Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering

Author(s): Jomarien García-Couce, Amisel Almirall, Gastón Fuentes, Eric Kaijzel, Alan Chan and Luis J. Cruz*

Volume 25, Issue 17, 2019

Page: [1915 - 1932] Pages: 18

DOI: 10.2174/1381612825666190708184745

Price: $65

conference banner
Abstract

Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited. Tissue engineering and the science of nanobiomaterials are two lines of research that together can contribute to the restoration of damaged tissue. The science of nanobiomaterials focuses on the development of different nanoscale structures that can be used as carriers of drugs / cells to treat and repair damaged tissues such as articular cartilage. This review article is an overview of the composition of articular cartilage, the causes and treatments of osteoarthritis, with a special emphasis on nanomaterials as carriers of drugs and cells, which reduce inflammation, promote the activation of biochemical factors and ultimately contribute to the total restoration of articular cartilage.

Keywords: Targeting platform, polymeric nanobiomaterials, cartilage tissue engineering, anatomical areas, osteoarthritis, articular cartilage.

[1]
Horvai A. Anatomy and histology of cartilage.cartilage imaging significance, techniques and new developments. New York: Springer 2011; pp. 1-10.
[2]
Meyer U, Weissman HP. Bone and cartilage engineering Berlin, Heidelberg: Springer Verlag 2006.
[3]
Hall BK. Bones and cartilage developmental and evolutionary skeletal biology. London: Academic Press, Elsevier 2015.
[4]
Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 1998; 14(2): 193-202.
[http://dx.doi.org/10.1021/bp970120j] [PMID: 9548769]
[5]
Wong M, Carter DR. Articular cartilage functional histomorphology and mechanobiology: A research perspective. Bone 2003; 33(1): 1-13.
[http://dx.doi.org/10.1016/S8756-3282(03)00083-8] [PMID: 12919695]
[6]
Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater 2017; 33: 59-75.
[http://dx.doi.org/10.22203/eCM.v033a05] [PMID: 28138955]
[7]
Ahmed TAE, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev 2010; 16(3): 305-29.
[http://dx.doi.org/10.1089/ten.teb.2009.0590] [PMID: 20025455]
[8]
Periyasamy PC, et al. Nanomaterials for the local and targeted delivery of osteoarthritis drugs. J Nanomater 2012; 2012: 13.
[9]
Vinatier C, Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med 2016; 59(3): 139-44.
[http://dx.doi.org/10.1016/j.rehab.2016.03.002] [PMID: 27079583]
[10]
Liu Y, Zhou G, Cao Y. Recent progress in cartilage tissue engineering—our experience and future directions. Engineering 2017; 3(1): 28-35.
[http://dx.doi.org/10.1016/J.ENG.2017.01.010]
[11]
Chuah YJ, Peck Y, Lau JE, Hee HT, Wang DA. Hydrogel based cartilaginous tissue regeneration: Recent insights and technologies. Biomater Sci 2017; 5(4): 613-31.
[http://dx.doi.org/10.1039/C6BM00863A] [PMID: 28233881]
[12]
Monteiro N, et al. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regenerative Therapy 2015; 1: 109-18.
[http://dx.doi.org/10.1016/j.reth.2015.05.004]
[13]
Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int J Nanomedicine 2018; 13: 5637-55.
[http://dx.doi.org/10.2147/IJN.S153758] [PMID: 30288038]
[14]
Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: Nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond) 2012; 7(7): 1045-66.
[http://dx.doi.org/10.2217/nnm.12.78] [PMID: 22846091]
[15]
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine 2005; 1(3): 193-212.
[http://dx.doi.org/10.1016/j.nano.2005.06.004] [PMID: 17292079]
[16]
Walsh WR, et al. Cell structure and biology of bone and cartilage. Handbook of Histology Methods for Bone and Cartilage, YH An and K. Totowa, New Jersey: Humana Press Inc 2003; pp. 36-58.
[17]
Torzilli PA. Water content and equilibrium water partition in immature cartilage. J Orthop Res 1988; 6(5): 766-9.
[http://dx.doi.org/10.1002/jor.1100060520] [PMID: 3404334]
[18]
Maroudas AI. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 1976; 260(5554): 808-9.
[http://dx.doi.org/10.1038/260808a0] [PMID: 1264261]
[19]
Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 1992; 13(2): 67-97.
[http://dx.doi.org/10.1016/0142-9612(92)90001-5] [PMID: 1550898]
[20]
Broom ND, Silyn-Roberts H. The three-dimensional ‘knit’ of collagen fibrils in articular cartilage. Connect Tissue Res 1989; 23(4): 261-77.
[http://dx.doi.org/10.3109/03008208909005626] [PMID: 2630173]
[21]
Chen M-H, Broom N. On the ultrastructure of softened cartilage: A possible model for structural transformation. J Anat 1998; 192(Pt 3): 329-41.
[http://dx.doi.org/10.1046/j.1469-7580.1998.19230329.x] [PMID: 9688499]
[22]
Diab M, Wu J-J, Eyre DR. Collagen type IX from human cartilage: A structural profile of intermolecular cross-linking sites. Biochem J 1996; 314(Pt 1): 327-32.
[http://dx.doi.org/10.1042/bj3140327] [PMID: 8660302]
[23]
Eyre DR. The collagens of articular cartilage. Semin Arthritis Rheum 1991; 21(3)(Suppl. 2): 2-11.
[http://dx.doi.org/10.1016/0049-0172(91)90035-X] [PMID: 1796302]
[24]
Wu J-J, Eyre DR. Covalent interactions of type IX collagen in cartilage. Connect Tissue Res 1989; 20(1-4): 241-6.
[http://dx.doi.org/10.3109/03008208909023893] [PMID: 2612157]
[25]
Wu J-J, Eyre DR. Structural analysis of cross-linking domains in cartilage type XI collagen. Insights on polymeric assembly. J Biol Chem 1995; 270(32): 18865-70.
[http://dx.doi.org/10.1074/jbc.270.32.18865] [PMID: 7642541]
[26]
Eyre D. Articular cartilage and changes in Arthritis: Collagen of articular cartilage. Arthritis Res Ther 2001; 4(1): 30-5.
[http://dx.doi.org/10.1186/ar380]
[27]
Wu JJ, Woods PE, Eyre DR. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem 1992; 267(32): 23007-14.
[PMID: 1429648]
[28]
Loeser RF, Sadiev S, Tan L, Goldring MB. Integrin expression by primary and immortalized human chondrocytes: Evidence of a differential role for α1β1 and α2β1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthritis Cartilage 2000; 8(2): 96-105.
[http://dx.doi.org/10.1053/joca.1999.0277] [PMID: 10772239]
[29]
Kuettner KE. Biochemistry of articular cartilage in health and disease. Clin Biochem 1992; 25(3): 155-63.
[http://dx.doi.org/10.1016/0009-9120(92)90224-G] [PMID: 1633629]
[30]
Hambach L, Neureiter D, Zeiler G, Kirchner T, Aigner T. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum 1998; 41(6): 986-96.
[http://dx.doi.org/10.1002/1529-0131(199806)41:6<986:AID-ART5>3.0.CO;2-N] [PMID: 9627008]
[31]
Fell HB. The histogenesis of cartilage and bone in the long bones of the embryonic fowl. J Morphol 1925; 40(3): 417-59.
[http://dx.doi.org/10.1002/jmor.1050400302]
[32]
Randolph MA, Anseth K, Yaremchuk MJ. Tissue engineering of cartilage. Clin Plast Surg 2003; 30(4): 519-37.
[http://dx.doi.org/10.1016/S0094-1298(03)00070-1] [PMID: 14621300]
[33]
Bullough P. Joints.Histology for pathologists. Philadelphia: Lippincott Williams & Wilkins 2007; pp. 97-122.
[34]
Barnett CH, Lewis OJ. The evolution of some traction epiphyses in birds and mammals. J Anat 1958; 92(4): 593-601.
[PMID: 13587392]
[35]
Poole CA, Flint MH, Beaumont BW. Morphological and functional interrelationships of articular cartilage matrices. J Anat 1984; 138(Pt 1): 113-38.
[PMID: 6706831]
[36]
Poole CA, Ayad S, Schofield JR. Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci 1988; 90(Pt 4): 635-43.
[PMID: 3075620]
[37]
Bradamante Z, Kostović-Knezevic L, Levak-Svajger B, Svajger A. Differentiation of the secondary elastic cartilage in the external ear of the rat. Int J Dev Biol 1991; 35(3): 311-20.
[PMID: 1814412]
[38]
Eyre DR, Muir H. The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig. Biochem J 1975; 151(3): 595-602.
[http://dx.doi.org/10.1042/bj1510595] [PMID: 766752]
[39]
Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol 2001; 12(2): 69-78.
[http://dx.doi.org/10.1006/scdb.2000.0243] [PMID: 11292372]
[40]
Hall AC, Horwitz ER, Wilkins RJ. The cellular physiology of articular cartilage. Exp Physiol 1996; 81(3): 535-45.
[http://dx.doi.org/10.1113/expphysiol.1996.sp003956] [PMID: 8737086]
[41]
Loeser RF. Chondrocyte integrin expression and function Biorheology 2000 37(1, 2): 109-16.
[42]
Gelse K, Pöschl E, Aigner T. Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 2003; 55(12): 1531-46.
[http://dx.doi.org/10.1016/j.addr.2003.08.002] [PMID: 14623400]
[43]
Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P. Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 1989; 108(1): 191-7.
[http://dx.doi.org/10.1083/jcb.108.1.191] [PMID: 2463256]
[44]
Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: A template for tissue repair. Clin Orthop Relat Res 2001; (391): (Suppl.)S26-33.
[http://dx.doi.org/10.1097/00003086-200110001-00004] [PMID: 11603710]
[45]
Aigner T, Bertling W, Stöss H, Weseloh G, von der Mark K. Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J Clin Invest 1993; 91(3): 829-37.
[http://dx.doi.org/10.1172/JCI116303] [PMID: 7680669]
[46]
Wotton SF, Duance VC. Type III collagen in normal human articular cartilage. Histochem J 1994; 26(5): 412-6.
[http://dx.doi.org/10.1007/BF00160053] [PMID: 8045781]
[47]
Gomes RR Jr, Farach-Carson MC, Carson DD. Perlecan functions in chondrogenesis: Insights from in vitro and in vivo models. Cells Tissues Organs (Print) 2004; 176(1-3): 79-86.
[http://dx.doi.org/10.1159/000075029] [PMID: 14745237]
[48]
Sabatini M, Pastoureau P, De Ceuninck F. Cartilage and Osteoarthritis Cellular and molecular tools Methods in Molecular Medicine. Totowa, New Jersey: Humana Press Inc. 2004; Vol. 1: P. 374.
[49]
Siódmiak J, Bełdowski P, Augé WK, Ledziński D, Śmigiel S, Gadomski A. Molecular Dynamic Analysis of Hyaluronic Acid and Phospholipid Interaction in Tribological Surgical Adjuvant Design for Osteoarthritis. Molecules 2017; 22(9): 1436-56.
[http://dx.doi.org/10.3390/molecules22091436] [PMID: 28869569]
[50]
Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP. A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 2014; 10(5): 1996-2004.
[http://dx.doi.org/10.1016/j.actbio.2014.01.005] [PMID: 24418437]
[51]
Nguyen LH, Kudva AK, Saxena NS, Roy K. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 2011; 32(29): 6946-52.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.014] [PMID: 21723599]
[52]
Becerra J, Andrades JA, Guerado E, Zamora-Navas P, López-Puertas JM, Reddi AH. Articular cartilage: Structure and regeneration. Tissue Eng Part B Rev 2010; 16(6): 617-27.
[http://dx.doi.org/10.1089/ten.teb.2010.0191] [PMID: 20836752]
[53]
Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res 1994; 12(4): 474-84.
[http://dx.doi.org/10.1002/jor.1100120404] [PMID: 8064478]
[54]
Buckwalter JA, Mankin HJ. Articular Cartilage: Part I Tissue Design and Chondrocyte-Matrix Interactions. J Bone Joint Surg 1997; 79(4): 600-11.
[http://dx.doi.org/10.2106/00004623-199704000-00021]
[55]
Speer DP, Dahners L. The collagenous architecture of articular cartilage. Correlation of scanning electron microscopy and polarized light microscopy observations. Clin Orthop Relat Res 1979; 139(139): 267-75.
[PMID: 455843]
[56]
Kumar R, Griffin M, Butler PE. A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage Open Orthop J 2016; 10(S3-M6): 862-876.
[http://dx.doi.org/10.2174/1874325001610010862]
[57]
Roach HI, Tilley S. The pathogenesis of osteoarthritis. Bone Osteoarth 2007; 4: 1-18.
[58]
Schmidt TW. Approach to Osteoarthritis Management for the Primary Care Provider. Prim Care 2018; 45(2): 361-78.
[http://dx.doi.org/10.1016/j.pop.2018.02.009] [PMID: 29759129]
[59]
Varady NH, Dee EC, Katz JN. International assessment on quality and content of internet information on osteoarthritis. Osteoarthritis Cartilage 2018; 26(8): 1017-26.
[http://dx.doi.org/10.1016/j.joca.2018.04.017] [PMID: 29758353]
[60]
Salmon JH, Rat AC, Sellam J, et al. Economic impact of lower-limb osteoarthritis worldwide: A systematic review of cost-of-illness studies. Osteoarthritis Cartilage 2016; 24(9): 1500-8.
[http://dx.doi.org/10.1016/j.joca.2016.03.012] [PMID: 27034093]
[61]
Nelson AE. Osteoarthritis year in review 2017: Clinical. Osteoarthritis Cartilage 2018; 26(3): 319-25.
[http://dx.doi.org/10.1016/j.joca.2017.11.014] [PMID: 29229563]
[62]
Osteoarthritis: A Serious Disease.Osteoarthritis Research Society International. USA: US Food and Drug Administration 2016; pp. 1- 103.
[63]
Allen KD, Golightly YM. State of the evidence. Curr Opin Rheumatol 2015; 27(3): 276-83.
[http://dx.doi.org/10.1097/BOR.0000000000000161] [PMID: 25775186]
[64]
Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 2014; 28(1): 5-15.
[http://dx.doi.org/10.1016/j.berh.2014.01.004] [PMID: 24792942]
[65]
Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. Lancet 2017; 389(10076): 1323-35.
[http://dx.doi.org/10.1016/S0140-6736(16)32381-9] [PMID: 28236464]
[66]
Dejaco C, Lackner A, Buttgereit F, Matteson EL, Narath M, Sprenger M. Rheumatology Workforce Planning in Western Countries: A Systematic Literature Review. Arthritis Care Res (Hoboken) 2016; 68(12): 1874-82.
[http://dx.doi.org/10.1002/acr.22894] [PMID: 27015436]
[67]
Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical Expenditures and Earnings Losses Among US Adults With Arthritis in 2013. Arthritis Care Res (Hoboken) 2018; 70(6): 869-76.
[http://dx.doi.org/10.1002/acr.23425] [PMID: 28950426]
[68]
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16(4): 494-502.
[http://dx.doi.org/10.1136/ard.16.4.494] [PMID: 13498604]
[69]
Kellgren JH, Lawrence JS. Rheumatism in miners. II. X-ray study. Br J Ind Med 1952; 9(3): 197-207.
[PMID: 14944740]
[70]
Burden of Musculoskeletal Conditions at the Start of the New Millennium. Geneva: World Health Organization 2000; pp. 1-231.
[71]
Felson DT, Zhang Y, Hannan MT, et al. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 1995; 38(10): 1500-5.
[http://dx.doi.org/10.1002/art.1780381017] [PMID: 7575700]
[72]
Skovron ML, Szpalski M, Nordin M, Melot C, Cukier D. Sociocultural factors and back pain. A population-based study in Belgian adults. Spine 1994; 19(2): 129-37.
[http://dx.doi.org/10.1097/00007632-199401001-00002] [PMID: 8153818]
[73]
Iannone F, Lapadula G. The pathophysiology of osteoarthritis. Aging Clin Exp Res 2003; 15(5): 364-72.
[http://dx.doi.org/10.1007/BF03327357] [PMID: 14703002]
[74]
Bähler C, Huber CA, Brüngger B, Reich O. Multimorbidity, health care utilization and costs in an elderly community-dwelling population: A claims data based observational study. BMC Health Serv Res 2015; 15(1): 23-34.
[http://dx.doi.org/10.1186/s12913-015-0698-2] [PMID: 25609174]
[75]
Howell DS. Pathogenesis of osteoarthritis. Am J Med 1986; 80(4B): 24-8.
[http://dx.doi.org/10.1016/0002-9343(86)90075-6] [PMID: 3010715]
[76]
Campisi J, d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8(9): 729-40.
[http://dx.doi.org/10.1038/nrm2233] [PMID: 17667954]
[77]
Rosenthal AK. Calcium crystal deposition and osteoarthritis. Rheum Dis Clin North Am 2006; 32(2) 401-412, vii.
[http://dx.doi.org/10.1016/j.rdc.2006.02.004] [PMID: 16716886]
[78]
Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 2010; 24(1): 15-26.
[http://dx.doi.org/10.1016/j.berh.2009.08.006] [PMID: 20129196]
[79]
van Meurs JBJ. Osteoarthritis year in review 2016: Genetics, genomics and epigenetics. Osteoarthritis Cartilage 2017; 25(2): 181-9.
[http://dx.doi.org/10.1016/j.joca.2016.11.011] [PMID: 28100422]
[80]
Steinberg J, Zeggini E. Functional genomics in osteoarthritis: Past, present, and future. J Orthop Res 2016; 34(7): 1105-10.
[http://dx.doi.org/10.1002/jor.23296] [PMID: 27176659]
[81]
Xiao Y-P, Tian FM, Dai MW, Wang WY, Shao LT, Zhang L. Are estrogen-related drugs new alternatives for the management of osteoarthritis? Arthritis Res Ther 2016; 18(1): 151.
[http://dx.doi.org/10.1186/s13075-016-1045-7] [PMID: 27352621]
[82]
Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004; 50(10): 3145-52.
[http://dx.doi.org/10.1002/art.20589] [PMID: 15476248]
[83]
Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann Intern Med 2000; 133(8): 635-46.
[http://dx.doi.org/10.7326/0003-4819-133-8-200010170-00016] [PMID: 11033593]
[84]
Croft P, Coggon D, Cruddas M, Cooper C. Osteoarthritis of the hip: An occupational disease in farmers. BMJ 1992; 304(6837): 1269-72.
[http://dx.doi.org/10.1136/bmj.304.6837.1269] [PMID: 1606427]
[85]
Hadler NM, Gillings DB, Imbus HR, et al. Hand structure and function in an industrial setting. Arthritis Rheum 1978; 21(2): 210-20.
[http://dx.doi.org/10.1002/art.1780210206] [PMID: 637887]
[86]
Jiang L, Tian W, Wang Y, et al. Body mass index and susceptibility to knee osteoarthritis: A systematic review and meta-analysis. Joint Bone Spine 2012; 79(3): 291-7.
[http://dx.doi.org/10.1016/j.jbspin.2011.05.015] [PMID: 21803633]
[87]
Sokoloff L. Aging and Degenerative Diseases Affecting Cartilage. Cartilage: Biomedical Aspects. New York: Academic Press 1983; pp. 109-41.
[http://dx.doi.org/10.1016/B978-0-12-319503-6.50010-4]
[88]
Kotecha M, Ravindran S, Schmid TM, Vaidyanathan A, George A, Magin RL. Application of sodium triple-quantum coherence NMR spectroscopy for the study of growth dynamics in cartilage tissue engineering. NMR Biomed 2013; 26(6): 709-17.
[http://dx.doi.org/10.1002/nbm.2916] [PMID: 23378198]
[89]
Coutts RD, Healey RM, Ostrander R, Sah RL, Goomer R, Amiel D. Matrices for cartilage repair. Clin Orthop Relat Res 2001; (391): (Suppl.)S271-9.
[http://dx.doi.org/10.1097/00003086-200110001-00025] [PMID: 11603711]
[90]
Bert JM. Abandoning microfracture of the knee: Has the time come? Arthroscopy 2015; 31(3): 501-5.
[http://dx.doi.org/10.1016/j.arthro.2014.12.018] [PMID: 25744322]
[91]
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: Recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 2013; 19(4): 308-26.
[http://dx.doi.org/10.1089/ten.teb.2012.0138] [PMID: 23268651]
[92]
Yousefi AM, Hoque ME, Prasad RG, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2015; 103(7): 2460-81.
[http://dx.doi.org/10.1002/jbm.a.35356] [PMID: 25345589]
[93]
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331(14): 889-95.
[http://dx.doi.org/10.1056/NEJM199410063311401] [PMID: 8078550]
[94]
Becerra J, Santos-Ruiz L, Andrades JA, Marí-Beffa M. The stem cell niche should be a key issue for cell therapy in regenerative medicine. Stem Cell Rev 2011; 7(2): 248-55.
[http://dx.doi.org/10.1007/s12015-010-9195-5] [PMID: 21052872]
[95]
Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: A review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 2010; 38(6): 1259-71.
[http://dx.doi.org/10.1177/0363546509346395] [PMID: 19966108]
[96]
Dobratz EJ, Kim SW, Voglewede A, Park SS. Injectable cartilage: Using alginate and human chondrocytes. Arch Facial Plast Surg 2009; 11(1): 40-7.
[http://dx.doi.org/10.1001/archfacial.2008.509] [PMID: 19153292]
[97]
Hollander AP, Dickinson SC, Kafienah W. Stem cells and cartilage development: Complexities of a simple tissue. Stem Cells 2010; 28(11): 1992-6.
[http://dx.doi.org/10.1002/stem.534] [PMID: 20882533]
[98]
Labusca L, Zugun-Eloae F. Stem Cell Therapy for the Treatment of Cartilage Defects and Osteoarthritis. In: Stem Cells in Clinical Applications: Bone and Cartilage Regeneration, P.V. Pham, Editor. Springer International Publishing, Springer Nature: Switzerland 2016; p. 11-46.
[99]
Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. Knee 2006; 13(3): 194-202.
[http://dx.doi.org/10.1016/j.knee.2006.02.012] [PMID: 16632362]
[100]
Pettersson S, Wetterö J, Tengvall P, Kratz G. Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro. J Tissue Eng Regen Med 2009; 3(6): 450-60.
[http://dx.doi.org/10.1002/term.179] [PMID: 19444864]
[101]
Park J, Lakes RS. Biomaterials: An introduction. New York: Springer Science & Business Media 2007; p. 563.
[102]
Ratner BD. Biomaterials science: A multidisciplinary endeavor. Biomaterials science: An introduction to materials in medicine. San Diego, London: Elsevier 2004; pp. 1-19.
[103]
Shukla SK. Nanostructure polymers in function generating substitute and organ transplants in Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering, A. Tiwari and A. Tiwari, Editors.John Wiley & Sons, and Scrivener Publishing LLC: Hoboken, New Jersey, and Salem, Massachusetts. 2013; pp. 397-423.
[104]
Kim NJ, Lee SJ, Atala A. Biomedical nanomaterials in tissue engineering, in Nanomaterials in tissue engineering. Woodhead Publishing Limited: Sawston, Cambridge. 2013; 1-23, 24e-25e.
[105]
Hampel U, Sesselmann S, Iserovich P, Sel S, Paulsen F, Sack R. Chemokine and cytokine levels in osteoarthritis and rheumatoid arthritis synovial fluid. J Immunol Methods 2013; 396(1-2): 134-9.
[http://dx.doi.org/10.1016/j.jim.2013.08.007] [PMID: 23994256]
[106]
Scanzello CR, Umoh E, Pessler F, et al. Local cytokine profiles in knee osteoarthritis: Elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage 2009; 17(8): 1040-8.
[http://dx.doi.org/10.1016/j.joca.2009.02.011] [PMID: 19289234]
[107]
Bajpayee AG, Grodzinsky AJ. Cartilage-targeting drug delivery: Can electrostatic interactions help? Nat Rev Rheumatol 2017; 13(3): 183-93.
[http://dx.doi.org/10.1038/nrrheum.2016.210] [PMID: 28202920]
[108]
da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: A network meta-analysis. Lancet 2017; 390(10090): E21-33.
[http://dx.doi.org/10.1016/S0140-6736(17)31744-0] [PMID: 28699595]
[109]
Urech DM, Feige U, Ewert S, et al. Anti-inflammatory and cartilage-protecting effects of an intra-articularly injected anti-TNFα single-chain Fv antibody (ESBA105) designed for local therapeutic use. Ann Rheum Dis 2010; 69(2): 443-9.
[http://dx.doi.org/10.1136/ard.2008.105775] [PMID: 19293161]
[110]
Feldmann M, Maini RN. Anti-TNF α therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol 2001; 19(1): 163-96.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.163] [PMID: 11244034]
[111]
DiDomenico CD, Bonassar LJ. How can 50 years of solute transport data in articular cartilage inform the design of arthritis therapeutics? Osteoarthritis Cartilage 2018; 26(11): 1438-46.
[http://dx.doi.org/10.1016/j.joca.2018.07.006] [PMID: 30053617]
[112]
Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 2009; 6(8): 851-64.
[http://dx.doi.org/10.1517/17425240903044935] [PMID: 19637973]
[113]
Sonia TA, Sharma CP. Chitosan and Its Derivatives for Drug Delivery Perspective.Chitosan for biomaterials I. Heidelberg: Springer 2011; pp. 23-54.
[http://dx.doi.org/10.1007/12_2011_117]
[114]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[115]
Guler MO, Tekinay AB. Nanomaterials for medicineTherapeutic Nanomaterials. Hoboken, New Jersey: John Wiley & Sons 2016; pp. 1-6.
[http://dx.doi.org/10.1002/9781118987483.ch1]
[116]
Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng Part B Rev 2014; 20(2): 106-25.
[http://dx.doi.org/10.1089/ten.teb.2013.0271] [PMID: 23815376]
[117]
Biondi M, Borzacchiello A, Mayol L, Ambrosio L. Nanoparticle-Integrated Hydrogels as Multifunctional Composite Materials for Biomedical Applications. Gels 2015; 1(2): 162-78.
[http://dx.doi.org/10.3390/gels1020162] [PMID: 30674171]
[118]
Song F, Li X, Wang Q, Liao L, Zhang C. Nanocomposite Hydrogels and Their Applications in Drug Delivery and Tissue Engineering. J Biomed Nanotechnol 2015; 11(1): 40-52.
[http://dx.doi.org/10.1166/jbn.2015.1962] [PMID: 26301299]
[119]
Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif Cells Nanomed Biotechnol 2017; 45(2): 185-92.
[http://dx.doi.org/10.3109/21691401.2016.1146731] [PMID: 26923861]
[120]
Jayaraman P, Gandhimathi C, Venugopal JR, Becker DL, Ramakrishna S, Srinivasan DK. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev 2015; 94(11): 77-95.
[http://dx.doi.org/10.1016/j.addr.2015.09.007] [PMID: 26415888]
[121]
Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells Nanomed Biotechnol 2017; 45(5): 961-8.
[http://dx.doi.org/10.1080/21691401.2016.1198360] [PMID: 27356956]
[122]
Asadi N, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A. Nanocomposite hydrogels for cartilage tissue engineering: A review. Artif Cells Nanomed Biotechnol 2018; 46(3): 465-71.
[http://dx.doi.org/10.1080/21691401.2017.1345924] [PMID: 28743188]
[123]
Khalilov RI, Ahmadov IS, Kadirov SG. Two types of kinetics of membrane potential of water plant leaves illuminated by ultraviolet light. Bioelectrochemistry 2002; 58(2): 189-91.
[http://dx.doi.org/10.1016/S1567-5394(02)00032-4] [PMID: 12414325]
[124]
Son J-S, Kim SG, Jin SC, et al. Development and structure of a novel barrier membrane composed of drug-loaded poly(lactic-co-glycolic acid) particles for guided bone regeneration. Biotechnol Lett 2012; 34(4): 779-87.
[http://dx.doi.org/10.1007/s10529-011-0819-x] [PMID: 22160329]
[125]
Shi J, Zhang X, Zhu J, et al. Nanoparticle delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo. Arthroscopy 2013; 29(12): 2001-2011.e2.
[http://dx.doi.org/10.1016/j.arthro.2013.09.076] [PMID: 24286799]
[126]
te Boekhorst BCM, Jensen LB, Colombo S, et al. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J Control Release 2012; 161(3): 772-80.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.004] [PMID: 22580113]
[127]
Whitmire RE, Wilson DS, Singh A, Levenston ME, Murthy N, García AJ. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials 2012; 33(30): 7665-75.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.101] [PMID: 22818981]
[128]
Virto MR, Frutos P, Torrado S, Frutos G. Gentamicin release from modified acrylic bone cements with lactose and hydroxypropylmethylcellulose. Biomaterials 2003; 24(1): 79-87.
[http://dx.doi.org/10.1016/S0142-9612(02)00254-5] [PMID: 12417181]
[129]
Virto MR, Elorza B, Torrado S, Elorza Mde L, Frutos G. Improvement of gentamicin poly(D,L-lactic-co-glycolic acid) microspheres for treatment of osteomyelitis induced by orthopedic procedures. Biomaterials 2007; 28(5): 877-85.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.045] [PMID: 17064761]
[130]
Torrado S, Frutos P, Frutos G. Gentamicin bone cements: Characterisation and release (in vitro and in vivo assays). Int J Pharm 2001; 217(1-2): 57-69.
[http://dx.doi.org/10.1016/S0378-5173(01)00587-7] [PMID: 11292542]
[131]
Fiedler J, Ozdemir B, Bartholomä J, Plettl A, Brenner RE, Ziemann P. The effect of substrate surface nanotopography on the behavior of multipotnent mesenchymal stromal cells and osteoblasts. Biomaterials 2013; 34(35): 8851-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.010] [PMID: 23968851]
[132]
Shimaya M, Muneta T, Ichinose S, Tsuji K, Sekiya I. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthritis Cartilage 2010; 18(10): 1300-9.
[http://dx.doi.org/10.1016/j.joca.2010.06.005] [PMID: 20633668]
[133]
Guo Z, Xu J, Ding S, Li H, Zhou C, Li L. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. J Biomater Sci Polym Ed 2015; 26(15): 989-1001.
[http://dx.doi.org/10.1080/09205063.2015.1065598] [PMID: 26123758]
[134]
Lee K-B, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science 2002; 295(5560): 1702-5.
[http://dx.doi.org/10.1126/science.1067172] [PMID: 11834780]
[135]
González-Henríquez CM. del C Pizarro G, Sarabia-Vallejos MA, Terraza CA. Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers. Biochim Biophys Acta 2015; 1848(10 Pt A): 2126-37.
[http://dx.doi.org/10.1016/j.bbamem.2015.06.023] [PMID: 26129642]
[136]
Maudens P, Jordan O, Allémann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today 2018; 23(10): 1761-75.
[http://dx.doi.org/10.1016/j.drudis.2018.05.023] [PMID: 29792929]
[137]
He Z, Wang B, Hu C, Zhao J. An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. Colloids Surf B Biointerfaces 2017; 154: 33-9.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.003] [PMID: 28288340]
[138]
Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 2006; 58(2): 226-42.
[http://dx.doi.org/10.1016/j.addr.2006.01.018] [PMID: 16574267]
[139]
Kang ML, Im G-I. Drug delivery systems for intra-articular treatment of osteoarthritis. Expert Opin Drug Deliv 2014; 11(2): 269-82.
[http://dx.doi.org/10.1517/17425247.2014.867325] [PMID: 24308404]
[140]
Rivera-Delgado E, Djuhadi A, Danda C, et al. Injectable liquid polymers extend the delivery of corticosteroids for the treatment of osteoarthritis. J Control Release 2018; 284: 112-21.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.037] [PMID: 29906555]
[141]
Ryan SM, McMorrow J, Umerska A, et al. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J Control Release 2013; 167(2): 120-9.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.027] [PMID: 23391443]
[142]
Morgen M, Tung D, Boras B, Miller W, Malfait AM, Tortorella M. Nanoparticles for improved local retention after intra-articular injection into the knee joint. Pharm Res 2013; 30(1): 257-68.
[http://dx.doi.org/10.1007/s11095-012-0870-x] [PMID: 22996566]
[143]
Horisawa E, Hirota T, Kawazoe S, et al. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res 2002; 19(4): 403-10.
[http://dx.doi.org/10.1023/A:1015123024113] [PMID: 12033371]
[144]
Saadat E, Shakor N, Gholami M, Dorkoosh FA. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation. Int J Pharm 2015; 489(1-2): 218-25.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.001] [PMID: 25956051]
[145]
Elron-Gross I, Glucksam Y, Margalit R. Liposomal dexamethasone-diclofenac combinations for local osteoarthritis treatment. Int J Pharm 2009; 376(1-2): 84-91.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.025] [PMID: 19409466]
[146]
Maudens P, Seemayer CA, Thauvin C, Gabay C, Jordan O, Allémann E. Nanocrystal-Polymer Particles: Extended Delivery Carriers for Osteoarthritis Treatment. Small 2018; 14(8)1703108
[http://dx.doi.org/10.1002/smll.201703108] [PMID: 29327460]
[147]
Kang ML, Ko JY, Kim JE, Im GI. Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. Biomaterials 2014; 35(37): 9984-94.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.042] [PMID: 25241157]
[148]
Kang M-L, Kim J-E, Im G-I. Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomater 2016; 39: 65-78.
[http://dx.doi.org/10.1016/j.actbio.2016.05.005] [PMID: 27155347]
[149]
Jain A, Mishra SK, Vuddanda PR, Singh SK, Singh R, Singh S. Targeting of diacerein loaded lipid nanoparticles to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats. Nanomedicine (Lond) 2014; 10(5): 1031-40.
[http://dx.doi.org/10.1016/j.nano.2014.01.008] [PMID: 24512762]
[150]
Bartlett RL II, Sharma S, Panitch A. Cell-penetrating peptides released from thermosensitive nanoparticles suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine (Lond) 2013; 9(3): 419-27.
[http://dx.doi.org/10.1016/j.nano.2012.09.003] [PMID: 23041412]
[151]
Lin JB, Poh S, Panitch A. Controlled release of anti-inflammatory peptides from reducible thermosensitive nanoparticles suppresses cartilage inflammation. Nanomedicine (Lond) 2016; 12(7): 2095-100.
[http://dx.doi.org/10.1016/j.nano.2016.05.010] [PMID: 27241526]
[152]
Lu H, Dai Y, Lv L, Zhao H. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One 2014; 9(1)e84703
[http://dx.doi.org/10.1371/journal.pone.0084703] [PMID: 4392152]
[153]
Huang X, Shen S, Zhang Z, Zhuang J. Cross-linked polyethylenimine-tripolyphosphate nanoparticles for gene delivery. Int J Nanomedicine 2014; 9: 4785-94.
[http://dx.doi.org/10.2147/IJN.S61910] [PMID: 25342902]
[154]
Pi Y, Zhang X, Shao Z, Zhao F, Hu X, Ao Y. Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther 2015; 22(6): 439-48.
[http://dx.doi.org/10.1038/gt.2015.16] [PMID: 25876463]
[155]
Park JS, Yang HN, Jeon SY, Woo DG, Kim MS, Park KH. The use of anti-COX2 siRNA coated onto PLGA nanoparticles loading dexamethasone in the treatment of rheumatoid arthritis. Biomaterials 2012; 33(33): 8600-12.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.008] [PMID: 22910222]
[156]
Evans CH, Gouze JN, Gouze E, Robbins PD, Ghivizzani SC. Osteoarthritis gene therapy. Gene Ther 2004; 11(4): 379-89.
[http://dx.doi.org/10.1038/sj.gt.3302196] [PMID: 14724685]
[157]
Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003; 24(24): 4337-51.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[158]
Lu S, Anseth KS. Release Behavior of High Molecular Weight Solutes from Poly(ethylene glycol)-Based Degradable Networks. Macromolecules 2000; 33(7): 2509-15.
[http://dx.doi.org/10.1021/ma9915024]
[159]
Lim HJ, Ghim HD, Choi JH, Chung HY, Lim JO. Controlled release of BMP-2 from alginate nanohydrogels enhanced osteogenic differentiation of human bone marrow stromal cells. Macromol Res 2010; 18(8): 787-92.
[http://dx.doi.org/10.1007/s13233-010-0804-6]
[160]
Sehgal RR, Banerjee R. Fabrication of nanomaterials for growth factor delivery in tissue engineering, in Nanomaterials in tissue engineering, A.K. Gaharwar, et al., Editors. Woodhead Publishing Limited: Sawston, Cambridge 2013; pp. 183-226.
[161]
Pan Y-J, Chen YY, Wang DR, et al. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials 2012; 33(27): 6570-9.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.062] [PMID: 22704845]
[162]
Zhang J, Chen H, Xu L, Gu Y. The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model. J Control Release 2008; 131(1): 34-40.
[http://dx.doi.org/10.1016/j.jconrel.2008.07.019] [PMID: 18691619]
[163]
Li J, Zheng C, Cansiz S, et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J Am Chem Soc 2015; 137(4): 1412-5.
[http://dx.doi.org/10.1021/ja512293f] [PMID: 25581100]
[164]
Iwasa J, Engebretsen L, Shima Y, Ochi M. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 2009; 17(6): 561-77.
[http://dx.doi.org/10.1007/s00167-008-0663-2] [PMID: 19020862]
[165]
Kerker JT, Leo AJ, Sgaglione NA. Cartilage repair: Synthetics and scaffolds: Basic science, surgical techniques, and clinical outcomes. Sports Med Arthrosc Rev 2008; 16(4): 208-16.
[http://dx.doi.org/10.1097/JSA.0b013e31818cdbaa] [PMID: 19011552]
[166]
Temenoff JS, Mikos AG. Review: Tissue engineering for regeneration of articular cartilage. Biomaterials 2000; 21(5): 431-40.
[http://dx.doi.org/10.1016/S0142-9612(99)00213-6] [PMID: 10674807]
[167]
Ferruzzi A, Bud R, Faldini C, et al. Autologous Chondrocyte Implantation in the Knee Joint: Open Compared with Arthroscopic Technique: Comparison at a Minimum Follow-up of Five Years. J Bone Joint Surg Am 2008; 90(Supplement_4): 90-101.
[168]
Lien S-M, Ko L-Y, Huang T-J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 2009; 5(2): 670-9.
[http://dx.doi.org/10.1016/j.actbio.2008.09.020] [PMID: 18951858]
[169]
Gerard C, Catuogno C, Amargier-Huin C, et al. The effect of alginate, hyaluronate and hyaluronate derivatives biomaterials on synthesis of non-articular chondrocyte extracellular matrix. J Mater Sci Mater Med 2005; 16(6): 541-51.
[http://dx.doi.org/10.1007/s10856-005-0530-3] [PMID: 15928870]
[170]
Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM. Biomaterials and scaffold design: Key to tissue-engineering cartilage. Biotechnol Appl Biochem 2007; 46(Pt 2): 73-84.
[http://dx.doi.org/10.1042/BA20060134] [PMID: 17227284]
[171]
Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004; 25(16): 3211-22.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.045] [PMID: 14980416]
[172]
Steinert A, Weber M, Dimmler A, et al. Chondrogenic differentiation of mesenchymal progenitor cells encapsulated in ultrahigh-viscosity alginate. J Orthop Res 2003; 21(6): 1090-7.
[http://dx.doi.org/10.1016/S0736-0266(03)00100-1] [PMID: 14554223]
[173]
Ng KW, Wang CC, Mauck RL, et al. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J Orthop Res 2005; 23(1): 134-41.
[http://dx.doi.org/10.1016/j.orthres.2004.05.015] [PMID: 15607885]
[174]
Shelton JC, Bader DL, Lee DA. Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs (Print) 2003; 175(3): 140-50.
[http://dx.doi.org/10.1159/000074630] [PMID: 14663157]
[175]
Pieper JS, van der Kraan PM, Hafmans T, et al. Crosslinked type II collagen matrices: Preparation, characterization, and potential for cartilage engineering. Biomaterials 2002; 23(15): 3183-92.
[http://dx.doi.org/10.1016/S0142-9612(02)00067-4] [PMID: 12102190]
[176]
Roche S, Ronzière MC, Herbage D, Freyria AM. Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials 2001; 22(1): 9-18.
[http://dx.doi.org/10.1016/S0142-9612(00)00084-3] [PMID: 11085378]
[177]
Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 2000; 52(2): 246-55.
[http://dx.doi.org/10.1002/1097-4636(200011)52:2<246:AID-JBM2>3.0.CO;2-W] [PMID: 10951362]
[178]
Quintavalla J, Uziel-Fusi S, Yin J, et al. Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials 2002; 23(1): 109-19.
[http://dx.doi.org/10.1016/S0142-9612(01)00086-2] [PMID: 11762829]
[179]
Dragoo JL, Samimi B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br 2003; 85(5): 740-7.
[http://dx.doi.org/10.1302/0301-620X.85B5.13587] [PMID: 12892203]
[180]
Peretti GM, Randolph MA, Villa MT, Buragas MS, Yaremchuk MJ. Cell-based tissue-engineered allogeneic implant for cartilage repair. Tissue Eng 2000; 6(5): 567-76.
[http://dx.doi.org/10.1089/107632700750022206] [PMID: 11074942]
[181]
Nawaz M. Nanotechnology-Based Approaches in Pediatric Parasitic Infections. J Pediatr Infect Dis 2017; 12(04): 264-70.
[http://dx.doi.org/10.1055/s-0037-1603497]
[182]
Sundar S, Prajapati VK. Drug targeting to infectious diseases by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 2012; 19(19): 3196-202.
[http://dx.doi.org/10.2174/092986712800784630] [PMID: 22612703]
[183]
Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev 2013; 42(12): 5552-76.
[http://dx.doi.org/10.1039/c3cs60064e] [PMID: 23549679]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy