Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Immune-Based Therapies for Traumatic Brain Injury: Insights from Pre-Clinical Studies

Author(s): Caroline Amaral Machado, Ana Cristina Simões e Silva*, Amanda Silva de Miranda, Thiago Macedo e Cordeiro, Rodrigo Novaes Ferreira, Leonardo Cruz de Souza, Antônio Lúcio Teixeira and Aline Silva de Miranda*

Volume 27, Issue 32, 2020

Page: [5374 - 5402] Pages: 29

DOI: 10.2174/0929867326666190710173234

Price: $65

conference banner
Abstract

Traumatic Brain Injury (TBI) is a major public health problem. It is the leading cause of death and disability, especially among children and young adults. The neurobiology basis underlying TBI pathophysiology remains to be fully revealed. Over the past years, emerging evidence has supported the hypothesis that TBI is an inflammatory based condition, paving the way for the development of potential therapeutic targets. There is no treatment capable to prevent or minimize TBIassociated outcomes. Therefore, the search for effective therapies is a priority goal. In this context, animal models have become valuable tools to study molecular and cellular mechanisms involved in TBI pathogenesis as well as novel treatments. Herein, we discuss therapeutic strategies to treat TBI focused on immunomodulatory and/or anti-inflammatory approaches in the pre-clinical setting.

Keywords: Traumatic brain injury, inflammation, treatment, immunomodulatory agents, anti-inflammatory, pathogenesis.

[1]
Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol., 2008, 7(8), 728-741.
[http://dx.doi.org/10.1016/S1474-4422(08)70164-9] [PMID: 18635021]
[2]
Faul, M.; Xu, L.; Wald, M.M.V.G.C. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002-2006; Centers for Disease Control and Prevention, National Center for Injury Prevention and Control: Atlanta, GA, 2010.
[http://dx.doi.org/10.15620/cdc.5571]
[3]
Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill. Summ., 2017, 66(9), 1-16.
[http://dx.doi.org/10.15585/mmwr.ss6609a1] [PMID: 28301451]
[4]
Woodcock, T.; Morganti-Kossmann, M.C. The role of markers of inflammation in traumatic brain injury. Front. Neurol., 2013, 4, 18.
[http://dx.doi.org/10.3389/fneur.2013.00018] [PMID: 23459929]
[5]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[6]
Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain, 2013, 136(Pt 1), 28-42.
[http://dx.doi.org/10.1093/brain/aws322] [PMID: 23365092]
[7]
Kumar, R.G.; Rubin, J.E.; Berger, R.P.; Kochanek, P.M.; Wagner, A.K. Principal components derived from CSF inflammatory profiles predict outcome in survivors after severe traumatic brain injury. Brain Behav. Immun., 2016, 53, 183-193.
[http://dx.doi.org/10.1016/j.bbi.2015.12.008] [PMID: 26705843]
[8]
Loane, D.J.; Kumar, A.; Stoica, B.A.; Cabatbat, R.; Faden, A.I. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J. Neuropathol. Exp. Neurol., 2014, 73(1), 14-29.
[http://dx.doi.org/10.1097/NEN.0000000000000021] [PMID: 24335533]
[9]
Mellergård, P.; Åneman, O.; Sjögren, F.; Säberg, C.; Hillman, J. Differences in cerebral extracellular response of interleukin-1, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans. Neurosurgery, 2011, 68(1), 12-19.
[http://dx.doi.org/10.1227/NEU.0b013e3181ef2a40] [PMID: 21150751]
[10]
Nwachuku, E.L.; Puccio, A.M.; Adeboye, A.; Chang, Y-F.; Kim, J.; Okonkwo, D.O. Time course of cerebrospinal fluid inflammatory biomarkers and relationship to 6-month neurologic outcome in adult severe traumatic brain injury. Clin. Neurol. Neurosurg., 2016, 149, 1-5.
[http://dx.doi.org/10.1016/j.clineuro.2016.06.009] [PMID: 27450760]
[11]
Ramlackhansingh, A.F.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Gentleman, S.; Heckemann, R.A.; Gunanayagam, K.; Gelosa, G.; Sharp, D.J. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol., 2011, 70(3), 374-383.
[http://dx.doi.org/10.1002/ana.22455] [PMID: 21710619]
[12]
Smith, C.; Gentleman, S.M.; Leclercq, P.D.; Murray, L.S.; Griffin, W.S.; Graham, D.I.; Nicoll, J.A. The neuroinflammatory response in humans after traumatic brain injury. Neuropathol. Appl. Neurobiol., 2013, 39(6), 654-666.
[http://dx.doi.org/10.1111/nan.12008] [PMID: 23231074]
[13]
Stein, D.M.; Lindel, A.L.; Murdock, K.R.; Kufera, J.A.; Menaker, J.; Scalea, T.M. Use of serum biomarkers to predict secondary insults following severe traumatic brain injury. Shock, 2012, 37(6), 563-568.
[http://dx.doi.org/10.1097/SHK.0b013e3182534f93] [PMID: 22552017]
[14]
Turtzo, L.C.; Lescher, J.; Janes, L.; Dean, D.D.; Budde, M.D.; Frank, J.A. Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J. Neuroinflammation, 2014, 11, 82.
[http://dx.doi.org/10.1186/1742-2094-11-82] [PMID: 24761998]
[15]
Winter, C.D.; Iannotti, F.; Pringle, A.K.; Trikkas, C.; Clough, G.F.; Church, M.K. A microdialysis method for the recovery of IL-1beta, IL-6 and nerve growth factor from human brain in vivo. J. Neurosci. Methods, 2002, 119(1), 45-50.
[http://dx.doi.org/10.1016/S0165-0270(02)00153-X] [PMID: 12234634]
[16]
Kirchhoff, C.; Buhmann, S.; Bogner, V.; Stegmaier, J.; Leidel, B.A.; Braunstein, V.; Mutschler, W.; Biberthaler, P. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur. J. Med. Res., 2008, 13(10), 464-468.
[PMID: 19008173]
[17]
Maier, B.; Schwerdtfeger, K.; Mautes, A.; Holanda, M.; Müller, M.; Steudel, W.I.; Marzi, I. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock, 2001, 15(6), 421-426.
[http://dx.doi.org/10.1097/00024382-200115060-00002] [PMID: 11386612]
[18]
Shiozaki, T.; Hayakata, T.; Tasaki, O.; Hosotubo, H.; Fuijita, K.; Mouri, T.; Tajima, G.; Kajino, K.; Nakae, H.; Tanaka, H.; Shimazu, T.; Sugimoto, H. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock, 2005, 23(5), 406-410.
[http://dx.doi.org/10.1097/01.shk.0000161385.62758.24] [PMID: 15834305]
[19]
Wojnarowicz, M.W.; Fisher, A.M.; Minaeva, O.; Goldstein, L.E. Considerations for experimental animal models of concussion, traumatic brain injury, and chronic traumatic encephalopathy-these matters matter. Front. Neurol., 2017, 8, 240.
[http://dx.doi.org/10.3389/fneur.2017.00240] [PMID: 28620350]
[20]
Xiong, Y.; Mahmood, A.; Chopp, M. Animal models of traumatic brain injury. Nat. Rev. Neurosci., 2013, 14(2), 128-142.
[http://dx.doi.org/10.1038/nrn3407] [PMID: 23329160]
[21]
Flierl, M.A.; Stahel, P.F.; Beauchamp, K.M.; Morgan, S.J.; Smith, W.R.; Shohami, E. Mouse closed head injury model induced by a weight-drop device. Nat. Protoc., 2009, 4(9), 1328-1337.
[http://dx.doi.org/10.1038/nprot.2009.148] [PMID: 19713954]
[22]
Baratz, R.; Rubovitch, V.; Frenk, H.; Pick, C.G. The influence of alcohol on behavioral recovery after mTBI in mice. J. Neurotrauma, 2010, 27(3), 555-563.
[http://dx.doi.org/10.1089/neu.2009.0891] [PMID: 20001584]
[23]
Schwarzbold, M.L.; Rial, D.; De Bem, T.; Machado, D.G.; Cunha, M.P.; dos Santos, A.A.; dos Santos, D.B.; Figueiredo, C.P.; Farina, M.; Goldfeder, E.M.; Rodrigues, A.L.; Prediger, R.D.; Walz, R. Effects of traumatic brain injury of different severities on emotional, cognitive, and oxidative stress-related parameters in mice. J. Neurotrauma, 2010, 27(10), 1883-1893.
[http://dx.doi.org/10.1089/neu.2010.1318] [PMID: 20649482]
[24]
Albert-Weissenberger, C.; Sirén, A.L. Experimental traumatic brain injury. Exp. Transl. Stroke Med., 2010, 2(1), 16.
[http://dx.doi.org/10.1186/2040-7378-2-16] [PMID: 20707892]
[25]
Cernak, I. Animal models of head trauma. NeuroRx, 2005, 2(3), 410-422.
[http://dx.doi.org/10.1602/neurorx.2.3.410] [PMID: 16389305]
[26]
Onyszchuk, G.; Al-Hafez, B.; He, Y.Y.; Bilgen, M.; Berman, N.E.; Brooks, W.M. A mouse model of sensorimotor controlled cortical impact: characterization using longitudinal magnetic resonance imaging, behavioral assessments and histology. J. Neurosci. Methods, 2007, 160(2), 187-196.
[http://dx.doi.org/10.1016/j.jneumeth.2006.09.007] [PMID: 17049995]
[27]
Smith, D.H.; Soares, H.D.; Pierce, J.S.; Perlman, K.G.; Saatman, K.E.; Meaney, D.F.; Dixon, C.E.; McIntosh, T.K. A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J. Neurotrauma, 1995, 12(2), 169-178.
[http://dx.doi.org/10.1089/neu.1995.12.169] [PMID: 7629863]
[28]
Dixon, C.E.; Lyeth, B.G.; Povlishock, J.T.; Findling, R.L.; Hamm, R.J.; Marmarou, A.; Young, H.F.; Hayes, R.L. A fluid percussion model of experimental brain injury in the rat. J. Neurosurg., 1987, 67(1), 110-119.
[http://dx.doi.org/10.3171/jns.1987.67.1.0110] [PMID: 3598659]
[29]
Katz, P.S.; Molina, P.E. A lateral fluid percussion injury model for studying traumatic brain injury in rats. Methods Mol. Biol., 2018, 1717, 27-36.
[http://dx.doi.org/10.1007/978-1-4939-7526-6_3] [PMID: 29468581]
[30]
Bhowmick, S.; D’Mello, V.; Ponery, N.; Abdul-Muneer, P.M. Neurodegeneration and sensorimotor deficits in the mouse model of traumatic brain injury. Brain Sci., 2018, 8(1), E11.
[http://dx.doi.org/10.3390/brainsci8010011] [PMID: 29316623]
[31]
Hamm, R.J. Neurobehavioral assessment of outcome following traumatic brain injury in rats: an evaluation of selected measures. J. Neurotrauma, 2001, 18(11), 1207-1216.
[http://dx.doi.org/10.1089/089771501317095241] [PMID: 11721739]
[32]
Hausser, N.; Johnson, K.; Parsley, M.A.; Guptarak, J.; Spratt, H.; Sell, S.L. Detecting behavioral deficits in rats after traumatic brain injury. J. Vis. Exp., 2018, (131), 131.
[http://dx.doi.org/10.3791/56044] [PMID: 29443022]
[33]
Jassam, Y.N.; Izzy, S.; Whalen, M.; McGavern, D.B.; El Khoury, J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron, 2017, 95(6), 1246-1265.
[http://dx.doi.org/10.1016/j.neuron.2017.07.010] [PMID: 28910616]
[34]
Corps, K.N.; Roth, T.L.; McGavern, D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol., 2015, 72(3), 355-362.
[http://dx.doi.org/10.1001/jamaneurol.2014.3558] [PMID: 25599342]
[35]
Fellner, L.; Irschick, R.; Schanda, K.; Reindl, M.; Klimaschewski, L.; Poewe, W.; Wenning, G.K.; Stefanova, N. Toll-like receptor 4 is required for -synuclein dependent activation of microglia and astroglia. Glia, 2013, 61(3), 349-360.
[http://dx.doi.org/10.1002/glia.22437] [PMID: 23108585]
[36]
Junger, W.G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol., 2011, 11(3), 201-212.
[http://dx.doi.org/10.1038/nri2938] [PMID: 21331080]
[37]
Lee, H.; Lee, S.; Cho, I.H.; Lee, S.J. Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr. Protein Pept. Sci., 2013, 14(1), 33-42.
[http://dx.doi.org/10.2174/1389203711314010006] [PMID: 23441900]
[38]
Ahmad, A.; Crupi, R.; Campolo, M.; Genovese, T.; Esposito, E.; Cuzzocrea, S. Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS One, 2013, 8(3), e57208.
[http://dx.doi.org/10.1371/journal.pone.0057208] [PMID: 23555560]
[39]
Jounai, N.; Kobiyama, K.; Takeshita, F. Intracellular inflammatory sensors for foreign invaders and substances of self-origin. Adv. Exp. Med. Biol., 2012, 738, 60-78.
[http://dx.doi.org/10.1007/978-1-4614-1680-7_5] [PMID: 22399374]
[40]
PrabhuDas, M.R.; Baldwin, C.L.; Bollyky, P.L.; Bowdish, D.M.E.; Drickamer, K.; Febbraio, M.; Herz, J.; Kobzik, L.; Krieger, M.; Loike, J.; McVicker, B.; Means, T.K.; Moestrup, S.K.; Post, S.R.; Sawamura, T.; Khoury, J.E. A consensus definitive classification of scavenger receptors and their roles in health and disease. J. Immunol., 2017, 198(10), 3775-3789.
[http://dx.doi.org/10.4049/jimmunol.1700373] [PMID: 28483986]
[41]
Gao, T.L.; Yuan, X.T.; Yang, D.; Dai, H.L.; Wang, W.J.; Peng, X.; Shao, H.J.; Jin, Z.F.; Fu, Z.J. Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury. J. Trauma Acute Care Surg., 2012, 72(3), 643-649.
[http://dx.doi.org/10.1097/TA.0b013e31823c54a6] [PMID: 22491548]
[42]
Hernandez-Ontiveros, D.G.; Tajiri, N.; Acosta, S.; Giunta, B.; Tan, J.; Borlongan, C.V. Microglia activation as a biomarker for traumatic brain injury. Front. Neurol., 2013, 4, 30.
[http://dx.doi.org/10.3389/fneur.2013.00030] [PMID: 23531681]
[43]
Hang, C.H.; Shi, J.X.; Li, J.S.; Wu, W.; Yin, H.X. Concomitant upregulation of nuclear factor-kB activity, proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model. Neurol. India, 2005, 53(3), 312-317.
[http://dx.doi.org/10.4103/0028-3886.16930] [PMID: 16230799]
[44]
Adamczak, S.; Dale, G.; de Rivero Vaccari, J.P.; Bullock, M.R.; Dietrich, W.D.; Keane, R.W. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J. Neurosurg., 2012, 117(6), 1119-1125.
[http://dx.doi.org/10.3171/2012.9.JNS12815] [PMID: 23061392]
[45]
Liu, H.D.; Li, W.; Chen, Z.R.; Hu, Y.C.; Zhang, D.D.; Shen, W.; Zhou, M.L.; Zhu, L.; Hang, C.H. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem. Res., 2013, 38(10), 2072-2083.
[http://dx.doi.org/10.1007/s11064-013-1115-z] [PMID: 23892989]
[46]
Walsh, J.G.; Muruve, D.A.; Power, C. Inflammasomes in the CNS. Nat. Rev. Neurosci., 2014, 15(2), 84-97.
[http://dx.doi.org/10.1038/nrn3638] [PMID: 24399084]
[47]
Monif, M.; Reid, C.A.; Powell, K.L.; Smart, M.L.; Williams, D.A. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J. Neurosci., 2009, 29(12), 3781-3791.
[http://dx.doi.org/10.1523/JNEUROSCI.5512-08.2009] [PMID: 19321774]
[48]
Roth, T.L.; Nayak, D.; Atanasijevic, T.; Koretsky, A.P.; Latour, L.L.; McGavern, D.B. Transcranial amelioration of inflammation and cell death after brain injury. Nature, 2014, 505(7482), 223-228.
[http://dx.doi.org/10.1038/nature12808] [PMID: 24317693]
[49]
Kimbler, D.E.; Shields, J.; Yanasak, N.; Vender, J.R.; Dhandapani, K.M. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One, 2012, 7(7), e41229.
[http://dx.doi.org/10.1371/journal.pone.0041229] [PMID: 22815977]
[50]
Talley Watts, L.; Sprague, S.; Zheng, W.; Garling, R.J.; Jimenez, D.; Digicaylioglu, M.; Lechleiter, J. Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model. J. Neurotrauma, 2013, 30(1), 55-66.
[http://dx.doi.org/10.1089/neu.2012.2488] [PMID: 23046422]
[51]
Burda, J.E.; Sofroniew, M.V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 2014, 81(2), 229-248.
[http://dx.doi.org/10.1016/j.neuron.2013.12.034] [PMID: 24462092]
[52]
Karve, I.P.; Taylor, J.M.; Crack, P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 2016, 173(4), 692-702.
[http://dx.doi.org/10.1111/bph.13125] [PMID: 25752446]
[53]
Rhind, S.G.; Crnko, N.T.; Baker, A.J.; Morrison, L.J.; Shek, P.N.; Scarpelini, S.; Rizoli, S.B. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients. J. Neuroinflammation, 2010, 7, 5.
[http://dx.doi.org/10.1186/1742-2094-7-5] [PMID: 20082712]
[54]
McDonald, B.; Pittman, K.; Menezes, G.B.; Hirota, S.A.; Slaba, I.; Waterhouse, C.C.; Beck, P.L.; Muruve, D.A.; Kubes, P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science, 2010, 330(6002), 362-366.
[http://dx.doi.org/10.1126/science.1195491] [PMID: 20947763]
[55]
Szmydynger-Chodobska, J.; Strazielle, N.; Zink, B.J.; Ghersi-Egea, J.F.; Chodobski, A. The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J. Cereb. Blood Flow Metab., 2009, 29(9), 1503-1516.
[http://dx.doi.org/10.1038/jcbfm.2009.71] [PMID: 19471279]
[56]
Szmydynger-Chodobska, J.; Shan, R.; Thomasian, N.; Chodobski, A. The involvement of pial microvessels in leukocyte invasion after mild traumatic brain injury. PLoS One, 2016, 11(12), e0167677.
[http://dx.doi.org/10.1371/journal.pone.0167677] [PMID: 28030563]
[57]
Kenne, E.; Erlandsson, A.; Lindbom, L.; Hillered, L.; Clausen, F. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice. J. Neuroinflammation, 2012, 9, 17.
[http://dx.doi.org/10.1186/1742-2094-9-17] [PMID: 22269349]
[58]
Liao, Y.; Liu, P.; Guo, F.; Zhang, Z.Y.; Zhang, Z. Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS One, 2013, 8(7), e68963.
[http://dx.doi.org/10.1371/journal.pone.0068963] [PMID: 23894384]
[59]
Semple, B.D.; Bye, N.; Rancan, M.; Ziebell, J.M.; Morganti-Kossmann, M.C. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J. Cereb. Blood Flow Metab., 2010, 30(4), 769-782.
[http://dx.doi.org/10.1038/jcbfm.2009.262] [PMID: 20029451]
[60]
Weaver, L.C.; Bao, F.; Dekaban, G.A.; Hryciw, T.; Shultz, S.R.; Cain, D.P.; Brown, A. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Exp. Neurol., 2015, 271, 409-422.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.003] [PMID: 26169930]
[61]
Lämmermann, T.; Afonso, P.V.; Angermann, B.R.; Wang, J.M.; Kastenmüller, W.; Parent, C.A.; Germain, R.N. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature, 2013, 498(7454), 371-375.
[http://dx.doi.org/10.1038/nature12175] [PMID: 23708969]
[62]
Stirling, D.P.; Liu, S.; Kubes, P.; Yong, V.W. Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J. Neurosci., 2009, 29(3), 753-764.
[http://dx.doi.org/10.1523/JNEUROSCI.4918-08.2009] [PMID: 19158301]
[63]
Gyoneva, S.; Kim, D.; Katsumoto, A.; Kokiko-Cochran, O.N.; Lamb, B.T.; Ransohoff, R.M. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J. Neuroinflammation, 2015, 12, 228.
[http://dx.doi.org/10.1186/s12974-015-0443-0] [PMID: 26634348]
[64]
Semple, B.D.; Bye, N.; Ziebell, J.M.; Morganti-Kossmann, M.C. Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol. Dis., 2010, 40(2), 394-403.
[http://dx.doi.org/10.1016/j.nbd.2010.06.015] [PMID: 20621186]
[65]
Szmydynger-Chodobska, J.; Strazielle, N.; Gandy, J.R.; Keefe, T.H.; Zink, B.J.; Ghersi-Egea, J.F.; Chodobski, A. Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J. Cereb. Blood Flow Metab., 2012, 32(1), 93-104.
[http://dx.doi.org/10.1038/jcbfm.2011.111] [PMID: 21829211]
[66]
Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3), 450-462.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[67]
Clausen, F.; Lorant, T.; Lewén, A.; Hillered, L. T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J. Neurotrauma, 2007, 24(8), 1295-1307.
[http://dx.doi.org/10.1089/neu.2006.0258] [PMID: 17711391]
[68]
Czigner, A.; Mihály, A.; Farkas, O.; Büki, A.; Krisztin-Péva, B.; Dobó, E.; Barzó, P. Kinetics of the cellular immune response following closed head injury. Acta Neurochir. (Wien), 2007, 149(3), 281-289.
[http://dx.doi.org/10.1007/s00701-006-1095-8] [PMID: 17288002]
[69]
Lenzlinger, P.M.; Hans, V.H.; Jöller-Jemelka, H.I.; Trentz, O.; Morganti-Kossmann, M.C.; Kossmann, T. Markers for cell-mediated immune response are elevated in cerebrospinal fluid and serum after severe traumatic brain injury in humans. J. Neurotrauma, 2001, 18(5), 479-489.
[http://dx.doi.org/10.1089/089771501300227288] [PMID: 11393251]
[70]
Poon, I.K.H.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol., 2014, 14(3), 166-180.
[http://dx.doi.org/10.1038/nri3607] [PMID: 24481336]
[71]
Szondy, Z.; Sarang, Z.; Kiss, B.; Garabuczi, É.; Köröskényi, K. Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front. Immunol., 2017, 8, 909.
[http://dx.doi.org/10.3389/fimmu.2017.00909] [PMID: 28824635]
[72]
Yang, Y.; Jiang, G.; Zhang, P.; Fan, J. Programmed cell death and its role in inflammation. Mil. Med. Res., 2015, 2, 12-12.
[http://dx.doi.org/10.1186/s40779-015-0039-0] [PMID: 26045969]
[73]
Fann, J.R.; Ribe, A.R.; Pedersen, H.S.; Fenger-Grøn, M.; Christensen, J.; Benros, M.E.; Vestergaard, M. Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry, 2018, 5(5), 424-431.
[http://dx.doi.org/10.1016/S2215-0366(18)30065-8] [PMID: 29653873]
[74]
Hellewell, S.; Semple, B.D.; Morganti-Kossmann, M.C. Therapies negating neuroinflammation after brain trauma. Brain Res.,, 2016, 1640(Pt A), 36-56.
[http://dx.doi.org/10.1016/j.brainres.2015.12.024] [PMID: 26740405]
[75]
Koponen, S.; Taiminen, T.; Portin, R.; Himanen, L.; Isoniemi, H.; Heinonen, H.; Hinkka, S.; Tenovuo, O. Axis I and II psychiatric disorders after traumatic brain injury: a 30-year follow-up study. Am. J. Psychiatry, 2002, 159(8), 1315-1321.
[http://dx.doi.org/10.1176/appi.ajp.159.8.1315] [PMID: 12153823]
[76]
Xu, X.; Gao, W.; Cheng, S.; Yin, D.; Li, F.; Wu, Y.; Sun, D.; Zhou, S.; Wang, D.; Zhang, Y.; Jiang, R.; Zhang, J. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J. Neuroinflammation, 2017, 14(1), 167.
[http://dx.doi.org/10.1186/s12974-017-0934-2] [PMID: 28835272]
[77]
Gu, Y.; Chen, J.; Wang, T.; Zhou, C.; Liu, Z.; Ma, L. Hsp70 inducer, 17-allylamino-demethoxygeldanamycin, provides neuroprotection via anti-inflammatory effects in a rat model of traumatic brain injury. Exp. Ther. Med., 2016, 12(6), 3767-3772.
[http://dx.doi.org/10.3892/etm.2016.3821] [PMID: 28101166]
[78]
Kim, N.; Kim, J.Y.; Yenari, M.A. Pharmacological induction of the 70-kDa heat shock protein protects against brain injury. Neuroscience, 2015, 284, 912-919.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.010] [PMID: 25446362]
[79]
Kim, J.Y.; Kim, N.; Zheng, Z.; Lee, J.E.; Yenari, M.A. The 70 kDa heat shock protein protects against experimental traumatic brain injury. Neurobiol. Dis., 2013, 58, 289-295.
[http://dx.doi.org/10.1016/j.nbd.2013.06.012] [PMID: 23816752]
[80]
Teema, A.M.; Zaitone, S.A.; Moustafa, Y.M. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology, 2016, 107, 432-450.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.034] [PMID: 27016022]
[81]
Wallenquist, U.; Holmqvist, K.; Hånell, A.; Marklund, N.; Hillered, L.; Forsberg-Nilsson, K. Ibuprofen attenuates the inflammatory response and allows formation of migratory neuroblasts from grafted stem cells after traumatic brain injury. Restor. Neurol. Neurosci., 2012, 30(1), 9-19.
[http://dx.doi.org/10.3233/RNN-2011-0606] [PMID: 22377906]
[82]
Keshavarzi, Z.; Khaksari, M.; Razmi, Z.; Soltani Hekmat, A.; Naderi, V.; Rostami, S. The effects of cyclooxygenase inhibitors on the brain inflammatory response following traumatic brain injury in rats. Iran. J. Basic Med. Sci., 2012, 15(5), 1102-1105.
[PMID: 23492757]
[83]
Harrison, J.L.; Rowe, R.K.; O’Hara, B.F.; Adelson, P.D.; Lifshitz, J. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse. Exp. Brain Res., 2014, 232(9), 2709-2719.
[http://dx.doi.org/10.1007/s00221-014-3948-3] [PMID: 24760409]
[84]
Chao, P.K.; Lu, K.T.; Jhu, J.Y.; Wo, Y.Y.; Huang, T.C.; Ro, L.S.; Yang, Y.L. Indomethacin protects rats from neuronal damage induced by traumatic brain injury and suppresses hippocampal IL-1β release through the inhibition of Nogo-A expression. J. Neuroinflammation, 2012, 9, 121.
[http://dx.doi.org/10.1186/1742-2094-9-121] [PMID: 22676811]
[85]
Browne, K.D.; Iwata, A.; Putt, M.E.; Smith, D.H. Chronic ibuprofen administration worsens cognitive outcome following traumatic brain injury in rats. Exp. Neurol., 2006, 201(2), 301-307.
[http://dx.doi.org/10.1016/j.expneurol.2006.04.008] [PMID: 16764859]
[86]
Butterworth, R.F. Neurosteroids in hepatic encephalopathy: Novel insights and new therapeutic opportunities. J. Steroid Biochem. Mol. Biol., 2016, 160, 94-97.
[http://dx.doi.org/10.1016/j.jsbmb.2015.11.006] [PMID: 26589093]
[87]
Lopes, R.S.; Cardoso, M.M.; Sampaio, A.O.; Barbosa, M.S., Jr; Souza, C.C.; DA, Silva M.C.; Ferreira, E.M.; Freire, M.A.; Lima, R.R.; Gomes-Leal, W. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J. Biosci., 2016, 41(3), 381-394.
[http://dx.doi.org/10.1007/s12038-016-9621-1] [PMID: 27581930]
[88]
Girgis, H.; Palmier, B.; Croci, N.; Soustrat, M.; Plotkine, M.; Marchand-Leroux, C. Effects of selective and non-selective cyclooxygenase inhibition against neurological deficit and brain oedema following closed head injury in mice. Brain Res., 2013, 1491, 78-87.
[http://dx.doi.org/10.1016/j.brainres.2012.10.049] [PMID: 23122881]
[89]
Schaffer, M.; Beiter, T.; Becker, H.D.; Hunt, T.K. Neuropeptides: mediators of inflammation and tissue repair? Arch. Surg., 1998, 133(10), 1107-1116.
[http://dx.doi.org/10.1001/archsurg.133.10.1107] [PMID: 9790210]
[90]
Holzer, P. Neurogenic vasodilatation and plasma leakage in the skin. Gen. Pharmacol., 1998, 30(1), 5-11.
[http://dx.doi.org/10.1016/S0306-3623(97)00078-5] [PMID: 9457475]
[91]
Averbeck, B.; Reeh, P.W. Interactions of inflammatory mediators stimulating release of calcitonin gene-related peptide, substance P and prostaglandin E(2) from isolated rat skin. Neuropharmacology, 2001, 40(3), 416-423.
[http://dx.doi.org/10.1016/S0028-3908(00)00171-4] [PMID: 11166334]
[92]
O’Connor, T.M.; O’Connell, J.; O’Brien, D.I.; Goode, T.; Bredin, C.P.; Shanahan, F. The role of substance P in inflammatory disease. J. Cell. Physiol., 2004, 201(2), 167-180.
[http://dx.doi.org/10.1002/jcp.20061] [PMID: 15334652]
[93]
Corrigan, F.; Leonard, A.; Ghabriel, M.; Van Den Heuvel, C.; Vink, R. A substance P antagonist improves outcome in female Sprague Dawley rats following diffuse traumatic brain injury. CNS Neurosci. Ther., 2012, 18(6), 513-515.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00332.x] [PMID: 22672307]
[94]
Donkin, J.J.; Nimmo, A.J.; Cernak, I.; Blumbergs, P.C.; Vink, R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J. Cereb. Blood Flow Metab., 2009, 29(8), 1388-1398.
[http://dx.doi.org/10.1038/jcbfm.2009.63] [PMID: 19436311]
[95]
Donkin, J.J.; Cernak, I.; Blumbergs, P.C.; Vink, R. A substance P antagonist reduces axonal injury and improves neurologic outcome when administered up to 12 hours after traumatic brain injury. J. Neurotrauma, 2011, 28(2), 217-224.
[http://dx.doi.org/10.1089/neu.2010.1632] [PMID: 21175297]
[96]
Kim, S.S.; Kong, P.J.; Kim, B.S.; Sheen, D.H.; Nam, S.Y.; Chun, W. Inhibitory action of minocycline on lipopolysaccharide-induced release of nitric oxide and prostaglandin E2 in BV2 microglial cells. Arch. Pharm. Res., 2004, 27(3), 314-318.
[http://dx.doi.org/10.1007/BF02980066] [PMID: 15089037]
[97]
Chaves, C.; Marque, C.R.; Trzesniak, C.; Machado de Sousa, J.P.; Zuardi, A.W.; Crippa, J.A.; Dursun, S.M.; Hallak, J.E. Glutamate-N-methyl-D-aspartate receptor modulation and minocycline for the treatment of patients with schizophrenia: an update. Braz. J. Med. Biol. Res., 2009, 42(11), 1002-1014.
[http://dx.doi.org/10.1590/S0100-879X2009001100002] [PMID: 19855900]
[98]
Chaudhry, I.B.; Hallak, J.; Husain, N.; Minhas, F.; Stirling, J.; Richardson, P.; Dursun, S.; Dunn, G.; Deakin, B. Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J. Psychopharmacol. (Oxford), 2012, 26(9), 1185-1193.
[http://dx.doi.org/10.1177/0269881112444941] [PMID: 22526685]
[99]
Levkovitz, Y.; Mendlovich, S.; Riwkes, S.; Braw, Y.; Levkovitch-Verbin, H.; Gal, G.; Fennig, S.; Treves, I.; Kron, S. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J. Clin. Psychiatry, 2010, 71(2), 138-149.
[http://dx.doi.org/10.4088/JCP.08m04666yel] [PMID: 19895780]
[100]
Xiang, Y.Q.; Zheng, W.; Wang, S.B.; Yang, X.H.; Cai, D.B.; Ng, C.H.; Ungvari, G.S.; Kelly, D.L.; Xu, W.Y.; Xiang, Y.T. Adjunctive minocycline for schizophrenia: A meta-analysis of randomized controlled trials. Eur. Neuropsych., 2017, 27(1), 8-18.
[http://dx.doi.org/10.1016/j.euroneuro.2016.11.012]
[101]
Homsi, S.; Federico, F.; Croci, N.; Palmier, B.; Plotkine, M.; Marchand-Leroux, C.; Jafarian-Tehrani, M. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res., 2009, 1291, 122-132.
[http://dx.doi.org/10.1016/j.brainres.2009.07.031] [PMID: 19631631]
[102]
Homsi, S.; Piaggio, T.; Croci, N.; Noble, F.; Plotkine, M.; Marchand-Leroux, C.; Jafarian-Tehrani, M. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J. Neurotrauma, 2010, 27(5), 911-921.
[http://dx.doi.org/10.1089/neu.2009.1223] [PMID: 20166806]
[103]
Siopi, E.; Cho, A.H.; Homsi, S.; Croci, N.; Plotkine, M.; Marchand-Leroux, C.; Jafarian-Tehrani, M. Minocycline restores sAPP levels and reduces the late histopathological consequences of traumatic brain injury in mice. J. Neurotrauma, 2011, 28(10), 2135-2143.
[http://dx.doi.org/10.1089/neu.2010.1738] [PMID: 21770756]
[104]
Ng, S.Y.; Semple, B.D.; Morganti-Kossmann, M.C.; Bye, N. Attenuation of microglial activation with minocycline is not associated with changes in neurogenesis after focal traumatic brain injury in adult mice. J. Neurotrauma, 2012, 29(7), 1410-1425.
[http://dx.doi.org/10.1089/neu.2011.2188] [PMID: 22260446]
[105]
Lam, T.I.; Bingham, D.; Chang, T.J.; Lee, C.C.; Shi, J.; Wang, D.; Massa, S.; Swanson, R.A.; Liu, J. Beneficial effects of minocycline and botulinum toxin-induced constraint physical therapy following experimental traumatic brain injury. Neurorehabil. Neural Repair, 2013, 27(9), 889-899.
[http://dx.doi.org/10.1177/1545968313491003] [PMID: 23778701]
[106]
Sani, G.; Serra, G.; Kotzalidis, G.D.; Romano, S.; Tamorri, S.M.; Manfredi, G.; Caloro, M.; Telesforo, C.L.; Caltagirone, S.S.; Panaccione, I.; Simonetti, A.; Demontis, F.; Serra, G.; Girardi, P. The role of memantine in the treatment of psychiatric disorders other than the dementias: a review of current preclinical and clinical evidence. CNS Drugs, 2012, 26(8), 663-690.
[http://dx.doi.org/10.2165/11634390-000000000-00000] [PMID: 22784018]
[107]
Abdel Baki, S.G.; Schwab, B.; Haber, M.; Fenton, A.A.; Bergold, P.J. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS One, 2010, 5(8), e12490.
[http://dx.doi.org/10.1371/journal.pone.0012490] [PMID: 20824218]
[108]
Haber, M.; Abdel Baki, S.G.; Grin’kina, N.M.; Irizarry, R.; Ershova, A.; Orsi, S.; Grill, R.J.; Dash, P.; Bergold, P.J. Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp. Neurol., 2013, 249, 169-177.
[http://dx.doi.org/10.1016/j.expneurol.2013.09.002] [PMID: 24036416]
[109]
Haber, M.; James, J.; Kim, J.; Sangobowale, M.; Irizarry, R.; Ho, J.; Nikulina, E.; Grin’kina, N.M.; Ramadani, A.; Hartman, I.; Bergold, P.J. Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J. Cereb. Blood Flow Metab., 2018, 38(8), 1312-1326.
[http://dx.doi.org/10.1177/0271678X17718106] [PMID: 28685618]
[110]
Kumar, A.; Rinwa, P.; Dhar, H. Microglial inhibitory effect of ginseng ameliorates cognitive deficits and neuroinflammation following traumatic head injury in rats. Inflammopharmacology, 2014, 22(3), 155-167.
[http://dx.doi.org/10.1007/s10787-013-0187-3] [PMID: 24052247]
[111]
Rabie, T.; Marti, H.H. Brain protection by erythropoietin: a manifold task. Physiology (Bethesda), 2008, 23, 263-274.
[http://dx.doi.org/10.1152/physiol.00016.2008] [PMID: 18927202]
[112]
Fernando, G.; Yamila, R.; Cesar, G.J.; Ramón, R. Neuroprotective Effects of neuroEPO Using an In Vitro Model of Stroke. Behav. Sci. (Basel), 2018, 8(2), 26.
[http://dx.doi.org/10.3390/bs8020026] [PMID: 29438293]
[113]
Erbaş, O.; Çınar, B.P.; Solmaz, V.; Çavuşoğlu, T.; Ateş, U. The neuroprotective effect of erythropoietin on experimental Parkinson model in rats. Neuropeptides, 2015, 49, 1-5.
[http://dx.doi.org/10.1016/j.npep.2014.10.003] [PMID: 25464888]
[114]
Jang, W.; Park, J.; Shin, K.J.; Kim, J.S.; Kim, J.S.; Youn, J.; Cho, J.W.; Oh, E.; Ahn, J.Y.; Oh, K.W.; Kim, H.T. Safety and efficacy of recombinant human erythropoietin treatment of non-motor symptoms in Parkinson’s disease. J. Neurol. Sci., 2014, 337(1-2), 47-54.
[http://dx.doi.org/10.1016/j.jns.2013.11.015] [PMID: 24289887]
[115]
Nadam, J.; Navarro, F.; Sanchez, P.; Moulin, C.; Georges, B.; Laglaine, A.; Pequignot, J.M.; Morales, A.; Ryvlin, P.; Bezin, L. Neuroprotective effects of erythropoietin in the rat hippocampus after pilocarpine-induced status epilepticus. Neurobiol. Dis., 2007, 25(2), 412-426.
[http://dx.doi.org/10.1016/j.nbd.2006.10.009] [PMID: 17166730]
[116]
Chen, G.; Shi, J.X.; Hang, C.H.; Xie, W.; Liu, J.; Liu, X. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci. Lett., 2007, 425(3), 177-182.
[http://dx.doi.org/10.1016/j.neulet.2007.08.022] [PMID: 17825990]
[117]
Verdonck, O.; Lahrech, H.; Francony, G.; Carle, O.; Farion, R.; Van de Looij, Y.; Remy, C.; Segebarth, C.; Payen, J.F. Erythropoietin protects from post-traumatic edema in the rat brain. J. Cereb. Blood Flow Metab., 2007, 27(7), 1369-1376.
[http://dx.doi.org/10.1038/sj.jcbfm.9600443] [PMID: 17264861]
[118]
Yatsiv, I.; Grigoriadis, N.; Simeonidou, C.; Stahel, P.F.; Schmidt, O.I.; Alexandrovitch, A.G.; Tsenter, J.; Shohami, E. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J., 2005, 19(12), 1701-1703.
[http://dx.doi.org/10.1096/fj.05-3907fje] [PMID: 16099948]
[119]
Vollmer, T.L.; Sorensen, P.S.; Selmaj, K.; Zipp, F.; Havrdova, E.; Cohen, J.A.; Sasson, N.; Gilgun-Sherki, Y.; Arnold, D.L. BRAVO Study Group A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J. Neurol., 2014, 261(4), 773-783.
[http://dx.doi.org/10.1007/s00415-014-7264-4] [PMID: 24535134]
[120]
Jin, W.; Kong, J.; Lu, T.; Wang, H.; Ni, H.; Wu, J.; Dai, Y.; Jiang, J.; Liang, W. Erythropoietin prevents secondary brain injury induced by cortical lesion in mice: possible involvement of Nrf2 signaling pathway. Ann. Clin. Lab. Sci., 2011, 41(1), 25-32.
[PMID: 21325251]
[121]
Valable, S.; Francony, G.; Bouzat, P.; Fevre, M.C.; Mahious, N.; Bouet, V.; Farion, R.; Barbier, E.; Lahrech, H.; Remy, C.; Petit, E.; Segebarth, C.; Bernaudin, M.; Payen, J.F. The impact of erythropoietin on short-term changes in phosphorylation of brain protein kinases in a rat model of traumatic brain injury. J. Cereb. Blood Flow Metab., 2010, 30(2), 361-369.
[http://dx.doi.org/10.1038/jcbfm.2009.222] [PMID: 19809465]
[122]
Kertmen, H.; Gürer, B.; Yilmaz, E.R.; Kanat, M.A.; Arikok, A.T.; Ergüder, B.I.; Hasturk, A.E.; Ergil, J.; Sekerci, Z. Antioxidant and antiapoptotic effects of darbepoetin- against traumatic brain injury in rats. Arch. Med. Sci., 2015, 11(5), 1119-1128.
[http://dx.doi.org/10.5114/aoms.2015.54869] [PMID: 26528358]
[123]
Zhou, Z-W.; Li, F.; Zheng, Z-T.; Li, Y-D.; Chen, T-H.; Gao, W-W.; Chen, J-L.; Zhang, J-N. Erythropoietin regulates immune/inflammatory reaction and improves neurological function outcomes in traumatic brain injury. Brain Behav., 2017, 7(11), e00827-e00827.
[http://dx.doi.org/10.1002/brb3.827] [PMID: 29201540]
[124]
López-Muñoz, F.; Shen, W.W.; D’Ocon, P.; Romero, A.; Álamo, C. A history of the pharmacological treatment of bipolar disorder. Int. J. Mol. Sci., 2018, 19(7), 2143.
[http://dx.doi.org/10.3390/ijms19072143] [PMID: 30041458]
[125]
Dash, P.K.; Johnson, D.; Clark, J.; Orsi, S.A.; Zhang, M.; Zhao, J.; Grill, R.J.; Moore, A.N.; Pati, S. Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One, 2011, 6(9), e24648.
[http://dx.doi.org/10.1371/journal.pone.0024648] [PMID: 21935433]
[126]
Dell’Osso, L.; Del Grande, C.; Gesi, C.; Carmassi, C.; Musetti, L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr. Dis. Treat., 2016, 12, 1687-1703.
[http://dx.doi.org/10.2147/NDT.S106479] [PMID: 27468233]
[127]
Yu, F.; Wang, Z.; Tanaka, M.; Chiu, C.T.; Leeds, P.; Zhang, Y.; Chuang, D.M. Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. J. Neurosurg., 2013, 119(3), 766-773.
[http://dx.doi.org/10.3171/2013.6.JNS13135] [PMID: 23848820]
[128]
Yu, F.; Wang, Z.; Tchantchou, F.; Chiu, C.T.; Zhang, Y.; Chuang, D.M. Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J. Neurotrauma, 2012, 29(2), 362-374.
[http://dx.doi.org/10.1089/neu.2011.1942] [PMID: 21895523]
[129]
Zhu, Z.F.; Wang, Q.G.; Han, B.J.; William, C.P. Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res. Bull., 2010, 83(5), 272-277.
[http://dx.doi.org/10.1016/j.brainresbull.2010.07.008] [PMID: 20638460]
[130]
Welch, W.J.; Brown, C.R. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones, 1996, 1(2), 109-115.
[http://dx.doi.org/10.1379/1466-1268(1996)001<0109: IOMACC>2.3.CO;2] [PMID: 9222596]
[131]
Van Molle, W.; Wielockx, B.; Mahieu, T.; Takada, M.; Taniguchi, T.; Sekikawa, K.; Libert, C. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity, 2002, 16(5), 685-695.
[http://dx.doi.org/10.1016/S1074-7613(02)00310-2] [PMID: 12049720]
[132]
van der Weerd, L.; Lythgoe, M.F.; Badin, R.A.; Valentim, L.M.; Akbar, M.T.; de Belleroche, J.S.; Latchman, D.S.; Gadian, D.G. Neuroprotective effects of HSP70 overexpression after cerebral ischaemia--an MRI study. Exp. Neurol., 2005, 195(1), 257-266.
[http://dx.doi.org/10.1016/j.expneurol.2005.05.002] [PMID: 15936758]
[133]
Yasuda, H.; Shichinohe, H.; Kuroda, S.; Ishikawa, T.; Iwasaki, Y. Neuroprotective effect of a heat shock protein inducer, geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res., 2005, 1032(1-2), 176-182.
[http://dx.doi.org/10.1016/j.brainres.2004.11.009] [PMID: 15680957]
[134]
Eroglu, B.; Kimbler, D.E.; Pang, J.; Choi, J.; Moskophidis, D.; Yanasak, N.; Dhandapani, K.M.; Mivechi, N.F. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J. Neurochem., 2014, 130(5), 626-641.
[http://dx.doi.org/10.1111/jnc.12781] [PMID: 24903326]
[135]
Zhao, Z.; Faden, A.I.; Loane, D.J.; Lipinski, M.M.; Sabirzhanov, B.; Stoica, B.A. Neuroprotective effects of geranylgeranylacetone in experimental traumatic brain injury. J. Cereb. Blood Flow Metab., 2013, 33(12), 1897-1908.
[http://dx.doi.org/10.1038/jcbfm.2013.144] [PMID: 23942364]
[136]
Lu, D.; Qu, C.; Goussev, A.; Jiang, H.; Lu, C.; Schallert, T.; Mahmood, A.; Chen, J.; Li, Y.; Chopp, M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J. Neurotrauma, 2007, 24(7), 1132-1146.
[http://dx.doi.org/10.1089/neu.2007.0288] [PMID: 17610353]
[137]
Qu, C.; Lu, D.; Goussev, A.; Schallert, T.; Mahmood, A.; Chopp, M. Effect of atorvastatin on spatial memory, neuronal survival, and vascular density in female rats after traumatic brain injury. J. Neurosurg., 2005, 103(4), 695-701.
[http://dx.doi.org/10.3171/jns.2005.103.4.0695] [PMID: 16266052]
[138]
Wang, H.; Lynch, J.R.; Song, P.; Yang, H.J.; Yates, R.B.; Mace, B.; Warner, D.S.; Guyton, J.R.; Laskowitz, D.T. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp. Neurol., 2007, 206(1), 59-69.
[http://dx.doi.org/10.1016/j.expneurol.2007.03.031] [PMID: 17521631]
[139]
Wible, E.F.; Laskowitz, D.T. Statins in traumatic brain injury. Neurotherapeutics, 2010, 7(1), 62-73.
[http://dx.doi.org/10.1016/j.nurt.2009.11.003] [PMID: 20129498]
[140]
Mishra, M.K.; Wang, J.; Keough, M.B.; Fan, Y.; Silva, C.; Sloka, S.; Hayardeny, L.; Brück, W.; Yong, V.W. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann. Clin. Transl. Neurol., 2014, 1(6), 409-422.
[http://dx.doi.org/10.1002/acn3.67] [PMID: 25356411]
[141]
Mishra, M.K.; Wang, J.; Silva, C.; Mack, M.; Yong, V.W. Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am. J. Pathol., 2012, 181(2), 642-651.
[http://dx.doi.org/10.1016/j.ajpath.2012.05.011] [PMID: 22749771]
[142]
Katsumoto, A.; Miranda, A.S.; Butovsky, O.; Teixeira, A.L.; Ransohoff, R.M.; Lamb, B.T. Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model. J. Neuroinflam., 2018, 15(1), 26.
[http://dx.doi.org/10.1186/s12974-018-1075-y] [PMID: 29382353]
[143]
Tayeb, H.O.; Yang, H.D.; Price, B.H.; Tarazi, F.I. Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol. Ther., 2012, 134(1), 8-25.
[http://dx.doi.org/10.1016/j.pharmthera.2011.12.002] [PMID: 22198801]
[144]
Kumar, A.; Singh, A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[145]
Stubendorff, K.; Larsson, V.; Ballard, C.; Minthon, L.; Aarsland, D.; Londos, E. Treatment effect of memantine on survival in dementia with Lewy bodies and Parkinson’s disease with dementia: a prospective study. BMJ Open, 2014, 4(7), e005158.
[http://dx.doi.org/10.1136/bmjopen-2014-005158] [PMID: 24993765]
[146]
Wang, C.C.; Wee, H.Y.; Hu, C.Y.; Chio, C.C.; Kuo, J.R. The effects of memantine on glutamic receptor-associated nitrosative stress in a traumatic brain injury rat model. World Neurosurg., 2018, 112, e719-e731.
[http://dx.doi.org/10.1016/j.wneu.2018.01.140] [PMID: 29382619]
[147]
Kelestemur, T.; Yulug, B.; Caglayan, A.B.; Beker, M.C.; Kilic, U.; Caglayan, B.; Yalcin, E.; Gundogdu, R.Z.; Kilic, E. Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine. Neurosci. Lett., 2016, 612, 92-97.
[http://dx.doi.org/10.1016/j.neulet.2015.11.043] [PMID: 26639427]
[148]
Saito, V.M.; Wotjak, C.T.; Moreira, F.A. Pharmacological exploitation of the endocannabinoid sys-tem: new perspectives for the treatment of depression and anxiety disorders? ], Braz J Psychiatry, 2010, 32(Suppl. 1), S7-S14.
[PMID: 20512266]
[149]
Braun, M.; Khan, Z.T.; Khan, M.B.; Kumar, M.; Ward, A.; Achyut, B.R.; Arbab, A.S.; Hess, D.C.; Hoda, M.N.; Baban, B.; Dhandapani, K.M.; Vaibhav, K. Selective activation of cannabinoid receptor-2 reduces neuroinflammation after traumatic brain injury via alternative macrophage polarization. Brain Behav. Immun., 2018, 68, 224-237.
[http://dx.doi.org/10.1016/j.bbi.2017.10.021] [PMID: 29079445]
[150]
Amenta, P.S.; Jallo, J.I.; Tuma, R.F.; Hooper, D.C.; Elliott, M.B. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J. Neuroinflammation, 2014, 11, 191.
[http://dx.doi.org/10.1186/s12974-014-0191-6] [PMID: 25416141]
[151]
Cohen-Yeshurun, A.; Trembovler, V.; Alexandrovich, A.; Ryberg, E.; Greasley, P.J.; Mechoulam, R.; Shohami, E.; Leker, R.R. N-arachidonoyl-L-serine is neuroprotective after traumatic brain injury by reducing apoptosis. J. Cereb. Blood Flow Metab., 2011, 31(8), 1768-1777.
[http://dx.doi.org/10.1038/jcbfm.2011.53] [PMID: 21505478]
[152]
Tchantchou, F.; Zhang, Y. Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury. J. Neurotrauma, 2013, 30(7), 565-579.
[http://dx.doi.org/10.1089/neu.2012.2647] [PMID: 23151067]
[153]
Tchantchou, F.; Tucker, L.B.; Fu, A.H.; Bluett, R.J.; McCabe, J.T.; Patel, S.; Zhang, Y. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury. Neuropharmacology, 2014, 85, 427-439.
[http://dx.doi.org/10.1016/j.neuropharm.2014.06.006] [PMID: 24937045]
[154]
Katz, P.S.; Sulzer, J.K.; Impastato, R.A.; Teng, S.X.; Rogers, E.K.; Molina, P.E. Endocannabinoid degradation inhibition improves neurobehavioral function, blood-brain barrier integrity, and neuroinflammation following mild traumatic brain injury. J. Neurotrauma, 2015, 32(5), 297-306.
[http://dx.doi.org/10.1089/neu.2014.3508] [PMID: 25166905]
[155]
Cekic, M.; Johnson, S.J.; Bhatt, V.H.; Stein, D.G. Progesterone treatment alters neurotrophin/proneurotrophin balance and receptor expression in rats with traumatic brain injury. Restor. Neurol. Neurosci., 2012, 30(2), 115-126.
[http://dx.doi.org/10.3233/RNN-2011-0628] [PMID: 22232032]
[156]
Chen, G.; Shi, J.; Jin, W.; Wang, L.; Xie, W.; Sun, J.; Hang, C. Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann. Clin. Lab. Sci., 2008, 38(1), 65-74.
[PMID: 18316784]
[157]
He, J.; Evans, C.O.; Hoffman, S.W.; Oyesiku, N.M.; Stein, D.G. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp. Neurol., 2004, 189(2), 404-412.
[http://dx.doi.org/10.1016/j.expneurol.2004.06.008] [PMID: 15380490]
[158]
Sarkaki, A.R.; Khaksari Haddad, M.; Soltani, Z.; Shahrokhi, N.; Mahmoodi, M. Time- and dose-dependent neuroprotective effects of sex steroid hormones on inflammatory cytokines after a traumatic brain injury. J. Neurotrauma, 2013, 30(1), 47-54.
[http://dx.doi.org/10.1089/neu.2010.1686] [PMID: 21851230]
[159]
Schaible, E-V.; Steinsträßer, A.; Jahn-Eimermacher, A.; Luh, C.; Sebastiani, A.; Kornes, F.; Pieter, D.; Schäfer, M.K.; Engelhard, K.; Thal, S.C. Single administration of tripeptide α-MSH(11-13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice. PLoS One, 2013, 8(8), e71056.
[http://dx.doi.org/10.1371/journal.pone.0071056] [PMID: 23940690]
[160]
VanLandingham, J.W.; Cekic, M.; Cutler, S.; Hoffman, S.W.; Stein, D.G. Neurosteroids reduce inflammation after TBI through CD55 induction. Neurosci. Lett., 2007, 425(2), 94-98.
[http://dx.doi.org/10.1016/j.neulet.2007.08.045] [PMID: 17826908]
[161]
Zhang, M.; Wu, J.; Ding, H.; Wu, W.; Xiao, G. Progesterone provides the pleiotropic neuroprotective effect on traumatic brain injury through the Nrf2/ARE signaling pathway. Neurocrit. Care, 2017, 26(2), 292-300.
[http://dx.doi.org/10.1007/s12028-016-0342-y] [PMID: 27995513]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy