Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Therapeutic Potential of Cinnoline Core: A Comprehensive Review

Author(s): Rajiv K. Tonk*, Sandhya Bawa and Deepak Kumar

Volume 20, Issue 3, 2020

Page: [196 - 218] Pages: 23

DOI: 10.2174/1389557519666191011095858

Price: $65

conference banner
Abstract

Cinnoline or Benzo-pyridazine has its place in the family of fairly well-known benzfuseddiazine heterocycles. Because of its natural occurrence and synthetic exploration, cinnoline compounds validated its thought-provoking bioactivity through a number of research publications and patents during last few decades. A creative consideration has been rewarded to the synthesis of cinnoline based heterocyclic compounds, mostly due to their wide range of diverse pharmacological activities. The present review covers the principle approaches to the synthesis of cinnoline nucleus and almost all biological properties of 115 cinnoline derivatives reported during the last 65 years from natural and synthetic origin with 140 references.

Keywords: Cinnoline, Patent, Synthesis, Antibacterial, Antifungal, Anti-inflammatory, Anticancer, Alzheimer disease.

Graphical Abstract
[1]
Simpson, J.C.E. The Chemistry of Heterocyclic compounds, 5th ed.; Interscience, INC: New York. , 1953.
[2]
Richter, V.V. About cinnoline derivatives. Chem. Ber., 1883, 16(1), 677-683.
[http://dx.doi.org/10.1002/cber.188301601154]
[3]
Abderrahim, A.; Belhamel, K.; Chalchat, J.C.; Figueredo, G. Chemical composition of the essential oil from artemisia arborescens L. growing wild in Algeria. Rec. Nat. Prod., 2010, 4(1), 87-90.
[4]
Elderfield, R.C. Heterocyclic Compounds, 6th ed; Wiley & Sons: New York, 1966.
[5]
Lewgowd, W.; Stanczak, A. Cinnoline derivatives with biological activity. Arch. Pharm. Chem. Life Sci., 2007, 340, 65-80.
[6]
Bansal, R.K. Heterocyclic Chemistry, 3rd ed; New Age: New Delhi, 1999.
[7]
Katritzky, A.R.; Lagowski, J.M. The Principles of heterocyclic chemistry, 1st ed; Academic Press: New York, 1968.
[8]
Busch and Rast. Ber., 1897, 30, 521-524.
[http://dx.doi.org/10.1002/cber.189703001103]
[9]
Keneford, J.R.; Morley, J.S.; Simpson, J.C.E.; Wright, P.H. The chemistry of simple heterocyclic systems. Part IV. Basic strengths of some 4-substituted cinnolines, quinazolines, and quinolines. J. Chem. Soc., 1949, 1356-1360.
[http://dx.doi.org/10.1039/jr9490001356]
[10]
Bekhit, A.A. Fused cinnolines: synthesis and biological activity. Boll. Chim. Farm., 2001, 4, 243-253.
[PMID: 11570221]
[11]
Blair, L.M.; Sperry, J. Natural products containing a nitrogen-nitrogen bond. J. Nat. Prod., 2013, 76, 794-812.
[http://dx.doi.org/10.1021/np400124n] [PMID: 23577871]
[12]
Abderrahim, A.; Belhamel, K.; Chalchat, J-C.; Figueredo, G. Chemical Composition of the Essential Oil from Artemisia arborescens L. Growing Wild in Algeria. Rec. Nat. Prod., 2010, 4(1), 87-90.
[13]
Chen, C-J.; Deng, A-J.; Liu, C.; Shi, R.; Qin, H-L.; Wang, A-P. Hepatoprotective activity of Cichorium endivia L. extract and its chemical constituents. Molecules, 2011, 16(11), 9049-9066.
[http://dx.doi.org/10.3390/molecules16119049] [PMID: 22033140]
[14]
Paouette, L.A. Principle of Modern Heterocyclic Chemistry; Benjamin: New York, 1968.
[15]
Castle, R.N.; Onda, M. Cinnoline chemistry.VI. Basic esters, ethers, and amides. J. Org. Chem., 1961, 26, 2374-2378.
[http://dx.doi.org/10.1021/jo01351a056]
[16]
Tennant, G.; Sandison, A.A. A new heterocyclisation reaction leading to cinnolin-4(1H)-one derivatives. J. Chem. Soc. Chem. Commun., 1974, 752-753.
[17]
Miyamoto, T.; Matsumoto, J. A New Cinnoline Ring Construction by the Reaction of 2-Diazo-3-(2-fluorophenyl)-3-oxopropionates with Tri-n-buthylphosphine. Chem. Pharm. Bull. , 1988, 36(4), 1321-1327.
[18]
Sandison, A.A.; Tennant, G. A new hetero-cyclisation reaction leading to cinnolin-4(1H)-one derivatives. J. Chem. Soc. Chem. Commun., 1974, (18), 752.
[19]
Fedenok, L.G.; Barabanov, I.I.; Ivanchikova, I.D. Two routes of heterocyclization of 2-alkynylanthraquinone-1-diazonium salts. The synthesis of 1H-naphtho[2,3-h] cinnoline-4,7,12-trione. Tetrahedron, 2001, 57, 1331-1334.
[http://dx.doi.org/10.1016/S0040-4020(00)01101-7]
[20]
Lund, H.; Nilsson, N.H. Electro-organic Preparations. XXXVII. Electrosynthesis of Cinnolines by Reductive Ring Closure of Dinitro-compounds. Acta. Chem. Scand. Ser. B, 1976, 30B, 5-11.
[21]
Scobie, M.; Tennant, G. A convenient synthesis of otherwise inaccessible 3-amino cinnoline-4-carboxylic acid derivatives. J. Chem. Soc. Chem. Commun., 1994, 21, 2451-2452.
[http://dx.doi.org/10.1039/c39940002451]
[22]
Hutchings, M.G.; Devonald, D.P. Syntheses of 2-aryl-3-cinnolinones by cyclisation of diarylazo compounds. Tetrahedron Lett., 1989, 30(28), 3715-3718.
[23]
Licandro, E.; Maiorana, S.; Papagni, A.; Tarallo, D.; Slawin, A.M.Z.; Williams, D.J. Synthesis of 3,4,6-trisubstituted cinnolines by intramolecular wittig reaction of ortho-carbonyl substituted aryl azomethylenetriphenylphosphoranes. J. Heterocyclic. Chem., 1990, 27(5-6), 1103-1107.
[24]
Kiselyou, A.S.; Dominguez, C. A novel synthesis of 3,4-disubstituted cinnolines from o-trifluorophenyl hydrazones. Tetrahedron Lett., 1999, 40, 5111-5114.
[http://dx.doi.org/10.1016/S0040-4039(99)00949-1]
[25]
Hand, E.S.; Cohen, T. Structural elucidation of the pentacyclic cinnoline obtained by the reaction of 1,4-naphthoquinone with hydrazine. Tetrahedron, 1967, 23, 2911-2926.
[http://dx.doi.org/10.1016/S0040-4020(01)83346-9]
[26]
Amer, A.M.; El-Mobayed, M.; Asker, S. On the Chemistry of cinnoline V [1 Reactions of 4-Aminocinnolines with Amines. Monatsh. Chem., 2004, 135, 595-604.
[http://dx.doi.org/10.1007/s00706-003-0084-3]
[27]
Longworth, S.W.; Bigg, D.C.H.; White, D.F.; Burns, J. The preparation and purification of ethyl 6-ethyl-4-hydroxy [3-14C] cinnol-3-yl carboxylate (ICI 75,186). J. Labelled Comp. Radiopharm., 1974, 10, 423-430.
[28]
Kumar, A.; Al-Awadi, N.A.; Elnagdi, M.H.; Ibrahim, Y.A.; Kaul, K. Gas-phase pyrolysis in organic synthesis. Part 3: Novel cyclization of 2-arylhydrazonopropanals into cinnolines. Int. J. Chem. Kinet., 2001, 33, 402-406.
[http://dx.doi.org/10.1002/kin.1035]
[29]
Anderson, R.K.; Carter, S.D.; Cheeseman, G.W.H. Quinoxalines and related compounds—XI: The formation of fused pyrroles by the condensation of haloazines with methylazines. Tetrahedron, 1979, 35(20), 2463-2470.
[30]
Brown, DJ Cinnolines & Phthalazines: Chemistry of heterocyclic compounds, Supplement II; Wiley & Sons: New York, 2005.
[31]
Katritzky, A.R. Physical methods in heterocyclic chemistry; Volume I & II. J. Chem. Educ., 1964, 41(2), A126.
[32]
Aldersley, M.F.; Dean, F.M.; Mazhir, R.N. Alkylation of quinones by carbanions: use of pyridinium ylides to insert phenacyl, acetonyl and related groups. J. Chem. Soc., Perkin Trans, 1983, 1, 1753-1757.
[33]
Glidewell, C.; Shepherd, T.; Smith, D.M. Halogenation of quinoxalino[2,3-c] cinnolines by hydrogen halides. Tetrahedron Lett., 1983, 24, 3151-3154.
[http://dx.doi.org/10.1016/S0040-4039(00)88120-4]
[34]
Abdou, W.M. Reaction of N-Phenyl-3,5-di-tert-butyl-1,2-benzoquinone Monohydrazone and Some Phosphorus Ylides. Synth. Commun., 1997, 27(20), 3599-3604.
[35]
Komorsky-Lovric, S. Kinetics of the cinnoline surface redox reaction. Electroanalysis, 2002, 14, 888-891.
[http://dx.doi.org/10.1002/1521-4109(200207)14:13<888:AID-ELAN888>3.0.CO;2-G]
[36]
Kanner, C.B.; Pandit, U.K. Reaction of β-amino-α,β-unsaturated esters and amides with aryl diazonium salts: Synthesis of cinnoline derivatives. Tetrahedron, 1981, 37(20), 3513-3518.
[37]
Jacobs, T.L. Cinnolines (Benzo[3,4)pyridazine. In: Heterocyclic compounds; R.C., Elderfield, Ed.; Wiley & Sons: New York, 1957; Vol. 6, pp. 136-185.
[38]
Dyab, A.K.F.; Sadek, K.U. Microwave assisted one-pot green synthesis of cinnoline derivatives inside natural sporopollenin microcapsules. RSC Advances, 2018, 8, 23241-23251.
[http://dx.doi.org/10.1039/C8RA04195D]
[39]
Nunn, A.J.; Schofield, K. Cinnolines. Part XXXII. Further experiments on the effects of heterocyclic nuclei as substituents in the Widman-Stoermer synthesis. J. Chem. Soc., 1953, 3700-3706.
[http://dx.doi.org/10.1039/JR9530003700]
[40]
Sakamoto, F.; Tsukamoto, G.; Uno, T.; Yamabe, S. 6-Fluoro-1,4- dihydro-4-oxocinnoline-3-carboxylic acid derivative. JPS57144264A, September 06, 1982.
[41]
Conrad, R.A.; White, W.A. 4(1H)-oxocinnoline-3-carboxylic Acid Derivatives. U.S. Patent 4,37,9929, April 12 1983.
[42]
Wick, W.E.; Preston, D.A.; White, W.A.; Gordee, R.S. Compound 64716, a new synthetic antibacterial agent. Antimicrob. Agents Chemother., 1973, 4(4), 415-420.
[43]
Budavari, S. The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 12th ed; Whitehouse Station, N.J. Merck & Co. Inc., 1996.
[44]
Miyamoto, T.; Matsumoto, J. Fluorocinnoline derivatives. II. Synthesis and antibacterial activity of fluorinated 1-alkyl-1,4-dihydro-4-oxocinnoline-3-carboxylic acids. Chem. Pharm. Bull., 1989, 37(1), 93-99.
[http://dx.doi.org/10.1248/cpb.37.93] [PMID: 2720857]
[45]
Radl, S.; Moural, J.; Bendova, R. Synthesis and antibacterial activity of some 1-aryl-1,4-dihydro-4-oxocinnoline-3-carboxylic acids. Coll. Czech. Chem. Comun., 1990, 55, 1311-1320.
[http://dx.doi.org/10.1135/cccc19901311]
[46]
Miyamoto, K; Matsumoto, J; Nakamura, S. A 5-substitutioncinnoline derivative, its ester, and its salt. JP 0296570, April 09 1990.
[47]
Menon, R.G.; Purushothaman, E. Synthesis and biological properties of 2-mercaptopyrimido-[5,4-c]cinnolin-4(3H)-ones and their s-alkyl derivatives. J. Indian Chem. Soc., 1993, 70, 533-536.
[48]
Abbady, M.S.; Radwan, M.S.; Bakhite, E.A. Synthesis and antimicrobial activity of some cinnoline derivatives containing sulphonamido group. Indian J. Chem. Sect. B, 1994, 32B, 1281-1284.
[49]
Schmidt, L.H. Chemotherapy of the drug-resistant malarias. Annu. Rev. Microbiol., 1969, 23, 427-454.
[http://dx.doi.org/10.1146/annurev.mi.23.100169.002235] [PMID: 4901983]
[50]
Nargund, L.V.G.; Badiger, V.V.; Yarnal, S.M. Synthesis and antibacterial activity of substituted 4-aryloxypyrimido[5,4-c]cinnolines. Eur. J. Med. Chem., 1994, 29, 245-247.
[http://dx.doi.org/10.1016/0223-5234(94)90043-4]
[51]
Menon, R.G.; Purushothaman, E. Synthesis and antimicrobial properties of pyrimido[5,4-c]cinnoline-2,4(1H,3H)-diones. J. Indian Chem. Soc., 1995, 72, 731-733.
[52]
Nargund, L.V.G.; Nargund, K.S. 4-Arylamino-pyrimido [5-4-c] cinnolines for anti-bacterial activity. Arzneim-forsch. Drug Res., 1995, 45, 1131-1132.
[53]
Menon, R.G.; Purushothaman, E. Synthesis and antimicrobial activities of pyrimidocinnolinedithiones, their bis (alkylthio) derivatives and 4-amino-2-methylthiopyrimidocinnolines. Indian J Chem, Sect. B. Org Chem Incl. Med. Chem., 1996, 35B, 1185-1189.
[54]
Menon, R.G.; Purushothaman, E. Synthesis of biologically active 5-(4-hydroxycinnolin-3-yl)tetrazoles and ethyl-5-(4-acetoxycinnolin-3-yl)-1,3,4-oxadiazoles. J. Indian Chem. Soc., 1997, 74, 123-124.
[55]
Saravanan, J.; Manjunatha, K.S. Synthesis of some 4[5-substituted-2-furanyl) amino]-7-substituted aryloxy-6-fluoro cinnoline-3-carboxylic acids as antimicrobial agents. Indian J. Pharm. Sci., 1998, 60, 330-332.
[56]
Barraja, P.; Diana, P.; Lauria, A.; Passannanti, A.; Almerico, A.M.; Minnei, C.; Longu, S.; Congiu, D.; Musiu, C.; La Colla, P. Indolo[3,2-c]cinnolines with antiproliferative, antifungal, and antibacterial activity. Bioorg. Med. Chem., 1999, 7(8), 1591-1596.
[http://dx.doi.org/10.1016/S0968-0896(99)00096-6] [PMID: 10482451]
[57]
Raj, V.; Purushothaman, E. Synthesis and antimicrobial studies of some pyrimidocinnolines; Indian J Heter Chem, 1999, pp. 43-46.
[58]
Gavini, E.; Juliano, C.; Mulè, A.; Pirisino, G.; Murineddu, G.; Pinna, G.A. Pyridazine N-oxides. III. Synthesis and “in vitro” antimicrobial properties of N-oxide derivatives based on tricyclic indeno[2,1-c]pyridazine and benzo[f]cinnoline systems. Arch. Pharm. (Weinheim), 2000, 333(10), 341-346.
[http://dx.doi.org/10.1002/1521-4184(200010)333:10<341:AID-ARDP341>3.0.CO;2-U] [PMID: 11092137]
[59]
Vingkar, K.; Bobade, A.S.; Khadse, B.G. Synthesis and antimicrobial activity of 6-chlorocinnolinothiazoles. Indian J. Heterocycl. Chem., 2001, 11, 35-38.
[60]
Vingkar, K.; Bobade, A.S.; Khadse, B.G. Synthesis and antimicrobial activity of 3, 2-(alkyl/ary, 4-substituted thiazolo-6-fluorocinnoline-4-one. Indian Drugs., 2001, 38, 573-575.
[61]
Stańczak, A.; Ochocki, Z.; Martynowski, D.; Główka, M.; Nawrot, E. Synthesis, structure, and antibacterial activity of 4-imino-1, 4-dihydrocinnoline-3-carboxylic acid and 4-oxo-1, 4-dihydrocinnoline-3-carboxylic acid derivatives as isosteric analogues of quinolones. Arch. Pharm. (Weinheim), 2003, 336(1), 18-30.
[http://dx.doi.org/10.1002/ardp.200390000] [PMID: 12666250]
[62]
Narayan, B.; Vijyaraj, K.K.; Ashalatha, B.V.; Kumari, N.S. Antibacterial and antifungal studies on some new acetylcinnolines and cinnolinyl thiazole derivatives. Indian J. Chem. Sect. B, 2006, 45B, 1704-1709.
[http://dx.doi.org/10.1002/chin.200647170]
[63]
Chen, J.M.; Xu, S.L.; Wawrzak, Z.; Basarab, G.S.; Jordan, D.B. Structure-based design of potent inhibitors of scytalone dehydratase: displacement of a water molecule from the active site. Biochemistry, 1998, 37(51), 17735-17744.
[http://dx.doi.org/10.1021/bi981848r] [PMID: 9922139]
[64]
Choudhari, B.P.; Mulwad, V.V. Synthesis and antimicrobial screening of 3H,11H-9-methyl-3-oxopyrano[2,3-f]cinnolino[3,4-c] pyrazole and its derivatives. Indian J. Chem., 2006, 45B, 309-313.
[http://dx.doi.org/10.1002/chin.200619141]
[65]
Gautam, N.; Chourasiam, O.P. Synthesis, antimicrobial and insecticidal activity of some new cinnoline based chalcones and cinnoline based pyrazoline derivatives. Indian J. Chem., 2010, 49B, 830-835.
[http://dx.doi.org/10.1002/chin.201044161]
[66]
Jakhar, A.; Makrandi, J.K. Synthesis and antibacterial properties of some novel 2-substituted-6-(4-methyl-6-substitutedcinnoline-3-yl)imidazo[2,1-b][1,3,4] thiadiazoles. Indian J. Chem., 2010, 49B, 1547-1551.
[67]
Siegfried, A.G. Novel derivatives of 1,2-malonyl-1. 2- dihydrocinnoline and their preparation. FR1393596, March 26, 1965.
[68]
Schatz, F.; Wagner-Jauregg, T. Synthesis of substituted 1, 2-malonyl-1,2-dihydro cinnolin(1,3-dioxo-2,3-dihydro-1H-pyrazolo [1, 2-a] cinnoline) with anti-inflammatory properties. Helv. Chim. Acta, 1968, 51, 1919-1931.
[http://dx.doi.org/10.1002/hlca.19680510813] [PMID: 5760863]
[69]
Negwer, M. Organic-chemical drugs and Thre Synonima; Negwer, M., 5th ed.; Akademie-Verlag, Berlin, 1978.
[70]
Giovannoni1 MP, Schepetkin IA, Crocetti L, Ciciani G, Cilibrizzi A, Guerrini G, Khlebnikov AI, Quinn MT, Vergelli C. Cinnoline derivatives as human neutrophil elastase inhibitors. J. Enzyme Inhib. Med. Chem., 2018. Early Online
[http://dx.doi.org/10.3109/14756366.2015.1057718]
[71]
Allais, A.; Rousseau, G.; Meier, J.; Nomine, G.; Nomine, G.; Peterfalvi, M.; Deraedt, R.; Chifflot, L.; Benzoni, J.; Fournex, R. Chim. Ther., 1973, 8, 154-168.
[72]
Dorn, H. A process for preparing 2-(1-Carbxy-1-methyl) cinnolinium- 4-olate and salts thereof. DD247219Ai, July 01 1987.
[73]
Nargund, L.V.G.; Badiger, V.V.; Yarnal, S.M. Synthesis and antimicrobial and anti-inflammatory activities of substituted 2-mercapto-3-(N-aryl)pyrimido[5,4-c]cinnolin-4-(3H)-ones. J. Pharm. Sci., 1992, 81(4), 365-366.
[http://dx.doi.org/10.1002/jps.2600810416] [PMID: 1501075]
[74]
Nargund, L.V.G.; Jose, R.; Reddy, R. Anti-inflammatory activity of pyrazolo pyrimido (5-4-d) cinnolines. Arzneim.-. Forsch. Drug Res., 1994, 44, 156-158.
[75]
Nargund, L.V.G. Synthesis, inhibition of albumin denaturation and anti-inflamatory activity of 4-arylaminopyrimido [5-4-c] cinnolines. Rev. Roum. Chim., 1997, 42, 1089-1091.
[76]
Bantick, J; Hirst, S Perry, M Novel pyridazine compounds. WO9745428, May 20 1997.
[77]
Tonk, R.K.; Bawa, S.; Chawla, G.; Deora, G.S.; Kumar, S.; Rathore, V.; Mulakayala, N.; Rajaram, A.; Kalle, A.M.; Afzal, O. Synthesis and pharmacological evaluation of pyrazolo[4,3-c]cinnoline derivatives as potential anti-inflammatory and antibacterial agents. Eur. J. Med. Chem., 2012, 57, 176-184.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.045] [PMID: 23059546]
[78]
Kametani, T.; Kigasawa, K.; Hiiragi, M.; Ishimaru, H.; Wagatsuma, N.; Kohagisawa, T.; Nakamura, T. Novel Type of Analgesic- Synthesis and Analgesic Activity. Heterocycles, 1980, 14, 449-451.
[http://dx.doi.org/10.3987/R-1980-04-0449]
[79]
Kametani, T.; Kigasawa, K.; Hiiragi, M.; Ishimaru, H.; Wagatsuma, N.; Kohagizawa, T.; Nakamura, T. [Studies on the syntheses of analgesics. LII. Synthesis of 4a-(3-substituted phenyl)-1,2-disubstituted decahydrocinnoline derivatives (studies on the syntheses of heterocyclic compounds. DCCCXLIII) (author’s transl) Yakugaku Zasshi, 1980, 100(6), 641-648.
[http://dx.doi.org/10.1248/yakushi1947.100.6_641] [PMID: 7463311]
[80]
Azuma, N.; Hiiragi, M.; Ishimaru, H.; Kikazawa, K.; Kohagisawa, T.; Nakamura, T. Decahydrocinnoline compound. JPS6345267A, February 26. 1988.
[81]
Stańczak, A.; Kwapiszewski, W.; Ochocki, Z.; Lewgowd, W.; Szadowska, A.; Pakulska, W.; Główka, M.L. Synthesis, structures and biological activity of some N1-substituted 4-oxocinnolines. Acta Pol. Pharm., 1995, 52(2), 113-121.
[PMID: 8960242]
[82]
Gomtsyan, A.; Bayburt, E.K.; Schmidt, R.G.; Zheng, G.Z.; Perner, R.J.; Didomenico, S.; Koenig, J.R.; Turner, S.; Jinkerson, T.; Drizin, I.; Hannick, S.M.; Macri, B.S.; McDonald, H.A.; Honore, P.; Wismer, C.T.; Marsh, K.C.; Wetter, J.; Stewart, K.D.; Oie, T.; Jarvis, M.F.; Surowy, C.S.; Faltynek, C.R.; Lee, C.H. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J. Med. Chem., 2005, 48(3), 744-752.
[http://dx.doi.org/10.1021/jm0492958] [PMID: 15689158]
[83]
Cortright, D.N.; Szallasi, A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur. J. Biochem., 2004, 271(10), 1814-1819.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04082.x] [PMID: 15128291]
[84]
George, M.; Joseph, L.; Sony, S. Synthesis and biological screening of novel cinnoline derivatives for analgesic activity. WJPR, 2018, 7(16), 1704-1711.
[85]
Yamazaki, T.; Draper, R.E.; Castle, R.N. Cinnoline chemistry XIII. 4-aziridinocinnolines. J Heter Chem., 1978, 15, 1039-1040.
[http://dx.doi.org/10.1002/jhet.5570150626]
[86]
Bahner, C.T.; Rives, L.M.; McGaha, S.W.; Rutledge, D.; Ford, D.; Gooch, E.; Westberry, D.; Ziegler, D.; Ziegler, R. Di- and tri-methoxystyryl derivatives of heterocyclic nitrogen compounds. Arzneimittelforschung, 1981, 31(3), 404-406.
[PMID: 7194662]
[87]
Doria, G.; Isetta, A.M.; Ferrari, M.; Trizio, D. Cinnolinecarboxamides and process for their preparation. U.S. Patent 4826837, May 02 1989.
[88]
Barraja, P.; Diana, P.; Lauria, A.; Passannanti, A.; Almerico, A.M.; Minnei, C.; Longu, S.; Congiu, D.; Musiu, C.; La Colla, P. Indolo[3,2-c]cinnolines with antiproliferative, antifungal, and antibacterial activity. Bioorg. Med. Chem., 1999, 7(8), 1591-1596.
[http://dx.doi.org/10.1016/S0968-0896(99)00096-6] [PMID: 10482451]
[89]
Mohareb, R.M.; Moustafa, H.E. Use of 2-aminoprop-1-ene-1,1,3-tricarbonitrile for the synthesis of tetrahydronaphthalene, hexahydroisoquinoline and hexahydrocinnoline derivatives with potential antitumor activities. Acta Pharm., 2011, 61(1), 51-62.
[http://dx.doi.org/10.2478/v10007-011-0001-y] [PMID: 21406343]
[90]
Stefańska, B.; Arciemiuk, M.; Bontemps-Gracz, M.M.; Dzieduszycka, M.; Kupiec, A.; Martelli, S.; Borowski, E. Synthesis and biological evaluation of 2,7-Dihydro-3H-dibenzo[de,h]cinnoline-3,7-dione derivatives, a novel group of anticancer agents active on a multidrug resistant cell line. Bioorg. Med. Chem., 2003, 11(4), 561-572.
[http://dx.doi.org/10.1016/S0968-0896(02)00425-X] [PMID: 12538021]
[91]
Ruchelman, A.L.; Singh, S.K.; Ray, A.; Wu, X.; Yang, J.M.; Zhou, N.; Liu, A.; Liu, L.F.; LaVoie, E.J. 11H-Isoquino[4,3-c]cinnolin-12-ones; novel anticancer agents with potent topoisomerase I-targeting activity and cytotoxicity. Bioorg. Med. Chem., 2004, 12(4), 795-806.
[http://dx.doi.org/10.1016/j.bmc.2003.10.061] [PMID: 14759740]
[92]
Lowrie, S.H. 3-Phenyl-4-dialkylaminoalkylamino-cinnolines. U.S. Patent 3,265,693, August 09, 1966.
[93]
Schenker, E. 3-Hydrazino cycloalkyl[c]pyridazines as antihypertensive agents. U.S. Patent 4,478,837, October 23 1984.
[94]
Boyle, J; Terence, A; Todd, R.S. Quinazoline and cinnoline derivatives. GB 2160201, May 11, 1988.
[95]
Ravina, E.; Fueyo, J.; Teran, C.; Cid, J.; Garcia Mera, G.; Orallo, F.; Bardan, B. Synthesis, hypotensive and diuretic activities of several 3-hydrazino-5,6-dihydrobenzo[h]cinnolines. Part 10: Pyridazine derivatives. Pharmazie, 1992, 47(8), 574-577.
[PMID: 1438508]
[96]
Pinna, G.A.; Curzu, M.M.; Fraghì, P.; Gavini, E.; D’Amico, M. Synthesis and pharmacological evaluation of 5,6-dihydrobenzo[f] cinnolin-2(3H)ones analogues of antihypertensive and antiaggregating benzo[h]cinnolinones. Farmaco, 1996, 51(10), 653-658.
[PMID: 8981755]
[97]
Pinna, G.A.; Salis, E.; Berta, D.; Gavini, E.; D’Amico, M. Synthesis and pharmacological evaluation of 4a-methyl-4,4a,5,6-tetrahydrothieno[2,3-h]cinnolin-3(2H)-ones. Farmaco, 1997, 52(1), 29-33.
[PMID: 9181678]
[98]
Gilman, D. J. Pharmaceutical compositions. Ger 2151487, April 20 1972.
[99]
Holland, D.; Jones, G.; Marshall, P.W.; Tringham, G.D. Cinnoline-3-propionic acids, a new series of orally active antiallergic substances. J. Med. Chem., 1976, 19(10), 1225-1228.
[http://dx.doi.org/10.1021/jm00232a011] [PMID: 825646]
[100]
Dahmen, J; Hemmerling, M; Klingstedt, T.; Sjo, SP Pyrazolo (4,3- c) cinnoline compounds as inhibitors of ITK kinase activity. WO 2004016615, February 26 2004.
[101]
Chapman, N.B.; Clarke, K.; Wilson, K. Synthesis of NN-dialkyl-N′-arylalkyl-N′-4-cinnolinyl (or 9-fluorenyl or 6-methyl-3-pyridazinyl or 1-phthalazinyl or 2-quinoxalinyl) ethylenediamines of potential pharmacological interest. J. Chem. Soc., 1963, 2256-2266.
[http://dx.doi.org/10.1039/JR9630002256]
[102]
Rehse, K.; Gonska, H. New pyrimido[5,4-c]cinnolines with antiplatelet activities. Arch. Pharm. (Weinheim), 2005, 338(12), 590-597.
[http://dx.doi.org/10.1002/ardp.200500152] [PMID: 16281308]
[103]
Stańczak, A.; Kwapiszewski, W.; Szadowska, A.; Pakulska, W. Synthesis and action on the central nervous system of some N2-substituted cinnoline derivatives. Pharmazie, 1994, 49(6), 406-412.
[http://dx.doi.org/10.1002/chin.199443181] [PMID: 8047541]
[104]
Stańczak, A.; Kwapiszewski, W.; Lewgowd, W.; Ochocki, Z.; Szadowska, A.; Pakulska, W.; Główka, M. Synthesis, structures and biological activity of some 4-amino-3-cinnolinecarboxylic acid derivatives, Part 1. Pharmazie, 1994, 49(12), 884-889.
[PMID: 7838879]
[105]
Alvarado, M.; Barceló, M.; Carro, L.; Masaguer, C.F.; Raviña, E. Synthesis and biological evaluation of new quinazoline and cinnoline derivatives as potential atypical antipsychotics. Chem. Biodivers., 2006, 3(1), 106-117.
[http://dx.doi.org/10.1002/cbdv.200690001] [PMID: 17193223]
[106]
Baig, M.Z.K.; Subramanian, N.S.; Kalyani, G.; Kumar, G.N.; Vivekananda, B.; Ali, P.R. Synthesis, Characterization and Pharmacological Evaluation of Some Novel Cinnoline Derivatives. Int J Bio & Pharm Res., 2013, 4(12), 1263-1269.
[107]
Molina, A.; Vaquero, J.J.; Garcia-Navio, J.L.; Builla, J.A. Bis-salts based on the Pyridazino[1′,6′:1,2]pyrido[4,3]indol-5-inium System: A New Class of DNA Bis-intercalators. J. Org. Chem., 1999, 64, 3907-3915.
[http://dx.doi.org/10.1021/jo982216d]
[108]
Hennequin, L.F.; Thomas, A.P.; Johnstone, C.; Stokes, E.S.; Plé, P.A.; Lohmann, J.J.; Ogilvie, D.J.; Dukes, M.; Wedge, S.R.; Curwen, J.O.; Kendrew, J.; Lambert-van der Brempt, C. Design and structure-activity relationship of a new class of potent VEGF receptor tyrosine kinase inhibitors. J. Med. Chem., 1999, 42(26), 5369-5389.
[http://dx.doi.org/10.1021/jm990345w] [PMID: 10639280]
[109]
Abdelrazek, F.M.; Metz, P.; Metwally, N.H.; El-Mahrouky, S.F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch. Pharm. (Weinheim), 2006, 339(8), 456-460.
[http://dx.doi.org/10.1002/ardp.200600057] [PMID: 16795107]
[110]
Guilford, W.J.; Lewis, H.A.; Labovitz, N.; Vega, R.O.; Fang, L.; Liang, Y.; Patterson, T.G.; Labovitz, J.N. Synthesis and pollen suppressant activity of phenylcinnoline-3-carboxylic acids. J. Agric. Food Chem., 1992, 40, 2026-2032.
[http://dx.doi.org/10.1021/jf00022a058]
[111]
Queguiner, G.; Chapoulaud, G.V.; Ple, N.; Turck, A. Synthesis of 4,8-Diarylcinnolines and Quinazolines with potential applications in nonlinear optics. diazines. Part 28. Tetrahdron., 2000, 56, 5499-5507.
[http://dx.doi.org/10.1016/S0040-4020(00)00448-8]
[112]
Varshney, S.; Saxena, V.; Kumar, R. Synthesis, Characterization and Biological Activity of Substituted Cinnoline Benzimidazole Derivatives. Int. J. Pharm. Sci. Rev. Res., 2014, 27(2), 69-73.
[113]
Hennequin, L.F.A. Cinnoline compounds. WO2002012228A1, February 14 2002.
[114]
Hu, B.; Wrobel, J.E.; Collini, M.D.; Unwalla, R.J. Cinnoline compounds and their use as liver X receptor modilators. WO2006094034A1, September 08 2006.
[115]
Aston, N.M.; Robinson, J.E.; Trivedi, N. Cinnoline Compounds as Inhibitors of Phosphodiesterase Type IV (Pde4). WO2007045861A1, April 26 2007.
[116]
Chapdelaine, M. Ohnmacht; Becker, C.; Dembofsky, B. Substituted cinnoline derivatives as GABAA-receptor modulators and method for their synthesis. WO2007073283, June 28 2007.
[117]
Allen, T.H.; Liu, R.; Arrington, M.P.; Hopper, A.T.; Conticello, R.D.; Nguyen, T.M.; Danca, M.D.; Gauss, C. Cinnoline derivatives as phosphodiesterase 10 inhibitors. WO2007098214A1, August 30, 2007.
[118]
Arrington, M.P.; Hopper, A.T.; Conticello, R.D.; Nguyen, T.M.; Hess, H-J.E.; Gauss, C.M.; Hitchcock, S.A. Phosphodiesterase 10 inhibitors. WO2007103260A1, September 13, 2007.
[119]
Beshore, D.C.; Kuduk, S.D. Heterocyclic fused cinnoline m1 receptor positive allosteric modulators. WO2010123716A1, October 28, 2010.
[120]
Alhambra, C.; Chang, H-F.; Chapdelaine, M.; Herzog, K.J.; Schmiesing, R.J. Cinnoline compounds, their preparation, and their use. WO2011021979A1, February 24, 2011.
[121]
Chaojie, C.; Hailin, Q.; Aiping, W.; Jinfeng, W.; Hongtao, J.; Yingming, W. Novel compound of 2-Furylcarbinol-(5'-11)-1,3- cyclopentadiene [5,4-c]-1H-cinnoline and application of novel compound as antioxidant to food, cosmetics or medicine. CN102603719A, July 25, 2012.
[122]
Borowski, E.; Stefanska, B.; Dzieduszycka, M.; Cybulski, M.; Szelejewski, W.; Obukowicz, J.; Gracz, M.B.; Wysocka, M. Mazerski, zerski, J.; Punda, P.; Wietrzyk, J. Asymmetrically substituted anthrapyridazone derivatives as cytostatics. WO2012141604A1, October 18, 2012.
[123]
Lawson, J.D.; Sabat, M.; Smith, C.; Wang, H.; Chen, Y.K.; Kanouni, T. Cinnoline derivatives as BTK inhibitors. WO2013148603A1, October 03, 2013.
[124]
Gong, P.; Zhao, Y.; Liu, Y.; Zhai, X.; Li, S.; Zhu, W.; Qin, M. Quinoline and cinnoline compounds and theirof. WO2013097280A1, December 11, 2014.
[125]
Zhang, Y-M.; Decorte, B.L.; Greco, M.N.; Ludovici, D.W.; Parker, M.H.; Macielag, M.J. Cinnoline derivatives useful as CB-1 receptor inverse agonists. WO2016115013. July 21, 2016.
[126]
Estreicher, H. Use of 4-(hydroxyiminomethyl)cinnoline and congeners thereof for controlling the growth of unwanted plants. U.S. Patent 4,564,383, January 14, 1986.
[127]
John, W.W.; Estreicher, H.; Soloway, S.B. Use of certain cinnoline- 4-carboxylic acids and congeners thereof for controlling the growth of unwanted plants. U.S. Patent 4,699,651, October 13, 1987.
[128]
Boyle, J.T.A.; Todd, R.S. 4-Quinazolinylamino and 4-cinnolinylamino benzenesulphonic acids and amides. U.S. Patent 4,808,715, February 28, 1989.
[129]
Mizutani, M.; Shiroshita, M.; Sakaki, M.; Okuda, H.; Mito, N. Cinnoline derivative, process for preparing the same and herbicidal composition containing the same. U.S. Patent 4,875,924, October 24, 1989.
[130]
Resch, J.F. Substituted cinnoline derivatives as CNS depressants. U.S. Patent 4,886,800, December 12, 1989.
[131]
Brown, T.H.; Blurton, P. Pyrrolocinnolines for use as inhibitors of gastric acid secretion. U.S. Patent 4,988,695, January 29, 1991.
[132]
Labovitz, J.; Guilford, W.J.; Fang, L.; Liang, Y. Method for the preparation of substituted 1,4-dihydro-4-oxo-cinnoline-3- carboxylic acid, ester and salts thereof, and intermediates used in their preparation. U.S. Patent 5,183,891, February 02, 1993.
[133]
Arnold, W.R.; Coghlan, M.J.; Jourdan, G.P.; Krumkalns, E.V.; Suhr, R.G. Quinoline and cinnoline fungicide compositions. U.S. Patent 5,240,940, August 31, 1993.
[134]
Maruyama, A.; Ogawa, S.; Yamazaki, S.; Tobe, A. Cinnoline-3- carboxylic acid derivatives. U.S. Patent 5,556,851. September 17, 1996.
[135]
Labovitz, J.; Guilford, W.J.; Liang, Y.; Fang, L.; Patterson, T.G. Pollen suppressant comprising a 5-oxy- or amino substituted cinnoline. U.S. Patent 5,696,055, December 09, 1997.
[136]
Vaillancourt, V.A.; Larsen, S.D.; Nair, S.K. 4-hydroxycinnoline-3- carboxyamides as antiviral agents. U.S. Patent 6,458,788, October 01, 2002.
[137]
Vaillancourt, V.A.; Larsen, S.D.; Nair, S.K. 4-oxo-1,4-dihydro-3- cinnolinecarboxamides as antiviral agents. U.S. Patent 6624160, September 23, 2003.
[138]
Thomas, A.P.; Hennequin, L.F.A. Cinnoline derivatives and use as medicine. U.S. Patent 7,087,602, August 08, 2006.
[139]
Kuroiwa, S.; Odanaka, J.; Maruyama, S.; Sato, Y.; Tomura, A.; Sato, H.; Suzuki, Y. 3-Phenyl-cinnoline analogue and antitumor agent using the same. U.S. Patent 7,563,893, July 21, 2009.
[140]
Aubele, D.L.; Garofalo, A.W.; Bowers, S.; Truong, A.P.; Ye, X.M.; Franzini, M.; Adler, M.; Neitz, R.J.; Probst, G. Substituted cinnolines as inhibitors of LRRK2 kinase activity. U.S. Patent 9,884,828, February 06 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy