Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Targeting Integrase Enzyme: A Therapeutic Approach to Combat HIV Resistance

Author(s): Daipule Komal, Joshi Khushboo, Sethi Aaftaab, Soukya Lakshmi and Alvala Mallika*

Volume 20, Issue 3, 2020

Page: [219 - 238] Pages: 20

DOI: 10.2174/1389557519666191015124932

Price: $65

conference banner
Abstract

Global Human Immunodeficiency Virus (HIV) statistics by the World Health Organization (WHO) for the year 2017 was estimated to be 36.9 (31.1-43.9) million. Antiviral drug resistance poses a serious threat to public health and requires immediate action. Retroviral Integrase (IN), a component enzyme in the retroviral pre-integration complex (PIC) enables a retrovirus to incorporate its genetic material into the host DNA. Development of resistance by the current integrases invites immediate attention of the drug discovery community for the development of new second-generation Integrase Strand Transfer Inhibitors (INSTIs). It will exhibit greater efficacy against Elvitegravir (EVG) and Raltegravir (RAL) resistant strains of HIV. This review focuses on the mechanism, importance of integrase structure, function and current research on small molecule inhibitors of integrase to overcome drug resistance. The molecular mechanism of retroviral integrase inhibition and the evolution of resistance are also explored.

Keywords: HIV resistance, Targeting integrase enzyme, drug resistance for integrase, development, mechanism of integrase, novel inhibitors.

Graphical Abstract
[1]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[2]
Ribeiro, R.M.; Qin, L.; Chavez, L.L.; Li, D.; Self, S.G.; Perelson, A.S. Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection. J. Virol., 2010, 84(12), 6096-6102.
[http://dx.doi.org/10.1128/JVI.00127-10] [PMID: 20357090]
[3]
Homepage, Unaids.Org. http://www.unaids.org
[4]
Boutayeb, A.; Boutayeb, S. The burden of non communicable diseases in developing countries. Int. J. Equity Health, 2005, 4(1), 2.
[http://dx.doi.org/10.1186/1475-9276-4-2] [PMID: 15651987]
[5]
May, M.T.; Ingle, S.M. Life expectancy of HIV-positive adults: a review. Sex. Health, 2011, 8(4), 526-533.
[http://dx.doi.org/10.1071/SH11046] [PMID: 22127039]
[6]
Goldgur, Y.; Craigie, R.; Cohen, G.H.; Fujiwara, T.; Yoshinaga, T.; Fujishita, T.; Sugimoto, H.; Endo, T.; Murai, H.; Davies, D.R. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13040-13043.
[http://dx.doi.org/10.1073/pnas.96.23.13040] [PMID: 10557269]
[7]
Huff, J.R. HIV protease: a novel chemotherapeutic target for AIDS. J. Med. Chem., 1991, 34(8), 2305-2314.
[http://dx.doi.org/10.1021/jm00112a001] [PMID: 1875332]
[8]
Wainberg, M.A. HIV-1 subtype distribution and the problem of drug resistance. AIDS, 2004, 18(Suppl. 3), S63-S68.
[http://dx.doi.org/10.1097/00002030-200406003-00012] [PMID: 15322487]
[9]
Tözsér, J. HIV inhibitors: problems and reality. Ann. N. Y. Acad. Sci., 2001, 946(1), 145-159.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03909.x] [PMID: 11762983]
[10]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[http://dx.doi.org/10.1016/j.jcv.2004.02.009] [PMID: 15125867]
[11]
Shen, L.; Siliciano, R.F. Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J. Allergy Clin. Immunol., 2008, 122(1), 22-28.
[http://dx.doi.org/10.1016/j.jaci.2008.05.033] [PMID: 18602567]
[12]
Bower, M.; Fox, P.; Fife, K.; Gill, J.; Nelson, M.; Gazzard, B. Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi’s sarcoma. AIDS, 1999, 13(15), 2105-2111.
[http://dx.doi.org/10.1097/00002030-199910220-00014] [PMID: 10546864]
[13]
Farnet, C.M.; Wang, B.; Lipford, J.R.; Bushman, F.D. Differential inhibition of HIV-1 preintegration complexes and purified integrase protein by small molecules. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9742-9747.
[http://dx.doi.org/10.1073/pnas.93.18.9742] [PMID: 8790401]
[14]
Engelman, A.; Cherepanov, P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat. Rev. Microbiol., 2012, 10(4), 279-290.
[http://dx.doi.org/10.1038/nrmicro2747] [PMID: 22421880]
[15]
van Gent, D.C.; Vink, C.; Groeneger, A.A.; Plasterk, R.H. Complementation between HIV integrase proteins mutated in different domains. EMBO J., 1993, 12(8), 3261-3267.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05995.x] [PMID: 8344263]
[16]
Maignan, S.; Guilloteau, J-P.; Zhou-Liu, Q.; Clément-Mella, C.; Mikol, V. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol., 1998, 282(2), 359-368.
[http://dx.doi.org/10.1006/jmbi.1998.2002] [PMID: 9735293]
[17]
Craigie, R. HIV integrase, a brief overview from chemistry to therapeutics. J. Biol. Chem., 2001, 276(26), 23213-23216.
[http://dx.doi.org/10.1074/jbc.R100027200] [PMID: 11346660]
[18]
Delelis, O.; Malet, I.; Na, L.; Tchertanov, L.; Calvez, V.; Marcelin, A-G.; Subra, F.; Deprez, E.; Mouscadet, J-F. The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation. Nucleic Acids Res., 2009, 37(4), 1193-1201.
[http://dx.doi.org/10.1093/nar/gkn1050] [PMID: 19129221]
[19]
Andrake, M.D.; Skalka, A.M. Retroviral integrase, putting the pieces together. J. Biol. Chem., 1996, 271(33), 19633-19636.
[http://dx.doi.org/10.1074/jbc.271.33.19633] [PMID: 8702660]
[20]
Haren, L.; Ton-Hoang, B.; Chandler, M.; Integrating, D.N.A. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol., 1999, 53(1), 245-281.
[http://dx.doi.org/10.1146/annurev.micro.53.1.245] [PMID: 10547692]
[21]
Cherepanov, P.; Maertens, G.; Proost, P.; Devreese, B.; Van Beeumen, J.; Engelborghs, Y.; De Clercq, E.; Debyser, Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem., 2003, 278(1), 372-381.
[http://dx.doi.org/10.1074/jbc.M209278200] [PMID: 12407101]
[22]
Hare, S.; Vos, A.M.; Clayton, R.F.; Thuring, J.W.; Cummings, M.D.; Cherepanov, P. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20057-20062.
[http://dx.doi.org/10.1073/pnas.1010246107] [PMID: 21030679]
[23]
Massiah, M.A.; Worthylake, D.; Christensen, A.M.; Sundquist, W.I.; Hill, C.P.; Summers, M.F. Comparison of the NMR and X-ray structures of the HIV-1 matrix protein: Evidence for conformational changes during viral assembly. Protein Sci., 1996, 5(12), 2391-2398.
[http://dx.doi.org/10.1002/pro.5560051202] [PMID: 8976548]
[24]
Katz, R.A.; Skalka, A.M. The retroviral enzymes. Annu. Rev. Biochem., 1994, 63(1), 133-173.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.001025] [PMID: 7526778]
[25]
Sanchez, T.W. Discovery of new HIV-1 integrase inhibitors; University of Southern California, 2007.
[26]
Sgourakis, N.G.; Lange, O.F.; DiMaio, F.; André, I.; Fitzkee, N.C.; Rossi, P.; Montelione, G.T.; Bax, A.; Baker, D. Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. J. Am. Chem. Soc., 2011, 133(16), 6288-6298.
[http://dx.doi.org/10.1021/ja111318m] [PMID: 21466200]
[27]
Sharma, H.; Cheng, X.; Buolamwini, J.K. Homology model-guided 3D-QSAR studies of HIV-1 integrase inhibitors. J. Chem. Inf. Model., 2012, 52(2), 515-544.
[http://dx.doi.org/10.1021/ci200485a] [PMID: 22256860]
[28]
Bushman, F.D.; Engelman, A.; Palmer, I.; Wingfield, P.; Craigie, R. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. Natl. Acad. Sci. USA, 1993, 90(8), 3428-3432.
[http://dx.doi.org/10.1073/pnas.90.8.3428] [PMID: 8386373]
[29]
Ceccherini-Silberstein, F.; Malet, I.; D’Arrigo, R.; Antinori, A.; Marcelin, A-G.; Perno, C-F. Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev., 2009, 11(1), 17-29.
[PMID: 19290031]
[30]
Mayer, B.J. SH3 domains: complexity in moderation. J. Cell Sci., 2001, 114(Pt 7), 1253-1263.
[PMID: 11256992]
[31]
Craigie, R. The molecular biology of HIV integrase. Future Virol., 2012, 7(7), 679-686.
[http://dx.doi.org/10.2217/fvl.12.56] [PMID: 23024700]
[32]
Chhipa, N.M.; Patel, K.M.; Ganchi, S.P.; Sen, D.J. Chicoric acid and its analogues as an anti-HIV integrase agents. World J. Pharm. Pharm. Sci., 2014, 3(2), 2321-2335.
[33]
Asante-Appiah, E.; Skalka, A.M. Molecular mechanisms in retrovirus DNA integration. Antiviral Res., 1997, 36(3), 139-156.
[http://dx.doi.org/10.1016/S0166-3542(97)00046-6] [PMID: 9477115]
[34]
Athe, M.N. Tsibris.; Hirsch, M. S., Antiretroviral Therapy for Human Immunodeficiency Virus Infection. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases., 2015, 1, 1622-1641.
[35]
Métifiot, M.; Marchand, C.; Maddali, K.; Pommier, Y. Resistance to integrase inhibitors. Viruses, 2010, 2(7), 1347-1366.
[http://dx.doi.org/10.3390/v2071347] [PMID: 20706558]
[36]
Seki, T.; Kobayashi, M.; Wakasa-Morimoto, C.; Yoshinaga, T.; Sato, A.; Fujiwara, T.; Underwood, M.; Garvey, E.; Johns, B. In S/GSK1349572 is a potent next generation HIV integrase inhibitor and demonstrates a superior resistance profile substantiated with 60 integrase mutant molecular clones 17th Conference on Retroviruses and Opportunistic Infections, 2010.
[37]
Goethals, O.; Vos, A.; Van Ginderen, M.; Geluykens, P.; Smits, V.; Schols, D.; Hertogs, K.; Clayton, R. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology, 2010, 402(2), 338-346.
[http://dx.doi.org/10.1016/j.virol.2010.03.034] [PMID: 20421122]
[38]
Kobayashi, M.; Nakahara, K.; Seki, T.; Miki, S.; Kawauchi, S.; Suyama, A.; Wakasa-Morimoto, C.; Kodama, M.; Endoh, T.; Oosugi, E.; Matsushita, Y.; Murai, H.; Fujishita, T.; Yoshinaga, T.; Garvey, E.; Foster, S.; Underwood, M.; Johns, B.; Sato, A.; Fujiwara, T. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Res., 2008, 80(2), 213-222.
[http://dx.doi.org/10.1016/j.antiviral.2008.06.012] [PMID: 18625269]
[39]
Blanco, J.L.; Varghese, V.; Rhee, S.Y.; Gatell, J.M.; Shafer, R.W. HIV-1 integrase inhibitor resistance and its clinical implications. J. Infect. Dis., 2011, 203(9), 1204-1214.
[http://dx.doi.org/10.1093/infdis/jir025] [PMID: 21459813]
[40]
Shimura, K.; Kodama, E.; Sakagami, Y.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Watanabe, Y.; Ohata, Y.; Doi, S.; Sato, M.; Kano, M.; Ikeda, S.; Matsuoka, M. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J. Virol., 2008, 82(2), 764-774.
[http://dx.doi.org/10.1128/JVI.01534-07] [PMID: 17977962]
[41]
Goethals, O.; Clayton, R.; Van Ginderen, M.; Vereycken, I.; Wagemans, E.; Geluykens, P.; Dockx, K.; Strijbos, R.; Smits, V.; Vos, A.; Meersseman, G.; Jochmans, D.; Vermeire, K.; Schols, D.; Hallenberger, S.; Hertogs, K. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J. Virol., 2008, 82(21), 10366-10374.
[http://dx.doi.org/10.1128/JVI.00470-08] [PMID: 18715920]
[42]
McColl, D.J.; Fransen, S.; Gupta, S.; Parkin, N.; Margot, N.; Ledford, R.; Chen, J.; Chuck, S.; Cheng, A.K.; Miller, M.D. Resistance and cross-resistance to first generation integrase inhibitors: insights from a phase II study of elvitegravir (GS-9137). Antivir. Ther., 2007, 12(5), S11.
[43]
Eron, J.; Durant, J.; Poizot-Martin, I.; Reynes, J.; Soriano, V.; Kumar, P. 2010.
[44]
Canducci, F.; Ceresola, E.R.; Boeri, E.; Spagnuolo, V.; Cossarini, F.; Castagna, A.; Lazzarin, A.; Clementi, M. Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J. Infect. Dis., 2011, 204(11), 1811-1815.
[http://dx.doi.org/10.1093/infdis/jir636] [PMID: 21984737]
[45]
Hightower, K.E.; Wang, R.; Deanda, F.; Johns, B.A.; Weaver, K.; Shen, Y.; Tomberlin, G.H.; Carter, H.L., III; Broderick, T.; Sigethy, S.; Seki, T.; Kobayashi, M.; Underwood, M.R. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob. Agents Chemother., 2011, 55(10), 4552-4559.
[http://dx.doi.org/10.1128/AAC.00157-11] [PMID: 21807982]
[46]
Yoshinaga, T.; Kobayashi, M.; Seki, T.; Miki, S.; Wakasa-Morimoto, C.; Suyama-Kagitani, A.; Kawauchi-Miki, S.; Taishi, T.; Kawasuji, T.; Johns, B.A.; Underwood, M.R.; Garvey, E.P.; Sato, A.; Fujiwara, T. Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob. Agents Chemother., 2015, 59(1), 397-406.
[http://dx.doi.org/10.1128/AAC.03909-14] [PMID: 25367908]
[47]
R. F.. MEAD, J. R.; FEORINO, P. M., Insights into HIV chemotherapy. AIDS Res. Hum. Retroviruses, 1992, 8(6), 963-990.
[http://dx.doi.org/10.1089/aid.1992.8.963]
[48]
Dolin, R. Human studies in the development of human immunodeficiency virus vaccines. J. Infect. Dis., 1995, 172(5), 1175-1183.
[http://dx.doi.org/10.1093/infdis/172.5.1175] [PMID: 7594651]
[49]
Jiang, Z.; You, Q.; Zhang, X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur. J. Med. Chem., 2019, 165, 172-197.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.018] [PMID: 30684796]
[50]
Zuo, X.; Huo, Z.; Kang, D.; Wu, G.; Zhou, Z.; Liu, X.; Zhan, P. Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014-2017). Expert opinion on therapeutic patents, 2018, 28(4), 299-316.
[51]
Naidu, B.N.; Walker, M.A.; Sorenson, M.E.; Ueda, Y.; Matiskella, J.D.; Connolly, T.P.; Dicker, I.B.; Lin, Z.; Bollini, S.; Terry, B.J.; Higley, H.; Zheng, M.; Parker, D.D.; Wu, D.; Adams, S.; Krystal, M.R.; Meanwell, N.A. The discovery and preclinical evaluation of BMS-707035, a potent HIV-1 integrase strand transfer inhibitor. Bioorg. Med. Chem. Lett., 2018, 28(12), 2124-2130.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.027] [PMID: 29779976]
[52]
Bénard, C.; Zouhiri, F.; Normand-Bayle, M.; Danet, M.; Desmaële, D.; Leh, H.; Mouscadet, J-F.; Mbemba, G.; Thomas, C-M.; Bonnenfant, S.; Le Bret, M.; d’Angelo, J. Linker-modified quinoline derivatives targeting HIV-1 integrase: synthesis and biological activity. Bioorg. Med. Chem. Lett., 2004, 14(10), 2473-2476.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.005] [PMID: 15109635]
[53]
Zouhiri, F.; Danet, M.; Bénard, C.; Normand-Bayle, M.; Mouscadet, J-F.; Leh, H.; Thomas, C.M.; Mbemba, G.; d’Angelo, J.; Desmaele, D. HIV-1 replication inhibitors of the styrylquinoline class: introduction of an additional carboxyl group at the C-5 position of the quinoline. Tetrahedron Lett., 2005, 46(13), 2201-2205.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.033]
[54]
Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito, Y.; Kawakami, H.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Ikeda, S.; Kodama, E.; Matsuoka, M.; Shinkai, H. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J. Med. Chem., 2006, 49(5), 1506-1508.
[http://dx.doi.org/10.1021/jm0600139] [PMID: 16509568]
[55]
Sato, M.; Kawakami, H.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito, Y.; Matsuzaki, Y.; Yamataka, K.; Ikeda, S.; Shinkai, H. Quinolone carboxylic acids as a novel monoketo acid class of human immunodeficiency virus type 1 integrase inhibitors. J. Med. Chem., 2009, 52(15), 4869-4882.
[http://dx.doi.org/10.1021/jm900460z] [PMID: 19719237]
[56]
McGovern, S.L.; Caselli, E.; Grigorieff, N.; Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem., 2002, 45(8), 1712-1722.
[http://dx.doi.org/10.1021/jm010533y] [PMID: 11931626]
[57]
Sari, O.; Roy, V.; Métifiot, M.; Marchand, C.; Pommier, Y.; Bourg, S.; Bonnet, P.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of dihydropyrimidine α,γ-diketobutanoic acid derivatives targeting HIV integrase. Eur. J. Med. Chem., 2015, 104, 127-138.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.015] [PMID: 26451771]
[58]
Métifiot, M.; Maddali, K.; Naumova, A.; Zhang, X.; Marchand, C.; Pommier, Y. Biochemical and pharmacological analyses of HIV-1 integrase flexible loop mutants resistant to raltegravir. Biochemistry, 2010, 49(17), 3715-3722.
[http://dx.doi.org/10.1021/bi100130f] [PMID: 20334344]
[59]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[60]
Donghi, M.; Kinzel, O.D.; Summa, V. 3-Hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxylates--a new class of HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(7), 1930-1934.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.055] [PMID: 19269170]
[61]
Zhuang, L.; Wai, J.S.; Embrey, M.W.; Fisher, T.E.; Egbertson, M.S.; Payne, L.S.; Guare, J.P., Jr; Vacca, J.P.; Hazuda, D.J.; Felock, P.J.; Wolfe, A.L.; Stillmock, K.A.; Witmer, M.V.; Moyer, G.; Schleif, W.A.; Gabryelski, L.J.; Leonard, Y.M.; Lynch, J.J., Jr; Michelson, S.R.; Young, S.D. Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J. Med. Chem., 2003, 46(4), 453-456.
[http://dx.doi.org/10.1021/jm025553u] [PMID: 12570367]
[62]
Merkel, G.; Andrake, M.D.; Ramcharan, J.; Skalka, A.M. Oligonucleotide-based assays for integrase activity. Methods, 2009, 47(4), 243-248.
[http://dx.doi.org/10.1016/j.ymeth.2008.10.024] [PMID: 19010419]
[63]
Tang, J.; Maddali, K.; Dreis, C.D.; Sham, Y.Y.; Vince, R.; Pommier, Y.; Wang, Z. 6-Benzoyl-3-hydroxypyrimidine-2,4-diones as dual inhibitors of HIV reverse transcriptase and integrase. Bioorg. Med. Chem. Lett., 2011, 21(8), 2400-2402.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.069] [PMID: 21392991]
[64]
de Campos, L.J.; de Melo, E.B. A QSAR study of integrase strand transfer inhibitors based on a large set of pyrimidine, pyrimidone, and pyridopyrazine carboxamide derivatives. J. Mol. Struct., 2017, 1141, 252-260.
[http://dx.doi.org/10.1016/j.molstruc.2017.03.103]
[65]
Wu, B.; Tang, J.; Wilson, D.J.; Huber, A.D.; Casey, M.C.; Ji, J.; Kankanala, J.; Xie, J.; Sarafianos, S.G.; Wang, Z. 3-Hydroxypyrimidine-2, 4-dione-5-N-benzylcarboxamides potently inhibit HIV-1 integrase and RNase H. J. Med. Chem., 2016, 59(13), 6136-6148.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00040] [PMID: 27283261]
[66]
Dayam, R.; Al-Mawsawi, L.Q.; Zawahir, Z.; Witvrouw, M.; Debyser, Z.; Neamati, N. Quinolone 3-carboxylic acid pharmacophore: design of second generation HIV-1 integrase inhibitors. J. Med. Chem., 2008, 51(5), 1136-1144.
[http://dx.doi.org/10.1021/jm070609b] [PMID: 18281931]
[67]
Hadi, V.; Koh, Y-H.; Sanchez, T.W.; Barrios, D.; Neamati, N.; Jung, K.W. Development of the next generation of HIV-1 integrase inhibitors: pyrazolone as a novel inhibitor scaffold. Bioorg. Med. Chem. Lett., 2010, 20(22), 6854-6857.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.057] [PMID: 20864343]
[68]
Gupta, S.P.; Nagappa, A.N. Design and development of integrase inhibitors as anti-HIV agents. Curr. Med. Chem., 2003, 10(18), 1779-1794.
[http://dx.doi.org/10.2174/0929867033456972] [PMID: 12871104]
[69]
Ren, Q-C.; Gao, C.; Xu, Z.; Feng, L-S.; Liu, M-L.; Wu, X.; Zhao, F. Bis-coumarin derivatives and their biological activities. Curr. Top. Med. Chem., 2018, 18(2), 101-113.
[http://dx.doi.org/10.2174/1568026618666180221114515] [PMID: 29473509]
[70]
Olomola, T.O.; Mosebi, S.; Klein, R.; Traut-Johnstone, T.; Coates, J.; Hewer, R.; Kaye, P.T. Novel furocoumarins as potential HIV-1 integrase inhibitors. Bioorg. Chem., 2014, 57, 1-4.
[http://dx.doi.org/10.1016/j.bioorg.2014.07.008] [PMID: 25159595]
[71]
Jain, S.V.; Sonawane, L.V.; Patil, R.R.; Bari, S.B. Pharmacophore modeling of some novel indole β-diketo acid and coumarin-based derivatives as HIV integrase inhibitors. Med. Chem. Res., 2012, 21(2), 165-173.
[http://dx.doi.org/10.1007/s00044-010-9520-1]
[72]
Chiang, C-C.; Mouscadet, J-F.; Tsai, H-J.; Liu, C-T.; Hsu, L-Y. Synthesis and HIV-1 integrase inhibition of novel bis- or tetra-coumarin analogues. Chem. Pharm. Bull. (Tokyo), 2007, 55(12), 1740-1743.
[http://dx.doi.org/10.1248/cpb.55.1740] [PMID: 18057750]
[73]
Li, Y.; Xuan, S.; Feng, Y.; Yan, A. Targeting HIV-1 integrase with strand transfer inhibitors. Drug Discov. Today, 2015, 20(4), 435-449.
[http://dx.doi.org/10.1016/j.drudis.2014.12.001] [PMID: 25486307]
[74]
Verschueren, W.G.; Dierynck, I.; Amssoms, K.I.; Hu, L.; Boonants, P.M.; Pille, G.M.; Daeyaert, F.F.; Hertogs, K.; Surleraux, D.L.; Wigerinck, P.B. Design and optimization of tricyclic phtalimide analogues as novel inhibitors of HIV-1 integrase. J. Med. Chem., 2005, 48(6), 1930-1940.
[http://dx.doi.org/10.1021/jm049559q] [PMID: 15771437]
[75]
Metobo, S.E.; Jin, H.; Tsiang, M.; Kim, C.U. Design, synthesis, and biological evaluation of novel tricyclic HIV-1 integrase inhibitors by modification of its pyridine ring. Bioorg. Med. Chem. Lett., 2006, 16(15), 3985-3988.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.018] [PMID: 16723226]
[76]
Fardis, M.; Jin, H.; Jabri, S.; Cai, R.Z.; Mish, M.; Tsiang, M.; Kim, C.U. Effect of substitution on novel tricyclic HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(15), 4031-4035.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.008] [PMID: 16716589]
[77]
Jin, H.; Cai, R.Z.; Schacherer, L.; Jabri, S.; Tsiang, M.; Fardis, M.; Chen, X.; Chen, J.M.; Kim, C.U. Design, synthesis, and SAR studies of novel and highly active tri-cyclic HIV integrase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(15), 3989-3992.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.016] [PMID: 16723225]
[78]
Melamed, J.Y.; Egbertson, M.S.; Varga, S.; Vacca, J.P.; Moyer, G.; Gabryelski, L.; Felock, P.J.; Stillmock, K.A.; Witmer, M.V.; Schleif, W.; Hazuda, D.J.; Leonard, Y.; Jin, L.; Ellis, J.D.; Young, S.D. Synthesis of 5-(1-H or 1-alkyl-5-oxopyrrolidin-3-yl)-8-hydroxy-[1,6]-naphthyridine-7-carboxamide inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett., 2008, 18(19), 5307-5310.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.038] [PMID: 18774711]
[79]
Hazuda, D.J.; Anthony, N.J.; Gomez, R.P.; Jolly, S.M.; Wai, J.S.; Zhuang, L.; Fisher, T.E.; Embrey, M.; Guare, J.P., Jr; Egbertson, M.S.; Vacca, J.P.; Huff, J.R.; Felock, P.J.; Witmer, M.V.; Stillmock, K.A.; Danovich, R.; Grobler, J.; Miller, M.D.; Espeseth, A.S.; Jin, L.; Chen, I.W.; Lin, J.H.; Kassahun, K.; Ellis, J.D.; Wong, B.K.; Xu, W.; Pearson, P.G.; Schleif, W.A.; Cortese, R.; Emini, E.; Summa, V.; Holloway, M.K.; Young, S.D. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc. Natl. Acad. Sci. USA, 2004, 101(31), 11233-11238.
[http://dx.doi.org/10.1073/pnas.0402357101] [PMID: 15277684]
[80]
Embrey, M.W.; Wai, J.S.; Funk, T.W.; Homnick, C.F.; Perlow, D.S.; Young, S.D.; Vacca, J.P.; Hazuda, D.J.; Felock, P.J.; Stillmock, K.A.; Witmer, M.V.; Moyer, G.; Schleif, W.A.; Gabryelski, L.J.; Jin, L.; Chen, I.W.; Ellis, J.D.; Wong, B.K.; Lin, J.H.; Leonard, Y.M.; Tsou, N.N.; Zhuang, L. A series of 5-(5,6)-dihydrouracil substituted 8-hydroxy-[1,6]naphthyridine-7-carboxylic acid 4-fluorobenzylamide inhibitors of HIV-1 integrase and viral replication in cells. Bioorg. Med. Chem. Lett., 2005, 15(20), 4550-4554.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.105] [PMID: 16102965]
[81]
Guare, J.P.; Wai, J.S.; Gomez, R.P.; Anthony, N.J.; Jolly, S.M.; Cortes, A.R.; Vacca, J.P.; Felock, P.J.; Stillmock, K.A.; Schleif, W.A.; Moyer, G.; Gabryelski, L.J.; Jin, L.; Chen, I.W.; Hazuda, D.J.; Young, S.D. A series of 5-aminosubstituted 4-fluorobenzyl-8-hydroxy-[1,6]naphthyridine-7-carboxamide HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(11), 2900-2904.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.003] [PMID: 16554152]
[82]
Boros, E.E.; Edwards, C.E.; Foster, S.A.; Fuji, M.; Fujiwara, T.; Garvey, E.P.; Golden, P.L.; Hazen, R.J.; Jeffrey, J.L.; Johns, B.A.; Kawasuji, T.; Kiyama, R.; Koble, C.S.; Kurose, N.; Miller, W.H.; Mote, A.L.; Murai, H.; Sato, A.; Thompson, J.B.; Woodward, M.C.; Yoshinaga, T. Synthesis and antiviral activity of 7-benzyl-4-hydroxy-1,5-naphthyridin-2(1H)-one HIV integrase inhibitors. J. Med. Chem., 2009, 52(9), 2754-2761.
[http://dx.doi.org/10.1021/jm801404b] [PMID: 19374386]
[83]
Johns, B.A.; Weatherhead, J.G.; Allen, S.H.; Thompson, J.B.; Garvey, E.P.; Foster, S.A.; Jeffrey, J.L.; Miller, W.H. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: Establishing the pharmacophore. Bioorg. Med. Chem. Lett., 2009, 19(6), 1802-1806.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.090] [PMID: 19217781]
[84]
Saag, M.S.; Holodniy, M.; Kuritzkes, D.R.; O’Brien, W.A.; Coombs, R.; Poscher, M.E.; Jacobsen, D.M.; Shaw, G.M.; Richman, D.D.; Volberding, P.A. HIV viral load markers in clinical practice. Nat. Med., 1996, 2(6), 625-629.
[http://dx.doi.org/10.1038/nm0696-625] [PMID: 8640545]
[85]
Lowy, F.D. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest., 2003, 111(9), 1265-1273.
[http://dx.doi.org/10.1172/JCI18535] [PMID: 12727914]
[86]
Zhao, X.Z.; Maddali, K.; Metifiot, M.; Smith, S.J.; Vu, B.C.; Marchand, C.; Hughes, S.H.; Pommier, Y.; Burke, T.R., Jr Development of tricyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(10), 2986-2990.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.047] [PMID: 21493066]
[87]
Zhao, X.Z.; Maddali, K.; Metifiot, M.; Smith, S.J.; Vu, B.C.; Marchand, C.; Hughes, S.H.; Pommier, Y.; Burke, T.R., Jr Bicyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Chem. Biol. Drug Des., 2012, 79(2), 157-165.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01270.x] [PMID: 22107736]
[88]
Singh, R.; Yadav, P.; Tandon, V. Novel Dioxolan Derivatives of Indole as HIV‐1 Integrase Strand Transfer Inhibitors Active Against RAL Resistant Mutant Virus. ChemistrySelect, 2016, 1(17), 5471-5478.
[http://dx.doi.org/10.1002/slct.201601024]
[89]
Yang, F.; Zheng, G.; Fu, T.; Li, X.; Tu, G.; Li, Y.H.; Yao, X.; Xue, W.; Zhu, F. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H. Phys. Chem. Chem. Phys., 2018, 20(37), 23873-23884.
[http://dx.doi.org/10.1039/C8CP01843J] [PMID: 29947629]
[90]
Kawasuji, T.; Yoshinaga, T.; Sato, A.; Yodo, M.; Fujiwara, T.; Kiyama, R. A platform for designing HIV integrase inhibitors. Part 1: 2-hydroxy-3-heteroaryl acrylic acid derivatives as novel HIV integrase inhibitor and modeling of hydrophilic and hydrophobic pharmacophores. Bioorg. Med. Chem., 2006, 14(24), 8430-8445.
[http://dx.doi.org/10.1016/j.bmc.2006.08.044] [PMID: 17010623]
[91]
Alves, C.N.; Martí, S.; Castillo, R.; Andrés, J.; Moliner, V.; Tuñón, I.; Silla, E. A quantum mechanic/molecular mechanic study of the wild-type and N155S mutant HIV-1 integrase complexed with diketo acid. Biophys. J., 2008, 94(7), 2443-2451.
[http://dx.doi.org/10.1529/biophysj.107.107623] [PMID: 17981909]
[92]
Zhao, X.Z.; Smith, S.J.; Métifiot, M.; Johnson, B.C.; Marchand, C.; Pommier, Y.; Hughes, S.H.; Burke, T.R., Jr Bicyclic 1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-containing HIV-1 integrase inhibitors having high antiviral potency against cells harboring raltegravir-resistant integrase mutants. J. Med. Chem., 2014, 57(4), 1573-1582.
[http://dx.doi.org/10.1021/jm401902n] [PMID: 24471816]
[93]
Zhao, X.Z.; Smith, S.J.; Métifiot, M.; Marchand, C.; Boyer, P.L.; Pommier, Y.; Hughes, S.H.; Burke, T.R., Jr 4-amino-1-hydroxy-2-oxo-1,8-naphthyridine-containing compounds having high potency against raltegravir-resistant integrase mutants of HIV-1. J. Med. Chem., 2014, 57(12), 5190-5202.
[http://dx.doi.org/10.1021/jm5001908] [PMID: 24901667]
[94]
Hazuda, D.J.; Anthony, N.J.; Gomez, R.P.; Jolly, S.M.; Wai, J.S.; Zhuang, L.; Fisher, T.E.; Embrey, M.; Guare, J.P., Jr Egbertson, M. S.; Vacca, J. P.; Huff, J. R.; Felock, P. J.; Witmer, M. V.; Stillmock, K. A.; Danovich, R.; Grobler, J.; Miller, M. D.; Espeseth, A. S.; Jin, L.; Chen, I-W.; Lin, J. H.; Kassahun, K.; Ellis, J. D.; Wong, B. K.; Xu. W.; Pearson, P. G.; Schleif, W. A.; Cortese, R.; Emini, E.; Summa, V.; Holloway, M, K.; Young, SD., A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc. Natl. Acad. Sci. USA, 2004, 101, 11233-11238.
[http://dx.doi.org/10.1073/pnas.0402357101] [PMID: 15277684]
[95]
Little, S.; Drusano, G.; Schooley, R. Antiviral effect of L-000870810, a novel HIV-1 integrase inhibitor, in HIV-1 infected patients. 12th Conference on Retroviruses and Opportunistic Infections, Boston, MA2005, pp. 22-25.
[96]
Garvey, E.P.; Johns, B.A.; Gartland, M.; Foster, S.A.; Miller, W.H.; Ferris, R.G.; Hazen, R.J.; Underwood, M.R.; Boros, E.E.; Thompson, J.B.; Weatherhead, J.G.; Koble, C.S.; Allen, S.H.; Schaller, L.T.; Sherrill, R.G.; Yoshinaga, T.; Kobayashi, M.W-M. C.; Miki, S.; Nakahara, K.; Noshi, T.; Sato, A.; Fujiwara, T., The naphthyridinone GSK364735 is a novel, potent human immunodeficiency virus integrase inhibitor and antiretroviral. Antimicrob. Agents Chemother., 2008, 52, 901-908.
[http://dx.doi.org/10.1128/AAC.01218-07] [PMID: 18160521]
[97]
Wai, J.S.; Kim, B.; Fisher, T.E.; Zhuang, L.; Embrey, M.W.; Williams, P.D.; Staas, D.D.; Culberson, C.; Lyle, T.A.; Vacca, J.P.; Hazuda, D.J.; Felock, P.J.; Schleif, W.A.; Gabryelski, L.J.; Jin, L.; Chen, I.W.; Ellis, J.D.; Mallai, R.; Young, S.D. Dihydroxypyridopyrazine-1,6-dione HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(20), 5595-5599.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.092] [PMID: 17822898]
[98]
Wai, J.; Fisher, T.; Embrey, M.; Egbertson, M.; Vacca, J.; Hazuda, D.; Miller, M.; Witmer, M.; Gabryelski, L.; Lyle, T. Next generation inhibitors of HIV-1 integrase strand transfer: structural diversity and resistance profiles 14th Conference on Retroviruses and Opportunistic Infections, 2007.
[99]
Johns, B.A.; Kawasuji, T.; Weatherhead, J.G.; Taishi, T.; Temelkoff, D.P.; Yoshida, H.; Akiyama, T.; Taoda, Y.; Murai, H.; Kiyama, R.; Fuji, M.; Tanimoto, N.; Jeffrey, J.; Foster, S.A.; Yoshinaga, T.; Seki, T.; Kobayashi, M.; Sato, A.; Johnson, M.N.; Garvey, E.P.; Fujiwara, T. Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). J. Med. Chem., 2013, 56(14), 5901-5916.
[http://dx.doi.org/10.1021/jm400645w] [PMID: 23845180]
[100]
Singh, H.; Kaur, M.; Kakkar, A.K.; Kumar, H. The promise of dolutegravir: A novel second generation integrase strand transfer inhibitor. Curr. Clin. Pharmacol., 2016, 11(2), 88-94.
[http://dx.doi.org/10.2174/1574884711666160329192333] [PMID: 27157040]
[101]
He, Q-Q.; Zhang, X.; Yang, L-M.; Zheng, Y-T.; Chen, F. Synthesis and biological evaluation of 5-fluoroquinolone-3-carboxylic acids as potential HIV-1 integrase inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 671-676.
[http://dx.doi.org/10.3109/14756366.2012.668540] [PMID: 22468749]
[102]
Billamboz, M.; Bailly, F.; Lion, C.; Touati, N.; Vezin, H.; Calmels, C.; Andréola, M-L.; Christ, F.; Debyser, Z.; Cotelle, P. Magnesium chelating 2-hydroxyisoquinoline-1,3(2H,4H)-diones, as inhibitors of HIV-1 integrase and/or the HIV-1 reverse transcriptase ribonuclease H domain: discovery of a novel selective inhibitor of the ribonuclease H function. J. Med. Chem., 2011, 54(6), 1812-1824.
[http://dx.doi.org/10.1021/jm1014692] [PMID: 21366258]
[103]
De Luca, L.; De Grazia, S.; Ferro, S.; Gitto, R.; Christ, F.; Debyser, Z.; Chimirri, A. HIV-1 integrase strand-transfer inhibitors: design, synthesis and molecular modeling investigation. Eur. J. Med. Chem., 2011, 46(2), 756-764.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.012] [PMID: 21227550]
[104]
Billamboz, M.; Suchaud, V.; Bailly, F.; Lion, C.; Demeulemeester, J.; Calmels, C.; Andréola, M.L.; Christ, F.; Debyser, Z.; Cotelle, P. 4-Substituted 2-hydroxyisoquinoline-1,3(2H,4H)-diones as a novel class of HIV-1 integrase inhibitors. ACS Med. Chem. Lett., 2013, 4(7), 606-611.
[http://dx.doi.org/10.1021/ml400009t] [PMID: 24900718]
[105]
Desimmie, B.A.; Demeulemeester, J.; Suchaud, V.; Taltynov, O.; Billamboz, M.; Lion, C.; Bailly, F.; Strelkov, S.V.; Debyser, Z.; Cotelle, P.; Christ, F. 2-Hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs), novel inhibitors of HIV integrase with a high barrier to resistance. ACS Chem. Biol., 2013, 8(6), 1187-1194.
[http://dx.doi.org/10.1021/cb4000426] [PMID: 23517458]
[106]
Billamboz, M.; Suchaud, V.; Bailly, F.; Lion, C.; Andréola, M-L.; Christ, F.; Debyser, Z.; Cotelle, P. 2-hydroxyisoquinoline- 1,3(2H,4H)-diones (HIDs) as human immunodeficiency virus type 1 integrase inhibitors: Influence of the alkylcarboxamide substitution of position 4. Eur. J. Med. Chem., 2016, 117, 256-268.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.083] [PMID: 27105029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy