Á.; Bort, A.; Morell, C.; Rodríguez-Henche, N.; Díaz-Laviada, I. The pepper’s natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget, 2016, 7(2), 1569-1583.
[http://dx.doi.org/10.18632/oncotarget.6415] [PMID: 26625315]
[40]
Lin, Y-T.; Wang, H-C.; Hsu, Y-C.; Cho, C-L.; Yang, M-Y.; Chien, C-Y. Capsaicin induces autophagy and apoptosis in human nasopharyngeal carcinoma cells by downregulating the PI3K/AKT/mTOR Pathway. Int. J. Mol. Sci., 2017, 18(7), 1343.
[http://dx.doi.org/10.3390/ijms18071343] [PMID: 28644386]
[41]
Oh, S.H.; Kim, Y.S.; Lim, S.C.; Hou, Y.F.; Chang, I.Y.; You, H.J. Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner. Autophagy, 2008, 4(8), 1009-1019.
[http://dx.doi.org/10.4161/auto.6886] [PMID: 18818525]
[42]
Oh, S.H.; Lim, S.C. Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells. J. Pharmacol. Exp. Ther., 2009, 329(1), 112-122.
[http://dx.doi.org/10.1124/jpet.108.144113] [PMID: 19139269]
[43]
Yu, H.; Jin, H.; Gong, W.; Wang, Z.; Liang, H. Pharmacological actions of multi-target-directed evodiamine. Molecules, 2013, 18(2), 1826-1843.
[http://dx.doi.org/10.3390/molecules18021826] [PMID: 23434865]
[44]
Yang, J.; Wu, L-J.; Tashino, S.; Onodera, S.; Ikejima, T. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic. Res., 2008, 42(5), 492-504.
[http://dx.doi.org/10.1080/10715760802112791] [PMID: 18484413]
[45]
Rasul, A.; Yu, B.; Zhong, L.; Khan, M.; Yang, H.; Ma, T. Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy. Oncol. Rep., 2012, 27(5), 1481-1487.
[PMID: 22367117]
[46]
Liu, A-J.; Wang, S-H.; Chen, K-C.; Kuei, H-P.; Shih, Y-L.; Hou, S-Y.; Chiu, W-T.; Hsiao, S-H.; Shih, C-M. Evodiamine, a plant alkaloid, induces calcium/JNK-mediated autophagy and calcium/mitochondria-mediated apoptosis in human glioblastoma cells. Chem. Biol. Interact., 2013, 205(1), 20-28.
[http://dx.doi.org/10.1016/j.cbi.2013.06.004] [PMID: 23774672]
[47]
Liu, A-J.; Wang, S-H.; Hou, S-Y.; Lin, C-J.; Chiu, W-T.; Hsiao, S-H.; Chen, T-H.; Shih, C-M. Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes. Evid. Based Complement. Alternat. Med., 2013, 2013(2)354840
[PMID: 24454492]
[48]
Liu, T.; Song, Y.; Chen, H.; Pan, S.; Sun, X. Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol. Pharm. Bull., 2010, 33(10), 1740-1745.
[http://dx.doi.org/10.1248/bpb.33.1740] [PMID: 20930385]
[49]
Zhang, J.; Li, Y.; Chen, X.; Liu, T.; Chen, Y.; He, W.; Zhang, Q.; Liu, S. Autophagy is involved in anticancer effects of matrine on SGC-7901 human gastric cancer cells. Oncol. Rep., 2011, 26(1), 115-124.
[http://dx.doi.org/10.3892/or.2014.3173] [PMID: 21519796]
[50]
Xie, S-B.; He, X-X.; Yao, S-K. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells. Int. J. Oncol., 2015, 47(2), 517-526.
[http://dx.doi.org/10.3892/ijo.2015.3023] [PMID: 26034977]
[51]
Ma, K.; Huang, M.Y.; Guo, Y.X.; Hu, G.Q. Matrine-induced autophagy counteracts cell apoptosis via the ERK signaling pathway in osteosarcoma cells. Oncol. Lett., 2016, 12(3), 1854-1860.
[http://dx.doi.org/10.3892/ol.2016.4848] [PMID: 27588132]
[52]
Wu, J.; Hu, G.; Dong, Y.; Ma, R.; Yu, Z.; Jiang, S.; Han, Y.; Yu, K.; Zhang, S. Matrine induces Akt/mTOR signalling inhibition-mediated autophagy and apoptosis in acute myeloid leukaemia cells. J. Cell. Mol. Med., 2017, 21(6), 1171-1181.
[http://dx.doi.org/10.1111/jcmm.13049] [PMID: 28026112]
[53]
Wang, Z.; Zhang, J.; Wang, Y.; Xing, R.; Yi, C.; Zhu, H.; Chen, X.; Guo, J.; Guo, W.; Li, W.; Wu, L.; Lu, Y.; Liu, S. Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis, 2013, 34(1), 128-138.
[http://dx.doi.org/10.1093/carcin/bgs295] [PMID: 23002236]
[54]
Dunnick, J.K.; Hailey, J.R. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam. Appl. Toxicol., 1992, 19(3), 423-431.
[http://dx.doi.org/10.1016/0272-0590(92)90181-G] [PMID: 1459373]
[55]
Gordon, P.B.; Holen, I.; Seglen, P.O. Protection by naringin and some other flavonoids of hepatocytic autophagy and endocytosis against inhibition by okadaic acid. J. Biol. Chem., 1995, 270(11), 5830-5838.
[http://dx.doi.org/10.1074/jbc.270.11.5830] [PMID: 7890712]
[56]
Wang, W.; VanAlstyne, P.C.; Irons, K.A.; Chen, S.; Stewart, J.W.; Birt, D.F. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr. Cancer, 2004, 48(1), 106-114.
[http://dx.doi.org/10.1207/s15327914nc4801_14] [PMID: 15203384]
[57]
Ruela-de-Sousa, R.R.; Fuhler, G.M.; Blom, N.; Ferreira, C.V.; Aoyama, H.; Peppelenbosch, M.P. Cytotoxicity of apigenin on leukemia cell lines: Implications for prevention and therapy. Cell Death Dis., 2010, 1(1)e19
[http://dx.doi.org/10.1038/cddis.2009.18] [PMID: 21364620]
[58]
Cao, X.; Liu, B.; Cao, W.; Zhang, W.; Zhang, F.; Zhao, H.; Meng, R.; Zhang, L.; Niu, R.; Hao, X.; Zhang, B. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells. Chin. J. Cancer Res., 2013, 25(2), 212-222.
[PMID: 23592903]
[59]
Yang, J.; Pi, C.; Wang, G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed. Pharmacother., 2018, 103(103), 699-707.
[http://dx.doi.org/10.1016/j.biopha.2018.04.072] [PMID: 29680738]
[60]
Lee, Y.; Sung, B.; Kang, Y.J.; Kim, D.H.; Jang, J-Y.; Hwang, S.Y.; Kim, M.; Lim, H.S.; Yoon, J.H.; Chung, H.Y.; Kim, N.D. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int. J. Oncol., 2014, 44(5), 1599-1606.
[http://dx.doi.org/10.3892/ijo.2014.2339] [PMID: 24626522]
[61]
Chiu, Y.W.; Lin, T.H.; Huang, W.S.; Teng, C.Y.; Liou, Y.S.; Kuo, W.H.; Lin, W.L.; Huang, H.I.; Tung, J.N.; Huang, C.Y.; Liu, J.Y.; Wang, W.H.; Hwang, J.M.; Kuo, H.C. Baicalein inhibits the migration and invasive properties of human hepatoma cells. Toxicol. Appl. Pharmacol., 2011, 255(3), 316-326.
[http://dx.doi.org/10.1016/j.taap.2011.07.008] [PMID: 21803068]
[62]
Zhang, X.; Tang, X.; Liu, H.; Li, L.; Hou, Q.; Gao, J. Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro. Oncol. Rep., 2012, 27(4), 1128-1134.
[http://dx.doi.org/10.3892/or.2011.1599] [PMID: 22200845]
[63]
Lin, C.; Tsai, S.C.; Tseng, M.T.; Peng, S.F.; Kuo, S.C.; Lin, M.W.; Hsu, Y.M.; Lee, M.R.; Amagaya, S.; Huang, W.W.; Wu, T.S.; Yang, J.S. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells. Int. J. Oncol., 2013, 42(3), 993-1000.
[http://dx.doi.org/10.3892/ijo.2013.1791] [PMID: 23354080]
[64]
Wang, Y.F.; Li, T.; Tang, Z.H.; Chang, L.L.; Zhu, H.; Chen, X.P.; Wang, Y.T.; Lu, J.J. Baicalein triggers autophagy and inhibits the protein kinase B/mammalian target of rapamycin pathway in hepatocellular carcinoma HepG2 cells. Phytother. Res., 2015, 29(5), 674-679.
[http://dx.doi.org/10.1002/ptr.5298] [PMID: 25641124]
[65]
Zhu, H.Y.; Han, L.; Shi, X.L.; Wang, B.L.; Huang, H.; Wang, X.; Chen, D.F.; Ju, D.W.; Feng, M.Q. Baicalin inhibits autophagy induced by influenza A virus H3N2. Antiviral Res., 2015, 113, 62-70.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.003] [PMID: 25446340]
[66]
Li, Y.; Sarkar, F.H. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett., 2002, 186(2), 157-164.
[http://dx.doi.org/10.1016/S0304-3835(02)00349-X] [PMID: 12213285]
[67]
Baxa, D.M.; Yoshimura, F.K. Genistein reduces NF-kappa B in T lymphoma cells via a caspase-mediated cleavage of I kappa B alpha. Biochem. Pharmacol., 2003, 66(6), 1009-1018.
[http://dx.doi.org/10.1016/S0006-2952(03)00415-5] [PMID: 12963487]
[68]
Gong, L.; Li, Y.; Nedeljkovic-Kurepa, A.; Sarkar, F.H. Inactivation of NF-kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene, 2003, 22(30), 4702-4709.
[http://dx.doi.org/10.1038/sj.onc.1206583] [PMID: 12879015]
[69]
Polkowski, K.; Popiołkiewicz, J.; Krzeczyński, P.; Ramza, J.; Pucko, W.; Zegrocka-Stendel, O.; Boryski, J.; Skierski, J.S.; Mazurek, A.P.; Grynkiewicz, G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett., 2004, 203(1), 59-69.
[http://dx.doi.org/10.1016/j.canlet.2003.08.023] [PMID: 14670618]
[70]
Yu, Z.; Li, W.; Liu, F. Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Lett., 2004, 215(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2004.06.010] [PMID: 15488634]
[71]
Ouchi, H.; Ishiguro, H.; Ikeda, N.; Hori, M.; Kubota, Y.; Uemura, H. Genistein induces cell growth inhibition in prostate cancer through the suppression of telomerase activity. Int. J. Urol., 2005, 12(1), 73-80.
[http://dx.doi.org/10.1111/j.1442-2042.2004.00973.x] [PMID: 15661057]
[72]
Gossner, G.; Choi, M.; Tan, L.; Fogoros, S.; Griffith, K.A.; Kuenker, M.; Liu, J.R. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol. Oncol., 2007, 105(1), 23-30.
[http://dx.doi.org/10.1016/j.ygyno.2006.11.009] [PMID: 17234261]
[73]
Nakamura, Y.; Yogosawa, S.; Izutani, Y.; Watanabe, H.; Otsuji, E.; Sakai, T. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol. Cancer, 2009, 8, 100.
[http://dx.doi.org/10.1186/1476-4598-8-100] [PMID: 19909554]
[74]
Mohan, N.; Chakrabarti, M.; Banik, N.L.; Ray, S.K. Combination of LC3 shRNA plasmid transfection and genistein treatment inhibited autophagy and increased apoptosis in malignant neuroblastoma in cell culture and animal models. PLoS One, 2013, 8(10)e78958
[http://dx.doi.org/10.1371/journal.pone.0078958] [PMID: 24205354]
[75]
Prietsch, R.F.; Monte, L.G.; da Silva, F.A.; Beira, F.T.; Del Pino, F.A.B.; Campos, V.F.; Collares, T.; Pinto, L.S.; Spanevello, R.M.; Gamaro, G.D.; Braganhol, E. Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol. Cell. Biochem., 2014, 390(1-2), 235-242.
[http://dx.doi.org/10.1007/s11010-014-1974-x] [PMID: 24573886]
[76]
Lee, K.Y.; Kim, J-R.; Choi, H.C. Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC through autophagy induction. Vascul. Pharmacol., 2016, 81, 75-82.
[http://dx.doi.org/10.1016/j.vph.2016.02.007] [PMID: 26924458]
[77]
Somerset, S.M.; Johannot, L. Dietary flavonoid sources in Australian adults. Nutr. Cancer, 2008, 60(4), 442-449.
[http://dx.doi.org/10.1080/01635580802143836] [PMID: 18584477]
[78]
Siegelin, M.D.; Reuss, D.E.; Habel, A.; Herold-Mende, C.; von Deimling, A. The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Mol. Cancer Ther., 2008, 7(11), 3566-3574.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0236] [PMID: 19001439]
[79]
Filomeni, G.; Desideri, E.; Cardaci, S.; Graziani, I.; Piccirillo, S.; Rotilio, G.; Ciriolo, M.R. Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy, 2010, 6(2), 202-216.
[http://dx.doi.org/10.4161/auto.6.2.10971] [PMID: 20083895]
[80]
Guo, H.; Lin, W.; Zhang, X.; Zhang, X.; Hu, Z.; Li, L.; Duan, Z.; Zhang, J.; Ren, F. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget, 2017, 8(47), 82207-82216.
[http://dx.doi.org/10.18632/oncotarget.19200] [PMID: 29137257]
[81]
Huang, W.W.; Tsai, S.C.; Peng, S.F.; Lin, M.W.; Chiang, J.H.; Chiu, Y.J.; Fushiya, S.; Tseng, M.T.; Yang, J.S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int. J. Oncol., 2013, 42(6), 2069-2077.
[http://dx.doi.org/10.3892/ijo.2013.1909] [PMID: 23591552]
[82]
Che, J.; Liang, B.; Zhang, Y.; Wang, Y.; Tang, J.; Shi, G. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human endothelial cells. Cardiovasc. Pathol., 2017, 31, 57-62.
[http://dx.doi.org/10.1016/j.carpath.2017.08.001] [PMID: 28985493]
[83]
Kim, C-J.; Shin, S-H.; Kim, B-J.; Kim, C-H.; Kim, J-H.; Kang, H-M. Park, B.-S.; Kim, I.-R. The effects of kaempferol-inhibited autophagy on osteoclast formation. Int. J. Mol. Sci., 2018, 19(1), 125.
[http://dx.doi.org/10.3390/ijms19010125]
[84]
Kim, I-R.; Kim, S-E.; Baek, H-S.; Kim, B-J.; Kim, C-H.; Chung, I-K.; Park, B-S.; Shin, S.H. The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells. BMC Complement. Altern. Med., 2016, 16(1), 333.
[http://dx.doi.org/10.1186/s12906-016-1320-9] [PMID: 27581091]
[85]
Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer Lett., 2008, 269(2), 315-325.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[86]
Zhou, J.; Liang, S.; Fang, L.; Chen, L.; Tang, M.; Xu, Y.; Fu, A.; Yang, J.; Wei, Y. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS, 2009, 13(2), 93-103.
[http://dx.doi.org/10.1089/omi.2008.0075] [PMID: 19207037]
[87]
Psahoulia, F.H.; Moumtzi, S.; Roberts, M.L.; Sasazuki, T.; Shirasawa, S.; Pintzas, A. Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis, 2007, 28(5), 1021-1031.
[http://dx.doi.org/10.1093/carcin/bgl232] [PMID: 17148506]
[88]
Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[89]
Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.011] [PMID: 28092744]
[90]
Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev., 2013, 2013(6)596496
[http://dx.doi.org/10.1155/2013/596496] [PMID: 24379902]
[91]
Wang, Y.; Zhang, W.; Lv, Q.; Zhang, J.; Zhu, D. The critical role of quercetin in autophagy and apoptosis in HeLa cells. Tumour Biol., 2016, 37(1), 925-929.
[http://dx.doi.org/10.1007/s13277-015-3890-4] [PMID: 26260273]
[92]
Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557.
[http://dx.doi.org/10.1007/s10495-016-1334-2] [PMID: 28188387]
[93]
Loguercio, C.; Festi, D. Silybin and the liver: From basic research to clinical practice. World J. Gastroenterol., 2011, 17(18), 2288-2301.
[http://dx.doi.org/10.3748/wjg.v17.i18.2288] [PMID: 21633595]
[94]
György, I.; Antus, S.; Blázovics, A.; Földiák, G. Substituent effects in the free radical reactions of silybin: Radiation-induced oxidation of the flavonoid at neutral pH. Int. J. Radiat. Biol., 1992, 61(5), 603-609.
[http://dx.doi.org/10.1080/09553009214551411] [PMID: 1349624]
[95]
Basaga, H.; Poli, G.; Tekkaya, C.; Aras, I. Free radical scavenging and antioxidative properties of ‘silibin’ complexes on microsomal lipid peroxidation. Cell Biochem. Funct., 1997, 15(1), 27-33.
[http://dx.doi.org/10.1002/(SICI)1099-0844(199703)15:1<27:AID-CBF714>3.0.CO;2-W] [PMID: 9075334]
[96]
Jayaraj, R.; Deb, U.; Bhaskar, A.S.B.; Prasad, G.B.; Rao, P.V.L. Hepatoprotective efficacy of certain flavonoids against microcystin induced toxicity in mice. Environ. Toxicol., 2007, 22(5), 472-479.
[http://dx.doi.org/10.1002/tox.20283] [PMID: 17696131]
[97]
Al-Anati, L.; Essid, E.; Reinehr, R.; Petzinger, E. Silibinin protects OTA-mediated TNF-alpha release from perfused rat livers and isolated rat Kupffer cells. Mol. Nutr. Food Res., 2009, 53(4), 460-466.
[http://dx.doi.org/10.1002/mnfr.200800110] [PMID: 19156713]
[98]
Mokhtari, M.J.; Motamed, N.; Shokrgozar, M.A. Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biol. Int., 2008, 32(8), 888-892.
[http://dx.doi.org/10.1016/j.cellbi.2008.03.019] [PMID: 18538589]
[99]
Duan, W.; Jin, X.; Li, Q.; Tashiro, S.; Onodera, S.; Ikejima, T. Silibinin induced autophagic and apoptotic cell death in HT1080 cells through a reactive oxygen species pathway. J. Pharmacol. Sci., 2010, 113(1), 48-56.
[http://dx.doi.org/10.1254/jphs.09315FP] [PMID: 20431246]
[100]
Duan, W-J.; Li, Q-S.; Xia, M-Y.; Tashiro, S.; Onodera, S.; Ikejima, T. Silibinin activated p53 and induced autophagic death in human fibrosarcoma HT1080 cells via reactive oxygen species-p38 and c-Jun N-terminal kinase pathways. Biol. Pharm. Bull., 2011, 34(1), 47-53.
[http://dx.doi.org/10.1248/bpb.34.47] [PMID: 21212516]
[101]
Raina, K.; Agarwal, C.; Wadhwa, R.; Serkova, N.J.; Agarwal, R. Energy deprivation by silibinin in colorectal cancer cells: A double-edged sword targeting both apoptotic and autophagic machineries. Autophagy, 2013, 9(5), 697-713.
[http://dx.doi.org/10.4161/auto.23960] [PMID: 23445752]
[102]
Li, F.; Ma, Z.; Guan, Z.; Chen, Y.; Wu, K.; Guo, P.; Wang, X.; He, D.; Zeng, J. Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma. Int. J. Mol. Sci., 2015, 16(4), 8415-8429.
[http://dx.doi.org/10.3390/ijms16048415] [PMID: 25884331]
[103]
Jiang, K.; Wang, W.; Jin, X.; Wang, Z.; Ji, Z.; Meng, G. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol. Rep., 2015, 33(6), 2711-2718.
[http://dx.doi.org/10.3892/or.2015.3915] [PMID: 25891311]
[104]
Kim, S.H.; Kim, K.Y.; Yu, S.N.; Park, S.K.; Choi, H.D.; Ji, J.H.; Ahn, S.C. Autophagy inhibition enhances silibinin-induced apoptosis by regulating reactive oxygen species production in human prostate cancer PC-3 cells. Biochem. Biophys. Res. Commun., 2015, 468(1-2), 151-156.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.143] [PMID: 26522224]
[105]
Chow, S.E.; Chang, Y-L.; Chuang, S-F.; Wang, J-S. Wogonin induced apoptosis in human nasopharyngeal carcinoma cells by targeting GSK-3β and ΔNp63. Cancer Chemother. Pharmacol., 2011, 68(4), 835-845.
[http://dx.doi.org/10.1007/s00280-010-1552-1] [PMID: 21207227]
[106]
Chow, S.E.; Chen, Y-W.; Liang, C-A.; Huang, Y-K.; Wang, J-S. Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells. J. Cell. Biochem., 2012, 113(11), 3476-3485.
[http://dx.doi.org/10.1002/jcb.24224] [PMID: 22689083]
[107]
Li, S-J.; Sun, S-J.; Gao, J.; Sun, F-B. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol. Lett., 2016, 12(6), 5059-5067.
[http://dx.doi.org/10.3892/ol.2016.5367] [PMID: 28105213]
[108]
Hong, Z-P.; Wang, L-G.; Wang, H-J.; Ye, W-F.; Wang, X-Z. Wogonin exacerbates the cytotoxic effect of oxaliplatin by inducing nitrosative stress and autophagy in human gastric cancer cells. Phytomedicine, 2018, 39(15), 168-175.
[http://dx.doi.org/10.1016/j.phymed.2017.12.019] [PMID: 29433678]
[109]
Hui, K.M.; Huen, M.S.; Wang, H.Y.; Zheng, H.; Sigel, E.; Baur, R.; Ren, H.; Li, Z.W.; Wong, J.T.; Xue, H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem. Pharmacol., 2002, 64(9), 1415-1424.
[http://dx.doi.org/10.1016/S0006-2952(02)01347-3] [PMID: 12392823]
[110]
Sun, Y.; Zou, M.; Hu, C.; Qin, Y.; Song, X.; Lu, N.; Guo, Q. Wogonoside induces autophagy in MDA-MB-231 cells by regulating MAPK-mTOR pathway. Food Chem. Toxicol., 2013, 51(1), 53-60.
[http://dx.doi.org/10.1016/j.fct.2012.09.012] [PMID: 23000445]
[111]
Zhang, L.; Wang, H.; Cong, Z.; Xu, J.; Zhu, J.; Ji, X.; Ding, K. Wogonoside induces autophagy-related apoptosis in human glioblastoma cells. Oncol. Rep., 2014, 32(3), 1179-1187.
[http://dx.doi.org/10.3892/or.2014.3294] [PMID: 24970553]
[112]
Han, C.; Xing, G.; Zhang, M.; Zhong, M.; Han, Z.; He, C.; Liu, X. Wogonoside inhibits cell growth and induces mitochondrial-mediated autophagy-related apoptosis in human colon cancer cells through the PI3K/AKT/mTOR/p70S6K signaling pathway. Oncol. Lett., 2018, 15(4), 4463-4470.
[http://dx.doi.org/10.3892/ol.2018.7852] [PMID: 29541215]
[113]
Takai, N.; Kira, N.; Ishii, T.; Yoshida, T.; Nishida, M.; Nishida, Y.; Nasu, K.; Narahara, H. Bufalin, a traditional oriental medicine, induces apoptosis in human cancer cells. Asian Pac. J. Cancer Prev., 2012, 13(1), 399-402.
[http://dx.doi.org/10.7314/APJCP.2012.13.1.399] [PMID: 22502710]
[114]
Li, D.; Qu, X.; Hou, K.; Zhang, Y.; Dong, Q.; Teng, Y.; Zhang, J.; Liu, Y. PI3K/Akt is involved in bufalin-induced apoptosis in gastric cancer cells. Anticancer Drugs, 2009, 20(1), 59-64.
[http://dx.doi.org/10.1097/CAD.0b013e3283160fd6] [PMID: 19343001]
[115]
Yeh, J-Y.; Huang, W-J.; Kan, S-F.; Wang, P-S. Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. Prostate, 2003, 54(2), 112-124.
[http://dx.doi.org/10.1002/pros.10172] [PMID: 12497584]
[116]
Takai, N.; Ueda, T.; Nishida, M.; Nasu, K.; Narahara, H. Bufalin induces growth inhibition, cell cycle arrest and apoptosis in human endometrial and ovarian cancer cells. Int. J. Mol. Med., 2008, 21(5), 637-643.
[http://dx.doi.org/10.3892/ijmm.21.5.637] [PMID: 18425357]
[117]
Tsai, S.C.; Yang, J-S.; Peng, S-F.; Lu, C-C.; Chiang, J-H.; Chung, J-G.; Lin, M-W.; Lin, J-K.; Amagaya, S.; Wai-Shan Chung, C.; Tung, T-T.; Huang, W-W.; Tseng, M-T. Bufalin increases sensitivity to AKT/mTOR-induced autophagic cell death in SK-HEP-1 human hepatocellular carcinoma cells. Int. J. Oncol., 2012, 41(4), 1431-1442.
[http://dx.doi.org/10.3892/ijo.2012.1579] [PMID: 22858649]
[118]
Hsu, C.M.; Tsai, Y.; Wan, L.; Tsai, F.J. Bufalin induces G2/M phase arrest and triggers autophagy via the TNF, JNK, BECN-1 and ATG8 pathway in human hepatoma cells. Int. J. Oncol., 2013, 43(1), 338-348.
[http://dx.doi.org/10.3892/ijo.2013.1942] [PMID: 23677253]
[119]
Xie, C-M.; Chan, W-Y.; Yu, S.; Zhao, J.; Cheng, C.H.K. Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic. Biol. Med., 2011, 51(7), 1365-1375.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.016] [PMID: 21763418]
[120]
Hu, F.; Han, J.; Zhai, B.; Ming, X.; Zhuang, L.; Liu, Y.; Pan, S.; Liu, T. Blocking autophagy enhances the apoptosis effect of bufalin on human hepatocellular carcinoma cells through endoplasmic reticulum stress and JNK activation. Apoptosis, 2014, 19(1), 210-223.
[http://dx.doi.org/10.1007/s10495-013-0914-7] [PMID: 24114361]
[121]
Zhao, H.; Li, Q.; Pang, J.; Jin, H.; Li, H.; Yang, X. Blocking autophagy enhances the pro-apoptotic effect of bufalin on human gastric cancer cells through endoplasmic reticulum stress. Biol. Open, 2017, 6(10), 1416-1422.
[http://dx.doi.org/10.1242/bio.026344] [PMID: 28838965]
[122]
Sheng, X.; Zhu, P.; Qin, J.; Li, Q. The biological role of autophagy in regulating and controlling the proliferation of liver cancer cells induced by bufalin. Oncol. Rep., 2018, 39(6), 2931-2941.
[http://dx.doi.org/10.3892/or.2018.6365] [PMID: 29658591]
[123]
Arora, S.; Singh, S.; Piazza, G.A.; Contreras, C.M.; Panyam, J.; Singh, A.P. Honokiol: A novel natural agent for cancer prevention and therapy. Curr. Mol. Med., 2012, 12(10), 1244-1252.
[http://dx.doi.org/10.2174/156652412803833508] [PMID: 22834827]
[124]
Prasad, R.; Katiyar, S.K. Honokiol, anactive compound of magnolia plant, inhibitsgrowth, and progression of cancers of different organs. Adv. Exp. Med. Biol., 2016, 928, 245-265.
[http://dx.doi.org/10.1007/978-3-319-41334-1_11] [PMID: 27671820]
[125]
Chang, K-H.; Yan, M-D.; Yao, C-J.; Lin, P-C.; Lai, G-M. Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells. Oncol. Lett., 2013, 6(5), 1435-1438.
[http://dx.doi.org/10.3892/ol.2013.1548] [PMID: 24179537]
[126]
Huang, K-J.; Kuo, C-H.; Chen, S-H.; Lin, C-Y.; Lee, Y-R. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J. Cell. Mol. Med., 2018, 22(3), 1894-1908.
[http://dx.doi.org/10.1111/jcmm.13474] [PMID: 29363886]
[127]
Huang, K.; Chen, Y.; Zhang, R.; Wu, Y.; Ma, Y.; Fang, X.; Shen, S. Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis., 2018, 9(2), 157.
[http://dx.doi.org/10.1038/s41419-017-0166-5] [PMID: 29410403]
[128]
Oyama, Y.; Masuda, T.; Nakata, M.; Chikahisa, L.; Yamazaki, Y.; Miura, K.; Okagawa, M. Protective actions of 5′-n-alkylated curcumins on living cells suffering from oxidative stress. Eur. J. Pharmacol., 1998, 360(1), 65-71.
[http://dx.doi.org/10.1016/S0014-2999(98)00635-9] [PMID: 9845274]
[129]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[130]
Chaudhary, L.R.; Hruska, K.A. Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J. Cell. Biochem., 2003, 89(1), 1-5.
[http://dx.doi.org/10.1002/jcb.10495] [PMID: 12682902]
[131]
Chen, A.; Xu, J. Activation of PPARgamma by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288(3), G447-G456.
[http://dx.doi.org/10.1152/ajpgi.00209.2004] [PMID: 15486348]
[132]
Vanisree, A.J.; Sudha, N. Curcumin combats against cigarette smoke and ethanol-induced lipid alterations in rat lung and liver. Mol. Cell. Biochem., 2006, 288(1-2), 115-123.
[http://dx.doi.org/10.1007/s11010-006-9127-5] [PMID: 16691314]
[133]
Aoki, H.; Takada, Y.; Kondo, S.; Sawaya, R.; Aggarwal, B.B.; Kondo, Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: Role of Akt and extracellular signal-regulated kinase signaling pathways. Mol. Pharmacol., 2007, 72(1), 29-39.
[http://dx.doi.org/10.1124/mol.106.033167] [PMID: 17395690]
[134]
Yamauchi, Y.; Izumi, Y.; Asakura, K.; Hayashi, Y.; Nomori, H. Curcumin induces autophagy in ACC-MESO-1 cells. Phytother. Res., 2012, 26(12), 1779-1783.
[http://dx.doi.org/10.1002/ptr.4645] [PMID: 22388865]
[135]
Xiao, K.; Jiang, J.; Guan, C.; Dong, C.; Wang, G.; Bai, L.; Sun, J.; Hu, C.; Bai, C. Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells. J. Pharmacol. Sci., 2013, 123(2), 102-109.
[http://dx.doi.org/10.1254/jphs.13085FP] [PMID: 24048094]
[136]
Liu, F.; Gao, S.; Yang, Y.; Zhao, X.; Fan, Y.; Ma, W.; Yang, D.; Yang, A.; Yu, Y. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549. Oncol. Lett., 2017, 14(3), 2775-2782.
[http://dx.doi.org/10.3892/ol.2017.6565] [PMID: 28928819]
[137]
Guan, F.; Ding, Y.; Zhang, Y.; Zhou, Y.; Li, M.; Wang, C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One, 2016, 11(1)e0146553
[http://dx.doi.org/10.1371/journal.pone.0146553] [PMID: 26752181]
[138]
Jia, Y-L.; Li, J.; Qin, Z-H.; Liang, Z-Q. Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J. Asian Nat. Prod. Res., 2009, 11(11), 918-928.
[http://dx.doi.org/10.1080/10286020903264077] [PMID: 20183254]
[139]
Zhang, Y.; Chen, P.; Hong, H.; Wang, L.; Zhou, Y.; Lang, Y. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp. Ther. Med., 2017, 14(1), 593-599.
[http://dx.doi.org/10.3892/etm.2017.4529] [PMID: 28672972]
[140]
Zhu, Y.; Bu, S. Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells. Evid-Based Compl. Alt., 2017, 2017(9), 1-13.
[141]
O’Sullivan-Coyne, G.; O’Sullivan, G.C.; O’Donovan, T.R.; Piwocka, K.; McKenna, S.L. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br. J. Cancer, 2009, 101(9), 1585-1595.
[http://dx.doi.org/10.1038/sj.bjc.6605308] [PMID: 19809435]
[142]
Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol., 2018, 233(6), 4634-4642.
[http://dx.doi.org/10.1002/jcp.26190] [PMID: 28926094]
[143]
Masuelli, L.; Benvenuto, M.; Di Stefano, E.; Mattera, R.; Fantini, M.; De Feudis, G.; De Smaele, E.; Tresoldi, I.; Giganti, M.G.; Modesti, A.; Bei, R. Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line. Oncotarget, 2017, 8(21), 34405-34422.
[http://dx.doi.org/10.18632/oncotarget.14907] [PMID: 28159921]
[144]
Deng, Q.; Liang, L.; Liu, Q.; Duan, W.; Jiang, Y.; Zhang, L. Autophagy is a major mechanism for the dual effects of curcumin on renal cell carcinoma cells. Eur. J. Pharmacol., 2018, 826, 24-30.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.038] [PMID: 29501864]
[145]
Qian, H.; Yang, Y.; Wang, X. Curcumin enhanced adriamycin-induced human liver-derived Hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy. Eur. J. Pharm. Sci., 2011, 43(3), 125-131.
[http://dx.doi.org/10.1016/j.ejps.2011.04.002] [PMID: 21514382]
[146]
Ranjan, K.; Sharma, A.; Surolia, A.; Pathak, C. Regulation of HA14-1 mediated oxidative stress, toxic response, and autophagy by curcumin to enhance apoptotic activity in human embryonic kidney cells. Biofactors, 2014, 40(1), 157-169.
[http://dx.doi.org/10.1002/biof.1098] [PMID: 23559532]
[147]
Wu, J-C.; Lai, C-S.; Badmaev, V.; Nagabhushanam, K.; Ho, C-T.; Pan, M-H. Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3K/Akt-mTOR and MAPK signaling pathways in human leukemia HL-60 cells. Mol. Nutr. Food Res., 2011, 55(11), 1646-1654.
[http://dx.doi.org/10.1002/mnfr.201100454] [PMID: 21928294]
[148]
Zhou, G-Z.; Sun, G-C.; Zhang, S-N. Curcumin derivative HBC induces autophagy through activating AMPK signal in A549 cancer cells. Mol. Cell. Toxicol., 2015, 11(1), 29-34.
[http://dx.doi.org/10.1007/s13273-015-0004-8]
[149]
Han, J.; Pan, X-Y.; Xu, Y.; Xiao, Y.; An, Y.; Tie, L.; Pan, Y.; Li, X-J. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy, 2012, 8(5), 812-825.
[http://dx.doi.org/10.4161/auto.19471] [PMID: 22622204]
[150]
Li, W.; Zhou, Y.; Yang, J.; Li, H.; Zhang, H.; Zheng, P. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol. Rep., 2017, 37(6), 3459-3466.
[http://dx.doi.org/10.3892/or.2017.5637] [PMID: 28498433]
[151]
Yang, C.; Ma, X.; Wang, Z.; Zeng, X.; Hu, Z.; Ye, Z.; Shen, G. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Devel. Ther., 2017, 11, 431-439.
[http://dx.doi.org/10.2147/DDDT.S126964] [PMID: 28243065]
[152]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[153]
Scarlatti, F.; Maffei, R.; Beau, I.; Codogno, P.; Ghidoni, R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ., 2008, 15(8), 1318-1329.
[http://dx.doi.org/10.1038/cdd.2008.51] [PMID: 18421301]
[154]
Fu, Y.; Chang, H.; Peng, X.; Bai, Q.; Yi, L.; Zhou, Y.; Zhu, J.; Mi, M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One, 2014, 9(7)e102535
[http://dx.doi.org/10.1371/journal.pone.0102535] [PMID: 25068516]
[155]
Hsu, K-F.; Wu, C-L.; Huang, S-C.; Wu, C-M.; Hsiao, J-R.; Yo, Y-T.; Chen, Y-H.; Shiau, A-L.; Chou, C-Y. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy, 2009, 5(4), 451-460.
[http://dx.doi.org/10.4161/auto.5.4.7666] [PMID: 19164894]
[156]
Puissant, A.; Robert, G.; Fenouille, N.; Luciano, F.; Cassuto, J.P.; Raynaud, S.; Auberger, P. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res., 2010, 70(3), 1042-1052.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3537] [PMID: 20103647]
[157]
Park, D.; Jeong, H.; Lee, M.N.; Koh, A.; Kwon, O.; Yang, Y.R.; Noh, J.; Suh, P-G.; Park, H.; Ryu, S.H. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci. Rep., 2016, 6, 21772.
[http://dx.doi.org/10.1038/srep21772] [PMID: 26902888]
[158]
Selvaraj, S.; Sun, Y.; Sukumaran, P.; Singh, B.B. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol. Carcinog., 2016, 55(5), 818-831.
[http://dx.doi.org/10.1002/mc.22324] [PMID: 25917875]
[159]
Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028.
[http://dx.doi.org/10.3892/ijo.2012.1325] [PMID: 22218562]
[160]
Ferraresi, A.; Phadngam, S.; Morani, F.; Galetto, A.; Alabiso, O.; Chiorino, G.; Isidoro, C. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol. Carcinog., 2017, 56(3), 1164-1181.
[http://dx.doi.org/10.1002/mc.22582] [PMID: 27787915]
[161]
Fan, Y.; Chiu, J-F.; Liu, J.; Deng, Y.; Xu, C.; Zhang, J.; Li, G. Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer, 2018, 18(1), 581.
[http://dx.doi.org/10.1186/s12885-018-4504-5] [PMID: 29788929]
[162]
Chang, C-H.; Lee, C-Y.; Lu, C-C.; Tsai, F-J.; Hsu, Y-M.; Tsao, J-W.; Juan, Y-N.; Chiu, H-Y.; Yang, J-S.; Wang, C-C. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int. J. Oncol., 2017, 50(3), 873-882.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[163]
Li, J.; Qin, Z.; Liang, Z. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells. BMC Cancer, 2009, 9(1), 215.
[http://dx.doi.org/10.1186/1471-2407-9-215] [PMID: 19566920]
[164]
Filippi-Chiela, E.C.; Villodre, E.S.; Zamin, L.L.; Lenz, G. Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS One, 2011, 6(6)e20849
[http://dx.doi.org/10.1371/journal.pone.0020849] [PMID: 21695150]
[165]
Ge, J.; Liu, Y.; Li, Q.; Guo, X.; Gu, L.; Ma, Z.G.; Zhu, Y.P. Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed. Environ. Sci., 2013, 26(11), 902-911.
[PMID: 24331535]
[166]
Tang, Q.; Li, G.; Wei, X.; Zhang, J.; Chiu, J-F.; Hasenmayer, D.; Zhang, D.; Zhang, H. Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma. Cancer Lett., 2013, 336(2), 325-337.
[http://dx.doi.org/10.1016/j.canlet.2013.03.023] [PMID: 23541682]
[167]
Back, J.H.; Zhu, Y.; Calabro, A.; Queenan, C.; Kim, A.S.; Arbesman, J.; Kim, A.L. Resveratrol-mediated downregulation of Rictor attenuates autophagic process and suppresses UV-induced skin carcinogenesis. Photochem. Photobiol., 2012, 88(5), 1165-1172.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01097.x] [PMID: 22272775]
[168]
Xu, X.; Chen, K.; Kobayashi, S.; Timm, D.; Liang, Q. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J. Pharmacol. Exp. Ther., 2012, 341(1), 183-195.
[http://dx.doi.org/10.1124/jpet.111.189589] [PMID: 22209892]
[169]
Lin, C-J.; Lee, C-C.; Shih, Y-L.; Lin, T-Y.; Wang, S-H.; Lin, Y-F.; Shih, C-M. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic. Biol. Med., 2012, 52(2), 377-391.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.487] [PMID: 22094224]
[170]
Kou, X.; Chen, N. Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease. Nutrients, 2017, 9(9), 927.
[http://dx.doi.org/10.3390/nu9090927] [PMID: 28837083]
[171]
Oh, G.S.; Pae, H.O.; Choi, B.M.; Seo, E.A.; Kim, D.H.; Shin, M.K.; Kim, J.D.; Kim, J.B.; Chung, H.T. 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide. Cancer Lett., 2004, 205(1), 23-29.
[http://dx.doi.org/10.1016/j.canlet.2003.09.037] [PMID: 15036657]
[172]
Leung, K.W.; Yung, K.K.L.; Mak, N.K.; Chan, Y.S.; Fan, T.P.; Wong, R.N.S. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology, 2007, 52(3), 827-835.
[http://dx.doi.org/10.1016/j.neuropharm.2006.10.001] [PMID: 17123556]
[173]
Kim, Y.J.; Kwon, H.C.; Ko, H.; Park, J.H.; Kim, H.Y.; Yoo, J.H.; Yang, H.O. Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis. Biol. Pharm. Bull., 2008, 31(5), 826-830.
[http://dx.doi.org/10.1248/bpb.31.826] [PMID: 18451501]
[174]
Ko, H.; Kim, Y-J.; Park, J-S.; Park, J.H.; Yang, H.O. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells. Biosci. Biotechnol. Biochem., 2009, 73(10), 2183-2189.
[http://dx.doi.org/10.1271/bbb.90250] [PMID: 19809182]
[175]
Mai, T.T.; Moon, J.; Song, Y.; Viet, P.Q.; Phuc, P.V.; Lee, J.M.; Yi, T-H.; Cho, M.; Cho, S.K. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett., 2012, 321(2), 144-153.
[http://dx.doi.org/10.1016/j.canlet.2012.01.045] [PMID: 22326284]
[176]
Zheng, X.; Chen, W.; Hou, H.; Li, J.; Li, H.; Sun, X.; Zhao, L.; Li, X. Ginsenoside 20(S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer. Biomed. Pharmacother., 2017, 85, 620-626.
[http://dx.doi.org/10.1016/j.biopha.2016.11.072] [PMID: 27899249]
[177]
Kim, A.D.; Kang, K.A.; Kim, H.S.; Kim, D.H.; Choi, Y.H.; Lee, S.J.; Kim, H.S.; Hyun, J.W. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis., 2013, 4(8)e750
[http://dx.doi.org/10.1038/cddis.2013.273] [PMID: 23907464]
[178]
Zhuang, J.; Yin, J.; Xu, C.; Mu, Y.; Lv, S. 20(S)-Ginsenoside Rh2 induce the apoptosis and autophagy in U937 and K562 cells. Nutrients, 2018, 10(3), 328.
[http://dx.doi.org/10.3390/nu10030328] [PMID: 29518056]
[179]
Zhang, Z-L.; Fan, Y.; Liu, M-L. Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol. Cell. Biochem., 2012, 365(1-2), 243-250.
[http://dx.doi.org/10.1007/s11010-012-1265-3] [PMID: 22350816]
[180]
Mao, N.; Tan, R-Z.; Wang, S-Q.; Wei, C.; Shi, X-L.; Fan, J-M.; Wang, L. Ginsenoside Rg1 inhibits angiotensin II-induced podocyte autophagy via AMPK/mTOR/PI3K pathway. Cell Biol. Int., 2016, 40(8), 917-925.
[http://dx.doi.org/10.1002/cbin.10634] [PMID: 27296076]
[181]
Wang, L.; Mao, N.; Tan, R-Z.; Wang, H-L.; Wen, J.; Liu, Y-H.; Furhad, M.; Fan, J-M. Ginsenoside Rg1 reduces aldosterone-induced autophagy via the AMPK/mTOR pathway in NRK-52E cells. Int. J. Mol. Med., 2015, 36(2), 518-526.
[http://dx.doi.org/10.3892/ijmm.2015.2242] [PMID: 26063203]
[182]
Wang, G.; Li, X.; Huang, F.; Zhao, J.; Ding, H.; Cunningham, C.; Coad, J.E.; Flynn, D.C.; Reed, E.; Li, Q.Q. Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell. Mol. Life Sci., 2005, 62(7-8), 881-893.
[http://dx.doi.org/10.1007/s00018-005-5017-3] [PMID: 15868411]
[183]
Yao, Y-Q.; Ding, X.; Jia, Y-C.; Huang, C-X.; Wang, Y-Z.; Xu, Y-H. Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett., 2008, 264(1), 127-134.
[http://dx.doi.org/10.1016/j.canlet.2008.01.049] [PMID: 18442668]
[184]
Xie, C-Y.; Yang, W.; Li, M.; Ying, J.; Tao, S-J.; Li, K.; Dong, J-H.; Wang, X-S. Cell apoptosis induced by delta-elemene in colorectal adenocarcinoma cells via a mitochondrial-mediated pathway. Yakugaku Zasshi, 2009, 129(11), 1403-1413.
[http://dx.doi.org/10.1248/yakushi.129.1403] [PMID: 19881213]
[185]
Liu, J.; Zhang, Y.; Qu, J.; Xu, L.; Hou, K.; Zhang, J.; Qu, X.; Liu, Y. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer, 2011, 11, 183.
[http://dx.doi.org/10.1186/1471-2407-11-183] [PMID: 21595977]
[186]
Liu, J.; Hu, X.J.; Jin, B.; Qu, X.J.; Hou, K.Z.; Liu, Y.P. β-Elemene induces apoptosis as well as protective autophagy in human non-small-cell lung cancer A549 cells. J. Pharm. Pharmacol., 2012, 64(1), 146-153.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01371.x] [PMID: 22150682]
[187]
Zhan, Y-H.; Liu, J.; Qu, X-J.; Hou, K-Z.; Wang, K-F.; Liu, Y-P.; Wu, B. β-Elemene induces apoptosis in human renal-cell carcinoma 786-0 cells through inhibition of MAPK/ERK and PI3K/Akt/mTOR signalling pathways. Asian Pac. J. Cancer Prev., 2012, 13(6), 2739-2744.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2739] [PMID: 22938451]
[188]
Ding, X-F.; Shen, M.; Xu, L-Y.; Dong, J.H.; Chen, G. 13,14-bis(cis-3,5-dimethyl-1-piperazinyl)-β-elemene, a novel β-elemene derivative, shows potent antitumor activities via inhibition of mTOR in human breast cancer cells. Oncol. Lett., 2013, 5(5), 1554-1558.
[http://dx.doi.org/10.3892/ol.2013.1213] [PMID: 23761818]
[189]
Osawa, K.; Yasuda, H.; Maruyama, T.; Morita, H.; Takeya, K.; Itokawa, H. Antibacterial trichorabdal diterpenes from Rabdosia trichocarpa. Phytochemistry, 1994, 36(5), 1287-1291.
[http://dx.doi.org/10.1016/S0031-9422(00)89653-3] [PMID: 7765366]
[190]
Han, Q-B.; Li, M-L.; Li, S-H.; Mou, Y-K.; Lin, Z-W.; Sun, H-D. Ent-kaurane diterpenoids from Isodon rubescens var. lushanensis. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 790-793.
[http://dx.doi.org/10.1248/cpb.51.790] [PMID: 12843583]
[191]
Ikezoe, T.; Chen, S.S.; Tong, X.J.; Heber, D.; Taguchi, H.; Koeffler, H.P. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int. J. Oncol., 2003, 23(4), 1187-1193.
[http://dx.doi.org/10.3892/ijo.23.4.1187] [PMID: 12964003]
[192]
Zhang, J-X.; Han, Q-B.; Zhao, A-H.; Sun, H-D. Diterpenoids from Isodon japonica. Fitoterapia, 2003, 74(5), 435-438.
[http://dx.doi.org/10.1016/S0367-326X(03)00107-2] [PMID: 12837357]
[193]
Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T. Oridonin induced autophagy in human cervical carcinoma HeLa cells through Ras, JNK, and P38 regulation. J. Pharmacol. Sci., 2007, 105(4), 317-325.
[http://dx.doi.org/10.1254/jphs.FP0070336] [PMID: 18094523]
[194]
Ye, L-H.; Li, W-J.; Jiang, X-Q.; Chen, Y-L.; Tao, S-X.; Qian, W-L.; He, J-S. Study on the autophagy of prostate cancer PC-3 cells induced by oridonin. Anat. Rec. (Hoboken), 2012, 295(3), 417-422.
[http://dx.doi.org/10.1002/ar.21528] [PMID: 22190546]
[195]
Li, X.; Li, X.; Wang, J.; Ye, Z.; Li, J-C. Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int. J. Biol. Sci., 2012, 8(6), 901-912.
[http://dx.doi.org/10.7150/ijbs.4554] [PMID: 22745580]
[196]
Zhang, Y.; Wu, Y.; Wu, D.; Tashiro, S.; Onodera, S.; Ikejima, T. NF-kappab facilitates oridonin-induced apoptosis and autophagy in HT1080 cells through a p53-mediated pathway. Arch. Biochem. Biophys., 2009, 489(1-2), 25-33.
[http://dx.doi.org/10.1016/j.abb.2009.07.017] [PMID: 19646415]
[197]
Zhang, Y.; Wu, Y.; Tashiro, S.; Onodera, S.; Ikejima, T. Involvement of PKC signal pathways in oridonin-induced autophagy in HeLa cells: A protective mechanism against apoptosis. Biochem. Biophys. Res. Commun., 2009, 378(2), 273-278.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.038] [PMID: 19026988]
[198]
Zeng, R.; Chen, Y.; Zhao, S.; Cui, G-H. Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol. Sin., 2012, 33(1), 91-100.
[http://dx.doi.org/10.1038/aps.2011.143] [PMID: 22158107]
[199]
Tiwari, R.V.; Parajuli, P.; Sylvester, P.W. Synergistic anticancer effects of combined γ-tocotrienol and oridonin treatment is associated with the induction of autophagy. Mol. Cell. Biochem., 2015, 408(1-2), 123-137.
[http://dx.doi.org/10.1007/s11010-015-2488-x] [PMID: 26112904]
[200]
Rowinsky, E.K.; Onetto, N.; Canetta, R.M.; Arbuck, S.G. Taxol: The first of the taxanes, an important new class of antitumor agents. Semin. Oncol., 1992, 19(6), 646-662.
[PMID: 1361079]
[201]
Xi, G.; Hu, X.; Wu, B.; Jiang, H.; Young, C.Y.F.; Pang, Y.; Yuan, H. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett., 2011, 307(2), 141-148.
[http://dx.doi.org/10.1016/j.canlet.2011.03.026] [PMID: 21511395]
[202]
Liu, F.; Liu, D.; Yang, Y.; Zhao, S. Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol. Lett., 2013, 5(4), 1261-1265.
[http://dx.doi.org/10.3892/ol.2013.1154] [PMID: 23599776]
[203]
Yu, Y-F.; Hu, P-C.; Wang, Y.; Xu, X-L.; Rushworth, G.M.; Zhang, Z.; Wei, L.; Zhang, J.W. Paclitaxel induces autophagy in gastric cancer BGC823 cells. Ultrastruct. Pathol., 2017, 41(4), 284-290.
[http://dx.doi.org/10.1080/01913123.2017.1334019] [PMID: 28691892]
[204]
Kim, H.J.; Lee, S.G.; Kim, Y.J.; Park, J.E.; Lee, K.Y.; Yoo, Y.H.; Kim, J.M. Cytoprotective role of autophagy during paclitaxel-induced apoptosis in Saos-2 osteosarcoma cells. Int. J. Oncol., 2013, 42(6), 1985-1992.
[http://dx.doi.org/10.3892/ijo.2013.1884] [PMID: 23563171]
[205]
Hu, M.; Zhu, J.; Qiu, L. Polymer micelle-based combination therapy of paclitaxel and resveratrol with enhanced and selective antitumor activity. Rsc Adv., 2014, 4(109), 64151-64161.
[http://dx.doi.org/10.1039/C4RA09761K]
[206]
Klimaszewska-Wisniewska, A.; Halas-Wisniewska, M.; Tadrowski, T.; Gagat, M.; Grzanka, D.; Grzanka, A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int., 2016, 16, 10.
[http://dx.doi.org/10.1186/s12935-016-0288-3] [PMID: 26884726]
[207]
Liu, Q. Triptolide and its expanding multiple pharmacological functions. Int. Immunopharmacol., 2011, 11(3), 377-383.
[http://dx.doi.org/10.1016/j.intimp.2011.01.012] [PMID: 21255694]
[208]
Wong, K-F.; Yuan, Y.; Luk, J.M. Tripterygium wilfordii bioactive compounds as anticancer and anti-inflammatory agents. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 311-320.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05586.x] [PMID: 21834865]
[209]
Mujumdar, N.; Mackenzie, T.N.; Dudeja, V.; Chugh, R.; Antonoff, M.B.; Borja-Cacho, D.; Sangwan, V.; Dawra, R.; Vickers, S.M.; Saluja, A.K. Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology, 2010, 139(2), 598-608.
[http://dx.doi.org/10.1053/j.gastro.2010.04.046] [PMID: 20434451]
[210]
Gao, H.; Zhang, Y.; Dong, L.; Qu, X-Y.; Tao, L-N.; Zhang, Y-M.; Zhai, J.H.; Song, Y.Q. Triptolide induces autophagy and apoptosis through ERK activation in human breast cancer MCF-7 cells. Exp. Ther. Med., 2018, 15(4), 3413-3419.
[http://dx.doi.org/10.3892/etm.2018.5830] [PMID: 29545863]
[211]
Zhang, B.; Wang, Y.F.; Zhao, F.; Li, M.; Huang, W.W. Triptolide induces p53-dependent autophagy and apoptosis in HeLa cells. Prog. Biochem. Biophys., 2016, 43(6), 599-606.
[212]
Krosch, T.C.K.; Sangwan, V.; Banerjee, S.; Mujumdar, N.; Dudeja, V.; Saluja, A.K.; Vickers, S.M. Triptolide-mediated cell death in neuroblastoma occurs by both apoptosis and autophagy pathways and results in inhibition of nuclear factor-kappa B activity. Am. J. Surg., 2013, 205(4), 387-396.
[http://dx.doi.org/10.1016/j.amjsurg.2013.01.008] [PMID: 23428154]
[213]
Zhao, F.; Huang, W.; Zhang, Z.; Mao, L.; Han, Y.; Yan, J.; Lei, M. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget, 2016, 7(5), 5366-5382.
[http://dx.doi.org/10.18632/oncotarget.6783] [PMID: 26734992]
[214]
Wang, W-B.; Feng, L-X.; Yue, Q-X.; Wu, W-Y.; Guan, S-H.; Jiang, B-H.; Yang, M.; Liu, X.; Guo, D-A. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J. Cell. Physiol., 2012, 227(5), 2196-2206.
[http://dx.doi.org/10.1002/jcp.22956] [PMID: 21866552]
[215]
Deng, Y-N.; Shi, J.; Liu, J.; Qu, Q-M. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem. Int., 2013, 63(1), 1-9.
[http://dx.doi.org/10.1016/j.neuint.2013.04.005] [PMID: 23619395]
[216]
Lee, H-W.; Jang, K.S.B.; Choi, H.J.; Jo, A.; Cheong, J-H.; Chun, K-H. Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy. BMB Rep., 2014, 47(12), 697-702.
[http://dx.doi.org/10.5483/BMBRep.2014.47.12.069] [PMID: 24667175]
[217]
Li, H.Y.; Zhang, J.; Sun, L.L.; Li, B.H.; Gao, H.L.; Xie, T.; Zhang, N.; Ye, Z.M. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: An in vitro and in vivo study. Cell Death Dis., 2015, 6(1)e1604
[http://dx.doi.org/10.1038/cddis.2014.543] [PMID: 25611379]
[218]
Kowalczyk, M.C.; Walaszek, Z.; Kowalczyk, P.; Kinjo, T.; Hanausek, M.; Slaga, T.J. Differential effects of several phytochemicals and their derivatives on murine keratinocytes in vitro and in vivo: implications for skin cancer prevention. Carcinogenesis, 2009, 30(6), 1008-1015.
[http://dx.doi.org/10.1093/carcin/bgp069] [PMID: 19329757]
[219]
Leng, S.; Hao, Y.; Du, D.; Xie, S.; Hong, L.; Gu, H.; Zhu, X.; Zhang, J.; Fan, D.; Kung, H.F. Ursolic acid promotes cancer cell death by inducing Atg5-dependent autophagy. Int. J. Cancer, 2013, 133(12), 2781-2790.
[http://dx.doi.org/10.1002/ijc.28301] [PMID: 23737395]
[220]
Xavier, C.P.R.; Lima, C.F.; Pedro, D.F.N.; Wilson, J.M.; Kristiansen, K.; Pereira-Wilson, C. Ursolic acid induces cell death and modulates autophagy through JNK pathway in apoptosis-resistant colorectal cancer cells. J. Nutr. Biochem., 2013, 24(4), 706-712.
[http://dx.doi.org/10.1016/j.jnutbio.2012.04.004] [PMID: 22841540]
[221]
Shen, S.; Zhang, Y.; Zhang, R.; Tu, X.; Gong, X. Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress. Chem. Biol. Interact., 2014, 218(2), 28-41.
[http://dx.doi.org/10.1016/j.cbi.2014.04.017] [PMID: 24802810]
[222]
Meng, F.; Ning, H.; Sun, Z.; Huang, F.; Li, Y.; Chu, X.; Lu, H.; Sun, C.; Li, S. Ursolic acid protects hepatocytes against lipotoxicity through activating autophagy via an AMPK pathway. J. Funct. Foods, 2015, 17, 172-182.
[http://dx.doi.org/10.1016/j.jff.2015.05.029]
[223]
Luo, J.; Hu, Y.L.; Wang, H. Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp. Ther. Med., 2017, 14(4), 3623-3631.
[http://dx.doi.org/10.3892/etm.2017.4965] [PMID: 29042957]
[224]
Jung, J.; Seo, J.; Kim, J.; Kim, J.H. Ursolic acid causes cell death in PC-12 cells by inducing apoptosis and impairing autophagy. Anticancer Res., 2018, 38(2), 847-853.
[PMID: 29374711]
[225]
Wu, H-B.; Fang, Y-Q. Pharmacokinetics of β-asarone in rats. Yao Xue Xue Bao, 2004, 39(10), 836-838.
[PMID: 15700827]
[226]
Mo, Z.T.; Fang, Y.Q.; He, Y.P.; Zhang, S. β-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacol. Sin., 2012, 33(6), 737-742.
[http://dx.doi.org/10.1038/aps.2012.35] [PMID: 22543703]
[227]
Xue, Z.; Guo, Y.; Zhang, S.; Huang, L.; He, Y.; Fang, R.; Fang, Y. Beta-asarone attenuates amyloid beta-induced autophagy via Akt/mTOR pathway in PC12 cells. Eur. J. Pharmacol., 2014, 741, 195-204.
[http://dx.doi.org/10.1016/j.ejphar.2014.08.006] [PMID: 25160744]
[228]
Chang, W.; Teng, J. β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: Down expression Beclin-1, LC3B and up expression Bcl-2. Int. J. Clin. Exp. Med., 2015, 8(11), 20658-20663.
[PMID: 26884987]
[229]
Tang, Z-H.; Cao, W-X.; Wang, Z-Y.; Lu, J-H.; Liu, B.; Chen, X.; Lu, J-J. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells. Redox Biol., 2017, 12, 367-376.
[http://dx.doi.org/10.1016/j.redox.2017.03.009] [PMID: 28288416]
[230]
Wang, N.; Pan, W.; Zhu, M.; Zhang, M.; Hao, X.; Liang, G.; Feng, Y. Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells. Br. J. Pharmacol., 2011, 164(2b), 731-742.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01349.x] [PMID: 21418191]
[231]
Fan, B.; Zhang, X.; Ma, Y.; Zhang, A. Fangchinoline induces apoptosis, autophagy and energetic impairment in bladder cancer. Cell. Physiol. Biochem., 2017, 43(3), 1003-1011.
[http://dx.doi.org/10.1159/000481698] [PMID: 28968601]
[232]
Tang, Z-H.; Guo, X.; Cao, W-X.; Chen, X.; Lu, J-J. Fangchinoline accumulates autophagosomes by inhibiting autophagic degradation and promoting TFEB nuclear translocation. RSC Advances, 2017, 7(67), 42597-42605.
[http://dx.doi.org/10.1039/C7RA02738A]
[233]
Poornima, P.; Weng, C.F.; Padma, V.V. Neferine from Nelumbo nucifera induces autophagy through the inhibition of PI3K/Akt/mTOR pathway and ROS hyper generation in A549 cells. Food Chem., 2013, 141(4), 3598-3605.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.138] [PMID: 23993526]
[234]
Lu, J-H.; Tan, J-Q.; Durairajan, S.S.K.; Liu, L-F.; Zhang, Z-H.; Ma, L.; Shen, H-M.; Chan, H.Y.E.; Li, M. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy, 2012, 8(1), 98-108.
[http://dx.doi.org/10.4161/auto.8.1.18313] [PMID: 22113202]
[235]
Griffin, C.; McNulty, J.; Pandey, S. Pancratistatin induces apoptosis and autophagy in metastatic prostate cancer cells. Int. J. Oncol., 2011, 38(6), 1549-1556.
[PMID: 21424119]
[236]
Lyu, Q.; Tou, F.; Su, H.; Wu, X.; Chen, X.; Zheng, Z. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death. Biochem. Biophys. Res. Commun., 2015, 462(1), 38-45.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.102] [PMID: 25935480]
[237]
Wang, Y.; Wang, J-W.; Xiao, X.; Shan, Y.; Xue, B.; Jiang, G.; He, Q.; Chen, J.; Xu, H.G.; Zhao, R.X.; Werle, K.D.; Cui, R.; Liang, J.; Li, Y.L.; Xu, Z.X. Piperlongumine induces autophagy by targeting p38 signaling. Cell Death Dis., 2013, 4(10)e824
[http://dx.doi.org/10.1038/cddis.2013.358] [PMID: 24091667]
[238]
Ouyang, D-Y.; Zeng, L.H.; Pan, H.; Xu, L.H.; Wang, Y.; Liu, K.P.; He, X.H. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol., 2013, 60(10), 424-430.
[http://dx.doi.org/10.1016/j.fct.2013.08.007] [PMID: 23939040]
[239]
Longo, L.; Platini, F.; Scardino, A.; Alabiso, O.; Vasapollo, G.; Tessitore, L. Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Mol. Cancer Ther., 2008, 7(8), 2476-2485.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0361] [PMID: 18723493]
[240]
Xia, J.; Guo, S.; Fang, T.; Feng, D.; Zhang, X.; Zhang, Q.; Liu, J.; Liu, B.; Li, M.; Zhu, R. Dihydromyricetin induces autophagy in HepG2 cells involved in inhibition of mTOR and regulating its upstream pathways. Food Chem. Toxicol., 2014, 66(4), 7-13.
[http://dx.doi.org/10.1016/j.fct.2014.01.014] [PMID: 24444546]
[241]
Yan, J.; Feng, Z.; Liu, J.; Shen, W.; Wang, Y.; Wertz, K.; Weber, P.; Long, J.; Liu, J. Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate. J. Nutr. Biochem., 2012, 23(7), 716-724.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.014] [PMID: 21820301]
[242]
Yang, P-M.; Tseng, H-H.; Peng, C-W.; Chen, W-S.; Chiu, S-J. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy. Int. J. Oncol., 2012, 40(2), 469-478.
[PMID: 21922137]
[243]
Zhang, H.; Li, N.; Wu, J.; Su, L.; Chen, X.; Lin, B.; Luo, H. Galangin inhibits proliferation of HepG2 cells by activating AMPK via increasing the AMP/TAN ratio in a LKB1-independent manner. Eur. J. Pharmacol., 2013, 718(1-3), 235-244.
[http://dx.doi.org/10.1016/j.ejphar.2013.08.026] [PMID: 24028940]
[244]
Raha, S.; Yumnam, S.; Hong, G.E.; Lee, H.J.; Saralamma, V.V.G.; Park, H.S.; Heo, J.D.; Lee, S.J.; Kim, E.H.; Kim, J.A.; Kim, G.S. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int. J. Oncol., 2015, 47(3), 1061-1069.
[http://dx.doi.org/10.3892/ijo.2015.3095] [PMID: 26201693]
[245]
Zhao, S.; Ma, C.M.; Liu, C-X.; Wei, W.; Sun, Y.; Yan, H.; Wu, Y-L. Autophagy inhibition enhances isobavachalcone-induced cell death in multiple myeloma cells. Int. J. Mol. Med., 2012, 30(4), 939-944.
[http://dx.doi.org/10.3892/ijmm.2012.1066] [PMID: 22824846]
[246]
Ruan, Y.; Hu, K.; Chen, H. Autophagy inhibition enhances isorhamnetininduced mitochondriadependent apoptosis in nonsmall cell lung cancer cells. Mol. Med. Rep., 2015, 12(4), 5796-5806.
[http://dx.doi.org/10.3892/mmr.2015.4148] [PMID: 26238746]
[247]
Yo, Y-T.; Shieh, G-S.; Hsu, K-F.; Wu, C-L.; Shiau, A-L. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway. J. Agric. Food Chem., 2009, 57(18), 8266-8273.
[http://dx.doi.org/10.1021/jf901054c] [PMID: 19711916]
[248]
Park, S.H.; Park, H.S.; Lee, J.H.; Chi, G.Y.; Kim, G.Y.; Moon, S.K.; Chang, Y.C.; Hyun, J.W.; Kim, W.J.; Choi, Y.H. Induction of endoplasmic reticulum stress-mediated apoptosis and non-canonical autophagy by luteolin in NCI-H460 lung carcinoma cells. Food Chem. Toxicol., 2013, 56(2), 100-109.
[http://dx.doi.org/10.1016/j.fct.2013.02.022] [PMID: 23454208]
[249]
Zou, M.; Hu, C.; You, Q.; Zhang, A.; Wang, X.; Guo, Q. Oroxylin A induces autophagy in human malignant glioma cells via the mTOR-STAT3-Notch signaling pathway. Mol. Carcinog., 2015, 54(11), 1363-1375.
[http://dx.doi.org/10.1002/mc.22212] [PMID: 25213258]
[250]
Lv, C.; Zeng, H.W.; Wang, J.X.; Yuan, X.; Zhang, C.; Fang, T.; Yang, P.M.; Wu, T.; Zhou, Y.D.; Nagle, D.G.; Zhang, W.D. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Dis., 2018, 9(2), 165.
[http://dx.doi.org/10.1038/s41419-017-0247-5] [PMID: 29416003]
[251]
Sasazawa, Y.; Kanagaki, S.; Tashiro, E.; Nogawa, T.; Muroi, M.; Kondoh, Y.; Osada, H.; Imoto, M. Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein. ACS Chem. Biol., 2012, 7(5), 892-900.
[http://dx.doi.org/10.1021/cb200492h] [PMID: 22360440]
[252]
Zhang, C.; Qiu, X. Andrographolide radiosensitizes human ovarian cancer SKOV3 xenografts due to an enhanced apoptosis and autophagy. Tumour Biol., 2015, 36(11), 8359-8365.
[http://dx.doi.org/10.1007/s13277-015-3578-9] [PMID: 26014516]
[253]
Jung, C-H.; Kim, H.; Ahn, J.; Jung, S.K.; Um, M.Y.; Son, K.H.; Kim, T.W.; Ha, T.Y. Anthricin isolated from Anthriscus sylvestris (L.) Hoffm. inhibits the growth of breast cancer cells by inhibiting Akt/mTOR signaling, and its apoptotic effects are enhanced by autophagy inhibition. Evid. Based Complement. Alternat. Med., 2013, 2013(1)385219
[PMID: 23818925]
[254]
Zhang, D-M.; Liu, J-S.; Deng, L-J.; Chen, M-F.; Yiu, A.; Cao, H-H.; Tian, H-Y.; Fung, K-P.; Kurihara, H.; Pan, J-X.; Ye, W-C. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis, 2013, 34(6), 1331-1342.
[http://dx.doi.org/10.1093/carcin/bgt060] [PMID: 23393227]
[255]
De Amicis, F.; Aquila, S.; Morelli, C.; Guido, C.; Santoro, M.; Perrotta, I.; Mauro, L.; Giordano, F.; Nigro, A.; Andò, S.; Panno, M.L. Bergapten drives autophagy through the up-regulation of PTEN expression in breast cancer cells. Mol. Cancer, 2015, 14, 130.
[http://dx.doi.org/10.1186/s12943-015-0403-4] [PMID: 26148846]
[256]
Lim, C.B.; Fu, P-Y.; Ky, N.; Zhu, H-S.; Feng, X.; Li, J.; Srinivasan, K.G.; Hamza, M.S.; Zhao, Y. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death. BMC Complement. Altern. Med., 2012, 12, 93.
[http://dx.doi.org/10.1186/1472-6882-12-93]
[257]
Lan, B.; Wan, Y.J.; Pan, S.; Wang, Y.; Yang, Y.; Leng, Q.L.; Jia, H.; Liu, Y.H.; Zhang, C.Z.; Cao, Y. Parthenolide induces autophagy via the depletion of 4E-BP1. Biochem. Biophys. Res. Commun., 2015, 456(1), 434-439.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.102] [PMID: 25482447]
[258]
Zhao, X.; Fang, Y.; Yang, Y.; Qin, Y.; Wu, P.; Wang, T.; Lai, H.; Meng, L.; Wang, D.; Zheng, Z.; Lu, X.; Zhang, H.; Gao, Q.; Zhou, J.; Ma, D. Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy, 2015, 11(10), 1849-1863.
[http://dx.doi.org/10.1080/15548627.2015.1017185] [PMID: 25893854]
[259]
Chen, T.; Hao, J.; He, J.; Zhang, J.; Li, Y.; Liu, R.; Li, L. Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells. Food Chem., 2013, 138(2-3), 1034-1041.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.102] [PMID: 23411211]
[260]
Way, T.D.; Tsai, S.J.; Wang, C.M.; Jhan, Y.L.; Ho, C-T.; Chou, C-H. Cinnamtannin D1 from rhododendron formosanum induces autophagy via the inhibition of Akt/mTOR and activation of ERK1/2 in non-small-cell lung carcinoma cells. J. Agric. Food Chem., 2015, 63(48), 10407-10417.
[http://dx.doi.org/10.1021/acs.jafc.5b04375] [PMID: 26567590]
[261]
Dai, J-P.; Zhao, X-F.; Zeng, J.; Wan, Q-Y.; Yang, J-C.; Li, W-Z.; Chen, X-X.; Wang, G-F.; Li, K-S. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One, 2013, 8(4)e61026
[http://dx.doi.org/10.1371/journal.pone.0061026] [PMID: 23613775]
[262]
Li, H.B.; Yi, X.; Gao, J.M.; Ying, X.X.; Guan, H.Q.; Li, J.C. Magnolol-induced H460 cells death via autophagy but not apoptosis. Arch. Pharm. Res., 2007, 30(12), 1566-1574.
[http://dx.doi.org/10.1007/BF02977326] [PMID: 18254244]
[263]
Pei, Y.; Chen, Z-P.; Ju, H-Q.; Komatsu, M.; Ji, Y-H.; Liu, G.; Guo, C-W.; Zhang, Y-J.; Yang, C-R.; Wang, Y-F.; Kitazato, K. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro. Biochem. Biophys. Res. Commun., 2011, 405(2), 186-191.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.006] [PMID: 21216235]
[264]
Chen, R-J.; Ho, C-T.; Wang, Y-J. Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Mol. Nutr. Food Res., 2010, 54(12), 1819-1832.
[http://dx.doi.org/10.1002/mnfr.201000067] [PMID: 20603834]
[265]
Chakraborty, D.; Bishayee, K.; Ghosh, S.; Biswas, R.; Mandal, S.K.; Khuda-Bukhsh, A.R. [6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: Drug-DNA interaction and expression of certain signal genes in HeLa cells. Eur. J. Pharmacol., 2012, 694(1-3), 20-29.
[http://dx.doi.org/10.1016/j.ejphar.2012.08.001] [PMID: 22939973]
[266]
Xu, M-Y.; Lee, D.H.; Joo, E.J.; Son, K.H.; Kim, Y.S. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells. Food Chem. Toxicol., 2013, 59(3), 703-708.
[http://dx.doi.org/10.1016/j.fct.2013.06.059] [PMID: 23850994]
[267]
Wu, A-G.; Wong, V.K.W.; Xu, S-W.; Chan, W.K.; Ng, C.I.; Liu, L.; Law, B.Y.K. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells. Int. J. Mol. Sci., 2013, 14(11), 22618-22641.
[http://dx.doi.org/10.3390/ijms141122618] [PMID: 24248062]
[268]
Chen, M.; Du, Y.; Qui, M.; Wang, M.; Chen, K.; Huang, Z.; Jiang, M.; Xiong, F.; Chen, J.; Zhou, J.; Jiang, F.; Yin, L.; Tang, Y.; Ye, L.; Zhan, Z.; Duan, J.A.; Fu, H.A.; Zhang, X. Ophiopogonin B-induced autophagy in non-small cell lung cancer cells via inhibition of the PI3K/Akt signaling pathway. Oncol. Rep., 2013, 29(2), 430-436.
[http://dx.doi.org/10.3892/or.2012.2131] [PMID: 23151908]
[269]
He, H.; Zang, L-H.; Feng, Y-S.; Chen, L-X.; Kang, N.; Tashiro, S.; Onodera, S.; Qiu, F.; Ikejima, T. Physalin A induces apoptosis via p53-Noxa-mediated ROS generation, and autophagy plays a protective role against apoptosis through p38-NF-κB survival pathway in A375-S2 cells. J. Ethnopharmacol., 2013, 148(2), 544-555.
[http://dx.doi.org/10.1016/j.jep.2013.04.051] [PMID: 23684722]
[270]
Zhao, R.; Chen, M.; Jiang, Z.; Zhao, F.; Xi, B.; Zhang, X.; Fu, H.; Zhou, K. Platycodin-D induced autophagy in non-small cell lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathways. J. Cancer, 2015, 6(7), 623-631.
[http://dx.doi.org/10.7150/jca.11291] [PMID: 26078792]
[271]
Zhang, C.; Jia, X.; Wang, K.; Bao, J.; Li, P.; Chen, M.; Wan, J.B.; Su, H.; Mei, Z.; He, C. Polyphyllin VII induces an autophagic cell death by activation of the JNK pathway and inhibition of PI3K/AKT/mTOR pathway in HepG2 cells. PLoS One, 2016, 11(1)e0147405
[http://dx.doi.org/10.1371/journal.pone.0147405] [PMID: 26808193]
[272]
Wong, V.K.W.; Li, T.; Law, B.Y.K.; Ma, E.D.L.; Yip, N.C.; Michelangeli, F.; Law, C.K.M.; Zhang, M.M.; Lam, K.Y.C.; Chan, P.L.; Liu, L. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis., 2013, 4(7)e720
[http://dx.doi.org/10.1038/cddis.2013.217] [PMID: 23846222]
[273]
Shi, J-M.; Bai, L-L.; Zhang, D-M.; Yiu, A.; Yin, Z-Q.; Han, W-L.; Liu, J-S.; Li, Y.; Fu, D.Y.; Ye, W.C. Saxifragifolin D induces the interplay between apoptosis and autophagy in breast cancer cells through ROS-dependent endoplasmic reticulum stress. Biochem. Pharmacol., 2013, 85(7), 913-926.
[http://dx.doi.org/10.1016/j.bcp.2013.01.009] [PMID: 23348250]
[274]
Wang, N.; Feng, Y.; Zhu, M.; Siu, F-M.; Ng, K.M.; Che, C-M. A novel mechanism of XIAP degradation induced by timosaponin AIII in hepatocellular carcinoma. Biochim. Biophys. Acta, 2013, 1833(12), 2890-2899.
[http://dx.doi.org/10.1016/j.bbamcr.2013.07.018] [PMID: 23906794]
[275]
Law, B.Y.K.; Wang, M.; Ma, D.L.; Al-Mousa, F.; Michelangeli, F.; Cheng, S.H.; Ng, M.H.L.; To, K.F.; Mok, A.Y.F.; Ko, R.Y.Y.; Lam, S.K.; Chen, F.; Che, C-M.; Chiu, P.; Ko, B.C.B. Alisol B, a novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase pump, induces autophagy, endoplasmic reticulum stress, and apoptosis. Mol. Cancer Ther., 2010, 9(3), 718-730.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0700] [PMID: 20197400]
[276]
Bai, L-Y.; Chiu, C-F.; Chiu, S-J.; Chen, Y-W.; Hu, J-L.; Wu, C-Y.; Weng, J-R. Alphitolic acid, an anti-inflammatory triterpene, induces apoptosis and autophagy in oral squamous cell carcinoma cells, in part, through a p53-dependent pathway. J. Funct. Foods, 2015, 18, 368-378.
[http://dx.doi.org/10.1016/j.jff.2015.07.017]
[277]
Zhang, S-Y.; Li, X-B.; Hou, S-G.; Sun, Y.; Shi, Y-R.; Lin, S-S. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. Int. J. Mol. Med., 2016, 38(1), 291-299.
[http://dx.doi.org/10.3892/ijmm.2016.2585] [PMID: 27177023]
[278]
Zhang, T.; Li, J.; Dong, Y.; Zhai, D.; Lai, L.; Dai, F.; Deng, H.; Chen, Y.; Liu, M.; Yi, Z. Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res. Treat., 2012, 135(2), 445-458.
[http://dx.doi.org/10.1007/s10549-012-2175-5] [PMID: 22842972]
[279]
Wang, Z.; Hu, W.; Zhang, J-L.; Wu, X-H.; Zhou, H-J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio, 2012, 2(1), 103-112.
[http://dx.doi.org/10.1016/j.fob.2012.05.002] [PMID: 23650588]
[280]
Du, X-X.; Li, Y-J.; Wu, C-L.; Zhou, J-H.; Han, Y.; Sui, H.; Wei, X-L.; Liu, L.; Huang, P.; Yuan, H-H.; Zhang, T-T.; Zhang, W-J.; Xie, R.; Lang, X-H.; Jia, D-X.; Bai, Y-X. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed. Pharmacother., 2013, 67(5), 417-424.
[http://dx.doi.org/10.1016/j.biopha.2013.01.013] [PMID: 23582790]
[281]
Williams, R.T.; Yu, A.L.; Diccianni, M.B.; Theodorakis, E.A.; Batova, A. Renal cancer-selective Englerin A induces multiple mechanisms of cell death and autophagy. J. Exp. Clin. Cancer Res., 2013, 32(1), 57.
[http://dx.doi.org/10.1186/1756-9966-32-57] [PMID: 23958461]
[282]
Tang, Z-H.; Li, T.; Chang, L-L.; Zhu, H.; Tong, Y-G.; Chen, X-P.; Wang, Y-T.; Lu, J-J. Glycyrrhetinic Acid triggers a protective autophagy by activation of extracellular regulated protein kinases in hepatocellular carcinoma cells. J. Agric. Food Chem., 2014, 62(49), 11910-11916.
[http://dx.doi.org/10.1021/jf503968k] [PMID: 25403108]
[283]
Liu, J.; Zheng, L.; Zhong, J.; Wu, N.; Liu, G.; Lin, X. Oleanolic acid induces protective autophagy in cancer cells through the JNK and mTOR pathways. Oncol. Rep., 2014, 32(2), 567-572.
[http://dx.doi.org/10.3892/or.2014.3239] [PMID: 24912497]
[284]
Cevatemre, B.; Erkısa, M.; Aztopal, N.; Karakas, D.; Alper, P.; Tsimplouli, C.; Sereti, E.; Dimas, K.; Armutak, E.I.I.; Gurevin, E.G.; Uvez, A.; Mori, M.; Berardozzi, S.; Ingallina, C.; D’Acquarica, I.; Botta, B.; Ozpolat, B.; Ulukaya, E. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol. Res., 2018, 129, 500-514.
[http://dx.doi.org/10.1016/j.phrs.2017.11.027] [PMID: 29197639]
[285]
Feng, Z-L.; Zhang, L-L.; Zheng, Y-D.; Liu, Q-Y.; Liu, J-X.; Feng, L.; Huang, L.; Zhang, Q-W.; Lu, J-J.; Lin, L-G. Norditerpenoids and dinorditerpenoids from the seeds of Podocarpus nagi as cytotoxic agents and autophagy inducers. J. Nat. Prod., 2017, 80(7), 2110-2117.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00347] [PMID: 28719204]
[286]
Chan, M-L.; Liang, J-W.; Hsu, L-C.; Chang, W-L.; Lee, S-S.; Guh, J-H. Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. N-S. Arch. Pharmacol., 2015, 388(11), 1223-1236.
[287]
Chu, Y-L.; Ho, C-T.; Chung, J-G.; Rajasekaran, R.; Sheen, L-Y. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells. J. Agric. Food Chem., 2012, 60(34), 8363-8371.
[http://dx.doi.org/10.1021/jf301298y] [PMID: 22860996]
[288]
Chiu, H-W.; Ho, Y-S.; Wang, Y-J. Arsenic trioxide induces autophagy and apoptosis in human glioma cells in vitro and in vivo through downregulation of survivin. J. Mol. Med. (Berl.), 2011, 89(9), 927-941.
[http://dx.doi.org/10.1007/s00109-011-0763-1] [PMID: 21594580]
[289]
Yeganeh, B.; Ghavami, S.; Kroeker, A.L.; Mahood, T.H.; Stelmack, G.L.; Klonisch, T.; Coombs, K.M.; Halayko, A.J. Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(3), L270-L286.
[http://dx.doi.org/10.1152/ajplung.00011.2014] [PMID: 25361566]
[290]
Zhang, L.; Wang, H.; Zhu, J.; Xu, J.; Ding, K. Mollugin induces tumor cell apoptosis and autophagy via the PI3K/AKT/mTOR/p70S6K and ERK signaling pathways. Biochem. Biophys. Res. Commun., 2014, 450(1), 247-254.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.101] [PMID: 24887566]
[291]
Lao, Y.; Wan, G.; Liu, Z.; Wang, X.; Ruan, P.; Xu, W.; Xu, D.; Xie, W.; Zhang, Y.; Xu, H.; Xu, N. The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy, 2014, 10(5), 736-749.
[http://dx.doi.org/10.4161/auto.28034] [PMID: 24642486]
[292]
Russo, G.L.; Russo, M.; Castellano, I.; Napolitano, A.; Palumbo, A. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line. Mar. Drugs, 2014, 12(7), 4069-4085.
[http://dx.doi.org/10.3390/md12074069] [PMID: 25003791]
[293]
Bui-Xuan, N.H.; Tang, P.M.K.; Wong, C-K.; Fung, K-P. Photo-activated pheophorbide-a, an active component of Scutellaria barbata, enhances apoptosis via the suppression of ERK-mediated autophagy in the estrogen receptor-negative human breast adenocarcinoma cells MDA-MB-231. J. Ethnopharmacol., 2010, 131(1), 95-103.
[http://dx.doi.org/10.1016/j.jep.2010.06.007] [PMID: 20558270]
[294]
Li, Y-C.; He, S-M.; He, Z-X.; Li, M.; Yang, Y.; Pang, J-X.; Zhang, X.; Chow, K.; Zhou, Q.; Duan, W.; Zhou, Z.W.; Yang, T.; Huang, G.H.; Liu, A.; Qiu, J.X.; Liu, J.P.; Zhou, S.F. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. Cancer Lett., 2014, 344(2), 239-259.
[http://dx.doi.org/10.1016/j.canlet.2013.11.001] [PMID: 24280585]
[295]
Liu, Z.; Li, X.; Simoneau, A.R.; Jafari, M.; Zi, X. Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol. Carcinog., 2012, 51(3), 257-267.
[http://dx.doi.org/10.1002/mc.20780] [PMID: 21520297]
[296]
Han, X.; Liu, J.X.; Li, X.Z. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes. Acta Pharmacol. Sin., 2011, 32(1), 38-44.
[http://dx.doi.org/10.1038/aps.2010.182] [PMID: 21113177]
[297]
Shi, S.; Cao, H. Shikonin promotes autophagy in BXPC-3 human pancreatic cancer cells through the PI3K/Akt signaling pathway. Oncol. Lett., 2014, 8(3), 1087-1089.
[http://dx.doi.org/10.3892/ol.2014.2293] [PMID: 25120662]
[298]
Chen, W-L.; Pan, L.; Kinghorn, A.D.; Swanson, S.M.; Burdette, J.E. Silvestrol induces early autophagy and apoptosis in human melanoma cells. BMC Cancer, 2016, 16, 17.
[http://dx.doi.org/10.1186/s12885-015-1988-0] [PMID: 26762417]
[299]
Chu, S-C.; Hsieh, Y-S.; Yu, C-C.; Lai, Y-Y.; Chen, P-N. Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One, 2014, 9(7)e101579
[http://dx.doi.org/10.1371/journal.pone.0101579] [PMID: 25000169]
[300]
Kundu, S.; Kim, T-H.; Yoon, J-H.; Shin, H-S.; Lee, J.; Jung, J-H.; Kim, H-S. Viriditoxin regulates apoptosis and autophagy via mitotic catastrophe and microtubule formation in human prostate cancer cells. Int. J. Oncol., 2014, 45(6), 2331-2340.
[http://dx.doi.org/10.3892/ijo.2014.2659] [PMID: 25231051]
[301]
Eom, J-M.; Seo, M-J.; Baek, J-Y.; Chu, H.; Han, S-H.; Min, T-S.; Cho, C-S.; Yun, C-H. Alpha-eleostearic acid induces autophagy-dependent cell death through targeting AKT/mTOR and ERK1/2 signal together with the generation of reactive oxygen species. Biochem. Biophys. Res. Commun., 2010, 391(1), 903-908.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.161] [PMID: 19951696]
[302]
Sunitha, M.C.; Dhanyakrishnan, R.; PrakashKumar, B.; Nevin, K.G. p-Coumaric acid mediated protection of H9c2 cells from Doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy. Biomed. Pharmacother., 2018, 102, 823-832.
[http://dx.doi.org/10.1016/j.biopha.2018.03.089] [PMID: 29605770]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy