Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

General Review Article

Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review

Author(s): Genovefa D. Kolovou*, Gerald F. Watts, Dimitri P. Mikhailidis, Pablo Pérez-Martínez, Samia Mora, Helen Bilianou, George Panotopoulos, Niki Katsiki, Teik C. Ooi, José Lopez-Miranda, Anne Tybjærg-Hansen, Nicholas Tentolouris and Børge G. Nordestgaard

Volume 17, Issue 5, 2019

Page: [515 - 537] Pages: 23

DOI: 10.2174/1570161117666190503123911

Price: $65

conference banner
Abstract

Postprandial hypertriglyceridaemia, defined as an increase in plasma triglyceride-containing lipoproteins following a fat meal, is a potential risk predictor of atherosclerotic cardiovascular disease and other chronic diseases. Several non-modifiable factors (genetics, age, sex and menopausal status) and lifestyle factors (diet, physical activity, smoking status, obesity, alcohol and medication use) may influence postprandial hypertriglyceridaemia. This narrative review considers the studies published over the last decade that evaluated postprandial hypertriglyceridaemia. Additionally, the genetic determinants of postprandial plasma triglyceride levels, the types of meals for studying postprandial triglyceride response, and underlying conditions (e.g. familial dyslipidaemias, diabetes mellitus, metabolic syndrome, non-alcoholic fatty liver and chronic kidney disease) that are associated with postprandial hypertriglyceridaemia are reviewed; therapeutic aspects are also considered.

Keywords: Postprandial hypertriglyceridaemia, triglycerides, atherosclerotic cardiovascular disease, oral fat tolerance test, familial dyslipidaemia, diabetes mellitus, metabolic syndrome, non-alcoholic fatty liver, chronic kidney disease, statins, ezetimibe, nicotinic acid, fibrates, n-3 fatty acids, anti-obesity drugs, PCSK9 inhibitors, lipoprotein apheresis, bariatric surgery.

Graphical Abstract
[1]
Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications including flagging at desirable concentration cut-points. A joint consensus statement from the EAS and EFLM. Eur Heart J 2016; 37: 1944-58.
[2]
Kolovou, Mikhailidis DP, Kovar J, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: An expert panel statement. Curr Vasc Pharmacol 2011; 9: 258-70.
[3]
Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2014; 123: 2292-333.
[4]
Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol 2014; 63: 2889-934.
[5]
National Institute for Health and Care Excellence (NICE). Clinical guideline CG181: Lipid modification - cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. National Clinical Guideline Centre. [Cited 2014]. Available at ( https: //www.nice.org.uk/guidance/cg181).
[6]
Anderson TJ, Grégoire J, Pearson GJ, et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol 2016; 32: 1263-82.
[7]
Bibbins-Domingo K, Grossman DC, Curry SJ, et al. Statin use for the primary prevention of cardiovascular disease in adults: us preventive services task force recommendation statement. JAMA 2016; 316: 1997-2007.
[8]
Grundy SM, Stone NJ, Bailey AL, et al. 2018.AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASP C/NLA/PCNA guideline on the management of blood cholesterol: Executive summary: A report of the American college of cardiology/ American heart association task force on clinical practice guidelines. J Am Coll Cardiol 2018; pii: S0735-1097(18)39033-8.
[9]
Kolovou GD, Anagnostopoulou KK, Daskalopoulou SS, Mikhailidis DP, Cokkinos DV. Clinical relevance of postprandial lipaemia. Curr Med Chem 2005; 12: 1931-45.
[10]
Nichols GA, Philip S, Reynolds K, Granowitz CB, Fazio S. Increased cardiovascular risk in hypertriglyceridemic patients with statin-controlled LDL cholesterol. J Clin Endocrinol Metab 2018; 103: 3019-27.
[11]
Lawler PR, Akinkuolie AO, Chu AY, et al. Atherogenic lipoprotein determinants of cardiovascular disease and residual risk among individuals with low low-density lipoprotein cholesterol. J Am Heart Assoc 2017; 6 pii: e005549
[12]
Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014; 384: 626-35.
[13]
Lozano A, Perez-Martinez P, Delgado-Lista J, et al. Body mass interacts with fat quality to determine the postprandial lipoprotein response in healthy young adults. Nutr Metab Cardiovasc Dis 2012; 22: 355-61.
[14]
Jackson KG, Walden CM, Murray P, et al. A sequential two meal challenge reveals abnormalities in postprandial TAG but not glucose in men with increasing numbers of metabolic syndrome components. Atherosclerosis 2012; 220: 237-43.
[15]
Kolovou GD, Anagnostopoulou KK, Damaskos DS, et al. Gender influence on postprandial lipemia in heterozygotes for familial hypercholesterolemia. Ann Clin Lab Sci 2007; 37: 335-42.
[16]
Orem A, Yaman SO, Altinkaynak B, et al. Relationship between postprandial lipemia and atherogenic factors in healthy subjects by considering gender differences. Clin Chim Acta 2018; 480: 34-40.
[17]
Arikan S, Bahceci M, Tuzcu A, Celik F, Gokalp D. Postprandial hyperlipidemia in overt and subclinical hypothyroidism. Eur J Intern Med 2012; 23: e141-5.
[18]
Maraki M, Aggelopoulou N, Christodoulou N, et al. Validity of abbreviated oral fat tolerance tests for assessing postprandial lipemia. Clin Nutr 2011; 30: 852-7.
[19]
Kolovou GD, Watts GF, Mikhailidis DP, et al. Postprandial hypertriglyceridaemia revisited in the era of non-fasting lipid profile testing: Executive summary of a 2019 expert panel statement. Curr Vasc Pharmacol 2019; 17: 538-40.
[20]
Kolovou GD, Watts GF, Mikhailidis DP, et al. Postprandial hypertriglyceridaemia revisited in the era of non-fasting lipid profile testing: A 2019 expert panel statement, main text. Curr Vasc Pharmacol 2019; 17: 515-37.
[21]
Mihas C, Kolovou GD, Mikhailidis DP, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: A meta-analysis. Curr Vasc Pharmacol 2011; 9: 271-80.
[22]
Teng KT, Chang CY, Kanthimathi MS, Tan AT, Nesaretnam K. Effects of amount and type of dietary fats on postprandial lipemia and thrombogenic markers in individuals with metabolic syndrome. Atherosclerosis 2015; 242: 281-7.
[23]
Monfort-Pires M, Delgado-Lista J, Gomez-Delgado F, Lopez-Miranda J, Perez-Martinez P, Ferreira SR. Impact of the content of fatty acids of oral fat tolerance tests on postprandial triglyceridemia: Systematic review and meta-analysis. Nutrients 2016; 8 pii: E580
[24]
Branchi A, Torri A, Berra C, Colombo E, Sommariva D. Changes in serum lipids and blood glucose in non-diabetic patients with metabolic syndrome after mixed meals of different composition. J Nutr Metab 2012; 2012215052
[25]
Song Z, Yang L, Shu G, Lu H, Sun G. Effects of the n-6/n-3 polyunsaturated fatty acids ratio on postprandial metabolism in hypertriacylglycerolemia patients. Lipids Health Dis 2013; 12: 181.
[26]
Juvonen KR, Macierzanka A, Lille ME, et al. Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals. Br J Nutr 2015; 114: 418-29.
[27]
Keogh JB, Wooster TJ, Golding M, Day L, Otto B, Clifton PM. Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans. J Nutr 2011; 141: 809-15.
[28]
Katsanos CS. Clinical considerations and mechanistic determinants of postprandial lipemia in older adults. Adv Nutr 2014; 5: 226-34.
[29]
Vors C, Pineau G, Gabert L, et al. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: A randomized crossover clinical trial. Am J Clin Nutr 2013; 97: 23-36.
[30]
Freese EC, Gist NH, Cureton KJ. Effect of prior exercise on postprandial lipemia: An updated quantitative review. J Appl Physiol 2014; 116: 67-75.
[31]
Tentolouris N, Kanellos PT, Siami E, et al. Assessment of the validity and reproducibility of a novel standardized test meal for the study of postprandial triacylglycerol concentrations. Lipids 2017; 52: 675-86.
[32]
Rosenson RS, Davidson MH, Hirsh BJ, Kathiresan S, Gaudet D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J Am Coll Cardiol 2014; 64: 2525-40.
[33]
Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F, Ordovas JM. Influence of genetic factors in the modulation of postprandial lipemia. Atherosclerosis 2008; 9: 49-55.
[34]
Kolovou GD, Anagnostopoulou KK, Mikhailidis DP. The link between human and transgenic animal studies involving postprandial hypertriglyceridemia and CETP gene polymorphisms. Open Cardiovasc Med J 2009; 3: 48-50.
[35]
Anagnostopoulou KK, Kolovou GD, Kostakou PM, et al. Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia. Lipids Health Dis 2009; 8: 24.
[36]
Perez-Martinez P, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Update on genetics of postprandial lipemia. Atheroscler Suppl 2010; 11: 39-43.
[37]
Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Nutrigenetics of the postprandial lipoprotein metabolism: evidences from human intervention studies. Curr Vasc Pharmacol 2011; 9: 287-91.
[38]
Hassing HC, Surendran RP, Derudas B, et al. SULF2 strongly prediposes to fasting and postprandial triglycerides in patients with obesity and type 2 diabetes mellitus. Obesity (Silver Spring) 2014; 22: 1309-16.
[39]
Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013; 45: 1274-83.
[40]
Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 2013; 45: 1345-52.
[41]
An P, Straka RJ, Pollin TI, et al. Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response. Hum Genet 2014; 133: 919-30.
[42]
Wojczynski MK, Parnell LD, Pollin TI, et al. Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). Metabolism 2015; 64: 1359-71.
[43]
Shia WC, Ku TH, Tsao YM, et al. Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics 2011; 12: 23.
[44]
Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: New insights from epidemiology, genetics, and biology. Circ Res 2016; 118: 547-63.
[45]
EAS familial hypercholesterolaemia studies collaboration. Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: Rationale and design of the global EAS familial hypercholesterolaemia studies collaboration. Atherosclerosis 2016; 22: 1-32.
[46]
Linsel-Nitschke P, Götz A, Erdmann J, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease-a Mendelian randomisation study. PLoS One 2008; 3e2986
[47]
Moorjani S, Roy M, Gagne C, et al. Homozygous familial hypercholesterolemia among French Canadians in Quebec province. Arteriosclerosis 1989; 9: 211-6.
[48]
Steyn K, Goldberg YP, Kotze MJ, et al. Estimation of the prevalence of familial hypercholesterolaemia in a rural Afrikaner community by direct screening for three Afrikaner founder low density lipoprotein receptor gene mutations. Hum Genet 1996; 98: 479-84.
[49]
Seftel HC, Baker SG, Jenkins T, Mendelsohn D. Prevalence of familial hypercholesterolemia in Johannesburg Jews. Am J Med Genet 1989; 34: 545-7.
[50]
Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: A huge prevalence review. Am J Epidemiol 2004; 160: 407-20.
[51]
Fahed AC, Safa RM, Haddad FF, et al. Homozygous familial hypercholesterolemia in Lebanon: A genotype/phenotype correlation. Mol Genet Metab 2011; 102: 181-8.
[52]
Lambert M, Assouline L, Feoli-Fonseca JC, Brun N, Delvin EE, Levy E. Determinants of lipid level variability in French-Canadian children with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2001; 21: 979-84.
[53]
Soutar AK, Myant NB, Thompson GR. The metabolism of very low density and intermediate density lipoproteins in patients with familial hypercholesterolemia. Atherosclerosis 1982; 43: 217-23.
[54]
Kolovou GD, Anagnostopoulou KK, Pilatis ND, et al. Heterozygote men with familial hypercholesterolaemia may have an abnormal triglyceride response post-prandially. Evidence for another predictor of vascular risk in familial hypercholesterolaemia. Int J Clin Pract 2005; 59: 311-7.
[55]
Kolovou GD, Anagnostopoulou KK, Pilatis ND, et al. The influence of natural menopause on postprandial lipemia in heterozygotes for familial hypercholesterolemia. J Womens Health (Larchmt) 2004; 13: 1119-26.
[56]
Dane-Stewart CA, Watts GF, Mamo JC, Dimmitt SB, Barrett PH, Redgrave TG. Elevated apolipoprotein B-48 and remnant-like particle-cholesterol in heterozygous familial hypercholesterolaemia. Eur J Clin Invest 2001; 31: 113-7.
[57]
Cabezas MC, de Bruin TW, Westerveld HE, Meijer E, Erkelens DW. Delayed chylomicron remnant clearance in subjects with heterozygous familial hypercholesterolaemia. J Intern Med 1998; 244: 299-307.
[58]
Mamo JC, Smith D, Yu KC, et al. Accumulation of chylomicron remnants in homozygous subjects with familial hypercholesterolaemia. Eur J Clin Invest 1998; 28: 379-84.
[59]
Chan DC, Watts GF. Postprandial lipoprotein metabolism in familial hypercholesterolemia: Thinking outside the box. Metabolism 2012; 61: 3-11.
[60]
Mahley RW, Innerarity TL. Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta 1983; 737: 197-222.
[61]
Rubinsztein DC, Cohen JC, Berger GM, van der Westhuyzen DR, Coetzee GA, Gevers W. Chylomicron remnant clearance from the plasma is normal in familial hypercholesterolemic homozygotes with defined receptor defects. J Clin Invest 1990; 86: 1306-12.
[62]
Twisk J, Gillian-Daniel DL, Tebon A, Wang L, Barrett PH, Attie AD. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 2000; 105: 521-32.
[63]
Kolovou G, Anagnostopoulou K, Mikhailidis DP. One century of triglycerides, but there are still lots to learn! Curr Drug Targets 2009; 10: 299-301.
[64]
Ayyobi AF, Brunzell JD. Lipoprotein distribution in the metabolic syndrome, type 2 diabetes mellitus, and familial combined hyperlipidemia. Am J Cardiol 2003; 92: 27-33.
[65]
Sniderman AD, Cabezas MC, Ribalta J, et al. A proposal to redefine familial combined hyperlipidaemia - third workshop on FCHL held in Barcelona from 3 to 5 May 2001, during the scientific sessions of the European society for clinical investigation. Eur J Clin Invest 2002; 32: 71-3.
[66]
Pavlidis AN, Kolovou GD, Anagnostopoulou KK, Petrou PC, Cokkinos DV. Postprandial metabolic heterogeneity in men with primary dyslipidaemia. Arch Med Sci 2010; 6: 879-86.
[67]
Sevilla-González MDR, Aguilar-Salinas CA, Muñóz-Hernández L, et al. Identification of a threshold to discriminate fasting hypertriglyceridemia with postprandial values. Lipids Health Dis 2018; 17: 156.
[68]
Meijssen S, Cabezas MC, Twickler TB, Jansen H, Erkelens DW. In vivo evidence of defective postprandial and postabsorptive free fatty acid metabolism in familial combined hyperlipidemia. J Lipid Res 2000; 41: 1096-102.
[69]
Castro Cabezas M, Verseyden C, Meijssen S, Jansen H, Erkelens DW. Effects of atorvastatin on the clearance of triglyceride-rich lipoproteins in familial combined hyperlipidemia. J Clin Endocrinol Metab 2004; 89: 5972-80.
[70]
Almeda-Valdes P, Cuevas-Ramos D, Mehta R, et al. Factors associated with postprandial lipemia and apolipoprotein A-V levels in individuals with familial combined hyperlipidemia. BMC Endocr Disord 2014; 14: 90.
[71]
Lee SH, Park S, Kang SM, Jang Y, Chung N, Choi D. Effect of atorvastatin monotherapy and low-dose atorvastatin/ezetimibe combination on fasting and postprandial triglycerides in combined hyperlipedemia. J Cardiovasc Pharmacol Ther 2012; 17: 65-71.
[72]
Couillard C, Bergeron N, Prud’homme D, et al. Gender difference in postprandial lipemia: Importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 1999; 19: 2448-55.
[73]
Horton TJ, Commerford SR, Pagliassotti MJ, Bessesen DH. Postprandial leg uptake of triglyceride is greater in women than in men. Am J Physiol Endocrinol Metab 2002; 283: 1192-202.
[74]
Steffensen CH, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab 2002; 282: E634-42.
[75]
Burger HG. The endocrinology of the menopause. J Steroid Biochem Mol Biol 1999; 69: 31-5.
[76]
Harada PHH, Buring JE, Cook NR, Cobble ME, Kulkarni KR, Mora S. Impact of Subclinical Hypothyroidism on Cardiometabolic Biomarkers in Women. J Endocr Soc 2017; 1: 113-23.
[77]
Ryan MF, O’Grada CM, Morris C, et al. Within-person variation in the postprandial lipemic response of healthy adults. Am J Clin Nutr 2013; 97: 261-7.
[78]
Perez-Caballero AI, Alcala-Diaz JF, Perez-Martinez P, et al. Lipid metabolism after an oral fat test meal is affected by age-associated features of metabolic syndrome, but not by age. Atherosclerosis 2013; 226: 258-62.
[79]
Freese EC, Levine AS, Chapman DP, Hausman DB, Cureton KJ. Effects of acute sprint interval cycling and energy replacement on postprandial lipemia. J Appl Physiol 2011; 111: 1584-9.
[80]
Cox-York KA, Sharp TA, Stotz SA, Bessesen DH, Pagliassotti MJ, Horton TJ. The effects of sex, metabolic syndrome and exercise on postprandial lipemia. Metabolism 2013; 62: 244-54.
[81]
Davitt PM, Arent SM, Tuazon MA, Golem DL, Henderson GC. Postprandial triglyceride and free fatty acid metabolism in obese women after either endurance or resistance exercise. J Appl Physiol 2013; 114: 1743-54.
[82]
Hashimoto S, Hayashi S, Yoshida A, Naito M. Acute effects of postprandial aerobic exercise on glucose and lipoprotein metabolism in healthy young women. J Atheroscler Thromb 2013; 20: 204-13.
[83]
Correa CS, Teixeira BC, Macedo RC, et al. Resistance exercise at variable volume does not reduce postprandial lipemia in postmenopausal women. Age 2014; 36: 869-79.
[84]
Freese EC, Gist NH, Acitelli RM, et al. Acute and chronic effects of sprint interval exercise on postprandial lipemia in women at-risk for the metabolic syndrome. J Appl Physiol 2015; 118: 872-9.
[85]
Littlefield LA, Papadakis Z, Rogers KM, Moncada-Jiménez J, Taylor JK, Grandjean PW. The effect of exercise intensity and excess postexercise oxygen consumption on postprandial blood lipids in physically inactive men. Appl Physiol Nutr Metab 2017; 42: 986-93.
[86]
Emerson SR, Kurti SP, Emerson EM, et al. Postprandial metabolic responses differ by age group and physical activity level. J Nutr Health Aging 2018; 22: 145-53.
[87]
Ramírez-Vélez R, Correa-Rodríguez M, Tordecilla-Sanders A, et al. Exercise and postprandial lipemia: Effects on vascular health in inactive adults. Lipids Health Dis 2018; 17: 69.
[88]
Macedo RCO, Boeno FP, Farinha JB, et al. Acute and residual effects of aerobic exercise on fructose-induced postprandial lipemia on lean male subjects. Eur J Nutr 2018.
[http://dx.doi.org/10.1007/s00394-018-1780-4]
[89]
Maki KC, Lawless AL, Kelley KM, Dicklin MR, Schild AL, Rains TM. Prescription omega-3-acid ethyl esters reduce fasting and postprandial triglycerides and modestly reduce pancreatic β-cell response in subjects with primary hypertriglyceridemia. Prostaglandins Leukot Essent Fatty Acids 2011; 85: 143-8.
[90]
Usman MH, Qamar A, Gadi R, et al. Extended-release niacin acutely suppresses postprandial triglyceridemia. Am J Med 2012; 125: 1026-35.
[91]
Gabriel FS, Samson CE, Abejuela ZR, et al. Postprandial effect of orlistat on the peaking of lipid level after sequential high fat meals. Int J Endocrinol Metab 2012; 10: 458-63.
[92]
Hiramitsu S, Miyagishima K, Ishii J, et al. Effect of ezetimibe on lipid and glucose metabolism after a fat and glucose load. J Cardiol 2012; 60: 395-400.
[93]
Kikuchi K, Nezu U, Inazumi K, et al. Double-blind randomized clinical trial of the effects of ezetimibe on postprandial hyperlipidaemia and hyperglycaemia. J Atheroscler Thromb 2012; 19: 1093-101.
[94]
Lee SH, Park S, Kang SM, Jang Y, Chung N, Choi D. Effect of atorvastatin monotherapy and low-dose atorvastatin/ezetimibe combination on fasting and postprandial triglycerides in combined hyperlipedemia. J Cardiovasc Pharmacol Ther 2012; 17: 65-71.
[95]
Matikainen N, Taskinen MR. The effect of vildagliptin therapy on atherogenic postprandial remnant particles and LDL particle size in subjects with type 2 diabetes. Diabet Med 2013; 30: 756-7.
[96]
Reyes-Soffer G, Ngai CI, Lovato L, et al. Effect of combination therapy with fenofibrate and simvastatin on postprandial lipemia in the ACCORD lipid trial. Diabetes Care 2013; 36: 422-8.
[97]
Miyoshi T, Noda Y, Ohno Y, et al. Omega-3 fatty acids improve postprandial lipemia and associated endothelial dysfunction in healthy individuals - a randomized cross-over trial. Biomed Pharmacother 2014; 68: 1071-7.
[98]
Petto J, Vasques LM, Pinheiro RL, et al. Comparison of postprandial lipemia between women who are on oral contraceptive methods and those who are not. Arq Bras Cardiol 2014; 103: 245-50.
[99]
Noguchi K, Hirota M, Miyoshi T, et al. Single administration of vildagliptin attenuates postprandial hypertriglyceridemia and endothelial dysfunction in normoglycemic individuals. Exp Ther Med 2015; 9: 84-8.
[100]
El Khoury P, Waldmann E, Huby T, et al. Extended-release niacin/laropiprant improves overall efficacy of postprandial reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2016; 36: 285-94.
[101]
Sahade V, França S, Badaró R, Fernando Adán L. Obesity and postprandial lipemia in adolescents: Risk factors for cardiovascular disease. Endocrinol Nutr 2012; 59: 131-9.
[102]
Thackray AE, Barrett LA, Tolfrey K. Acute high-intensity interval running reduces postprandial lipemia in boys. Med Sci Sports Exerc 2013; 45: 1277-84.
[103]
Thackray AE, Barrett LA, Tolfrey K. High-intensity running and energy restriction reduce postprandial lipemia in girls. Med Sci Sports Exerc 2016; 48: 402-11.
[104]
Tolfrey K, Thackray AE, Barrett LA. Acute exercise and postprandial lipemia in young people. Pediatr Exerc Sci 2014; 26: 127-37.
[105]
Lee S, Burns SF, White D, Kuk JL, Arslanian S. Effects of acute exercise on postprandial triglyceride response after a high-fat meal in overweight black and white adolescents. Int J Obes (Lond) 2013; 37: 966-71.
[106]
Sahade V, França S, Adan LF. The influence of weight excess on the postprandial lipemia in adolescents. Lipids Health Dis 2013; 12: 17.
[107]
Bond B, Gates PE, Jackman SR, Corless LM, Williams CA, Barker AR. Exercise intensity and the protection from postprandial vascular dysfunction in adolescents. Am J Physiol Heart Circ Physiol 2015; 308: 1443-50.
[108]
Mager DR, Mazurak V, Rodriguez-Dimitrescu C, et al. A meal high in saturated fat evokes postprandial dyslipemia, hyperinsulinemia, and altered lipoprotein expression in obese children with and without nonalcoholic fatty liver disease. J Parenter Enteral Nutr 2013; 37: 517-28.
[109]
Saland JM, Satlin LM, Zalsos-Johnson J, Cremers S, Ginsberg HN. Impaired postprandial lipemic response in chronic kidney disease. Kidney Int 2016; 90: 172-80.
[110]
Maraki M, Sidossis LS. Physiology in medicine: Update on lifestyle determinants of postprandial triacylglycerolemia with emphasis on the Mediterranean lifestyle. Am J Physiol Endocrinol Metab 2015; 309: 440-9.
[111]
Tobin LW, Kiens B, Galbo H. The effect of exercise on postprandial lipidemia in type 2 diabetic patients. Eur J Appl Physiol 2008; 102: 361-70.
[112]
Olmedilla-Alonso B, Pedrosa MM, Cuadrado C, Brito M. Asensio-S-Manzanera C, Asensio-Vegas C. Composition of two Spanish common dry beans (Phaseolus vulgaris), ‘Almonga’ and ‘Curruquilla’, and their postprandial effect in type 2 diabetics. J Sci Food Agric 2013; 93: 1076-82.
[113]
Mortensen LS, Hartvigsen ML, Brader LJ, et al. Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: Comparison of whey, casein, gluten, and cod protein. Am J Clin Nutr 2009; 90: 41-8.
[114]
Bohl M, Bjørnshave A, Rasmussen KV, et al. Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (dairy health): A 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study. Am J Clin Nutr 2015; 101: 870-8.
[115]
Aune D, Norat T, Romundstad P, Vatten LJ. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr 2013; 98: 1066-83.
[116]
Rivellese AA, Giacco R, Annuzzi G, et al. Effects of monounsaturated vs. saturated fat on postprandial lipemia and adipose tissue lipases in type 2 diabetes. Clin Nutr 2008; 27: 133-41.
[117]
Bozzetto L, Annuzzi G, Costabile G, et al. A CHO/fibre diet reduces and a MUFA diet increases postprandial lipaemia in type 2 diabetes: No supplementary effects of low-volume physical training. Acta Diabetol 2014; 51: 385-93.
[118]
Thomsen C, Storm H, Holst JJ, Hermansen K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am J Clin Nutr 2003; 77: 605-11.
[119]
Higashi K, Shige H, Ito T, et al. Effect of a low-fat diet enriched with oleic acid on postprandial lipemia in patients with type 2 diabetes mellitus. Lipids 2001; 36: 1-6.
[120]
Griffo E, Nosso G, Lupoli R, et al. Early improvement of postprandial lipemia after bariatric surgery in obese type 2 diabetic patients. Obes Surg 2014; 24: 765-70.
[121]
Xiao C, Dash S, Morgantini C, Adeli K, Lewis GF. Gut peptides are novel regulators of intestinal lipoprotein secretion: Experimental and pharmacological manipulation of lipoprotein metabolism. Diabetes 2015; 64: 2310-8.
[122]
Vergès B, Duvillard L, Pais de Barros JP, et al. Liraglutide reduces postprandial hyperlipidemia by increasing APOB48 (apolipoprotein B48) catabolism and by reducing APOB 48 production in patients with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2018; 38: 2198-206.
[123]
Voukali M, Kastrinelli I, Stragalinou S, et al. Study of postprandial lipaemia in type 2 diabetes mellitus: Exenatide versus liraglutide. J Diabetes Res 2014; 2014304032
[124]
Hermansen K, Bækdal TA, Düring M, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab 2013; 15: 1040-8.
[125]
Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis 2010; 212: 217-22.
[126]
Katsiki N, Christou GA, Kiortsis DN. Liraglutide and cardiometabolic effects: More than just another antiobesity drug? Curr Vasc Pharmacol 2016; 14: 76-9.
[127]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-22.
[128]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375: 1834-44.
[129]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117-28.
[130]
Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: Aa meta-analysis. Cardiovasc Diabetol 2016; 15: 37.
[131]
Monami M, Dicembrini I, Mannucci E. Effects of SGLT-2 inhibitors on mortality and cardiovascular events: A comprehensive meta-analysis of randomized controlled trials. Acta Diabetol 2017; 54: 19-36.
[132]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644-57.
[133]
Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 inhibitors and cardiovascular risk: lessons learned from the empa-reg outcome study. Diabetes Care 2016; 39: 717-25.
[134]
Katsiki N, Athyros VG, Mikhailidis DP. Cardiovascular effects of sodium-glucose cotransporter 2 inhibitors: Multiple actions. Curr Med Res Opin 2016; 32: 1513-4.
[135]
Derosa G, Bonaventura A, Bianchi L, et al. Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients. Metabolism 2014; 63: 957-67.
[136]
Noda Y, Miyoshi T, Oe H, et al. Alogliptin ameliorates postprandial lipemia and postprandial endothelial dysfunction in non-diabetic subjects: a preliminary report. Cardiovasc Diabetol 2013; 12: 8.
[137]
Xiao C, Dash S, Morgantini C, Patterson BW, Lewis GF. Sitagliptin, a DPP-4 inhibitor, acutely inhibits intestinal lipoprotein particle secretion in healthy humans. Diabetes 2014; 63: 2394-401.
[138]
Eleftheriadou I, Grigoropoulou P, Katsilambros N, Tentolouris N. The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr Diabetes Rev 2008; 4: 340-56.
[139]
Geltner C, Lechleitner M, Föger B, Ritsch A, Drexel H, Patsch JR. Insulin improves fasting and postprandial lipemia in type 2 diabetes. Eur J Intern Med 2002; 13: 256-63.
[140]
Sourij H, Schmoelzer I, de Campo A, et al. Non-glycemic effects of insulin therapy: A comparison between insulin aspart and regular human insulin during two consecutive meals in patients with type 2 diabetes. Eur J Endocrinol 2011; 165: 269-74.
[141]
Falko JM, Moser RJ, Meis SB, Caulin-Glaser T. Cardiovascular disease risk of type 2 diabetes mellitus and metabolic syndrome: Focus on aggressive management of dyslipidemia. Curr Diabetes Rev 2005; 1: 127-35.
[142]
Iovine C, Lilli S, Gentile A, et al. Atorvastatin or fenofibrate on post-prandial lipaemia in type 2 diabetic patients with hyperlipidaemia. Eur J Clin Invest 2006; 36: 560-5.
[143]
Katsiki N, Kolovou G. Postprandial lipid profile in patients with type 2 diabetes. Curr Med Res Opin 2014; 30: 121.
[144]
Rizzo M, Corrado E, Patti AM, Rini GB, Mikhailidis DP. Cilostazol and atherogenic dyslipidemia: A clinically relevant effect? Expert Opin Pharmacother 2011; 12: 647-55.
[145]
Ikewaki K, Mochizuki K, Iwasaki M, Nishide R, Mochizuki S, Tada N. Cilostazol, a potent phosphodiesterase type III inhibitor, selectively increases antiatherogenic high-density lipoprotein subclass LpA-I and improves postprandial lipemia in patients with type 2 diabetes mellitus. Metabolism 2002; 51: 1348-54.
[146]
Kolovou GD, Anagnostopoulou KK, Cokkinos DV. Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad Med J 2005; 81: 358-66.
[147]
Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP. The prevalence of metabolic syndrome in various populations. Am J Med Sci 2007; 333: 362-71.
[148]
Mikhailidis DP, Elisaf M, Rizzo M, et al. European panel on Low Density Lipoprotein (LDL) subclasses: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses: executive summary. Curr Vasc Pharmacol 2011; 9: 531-2.
[149]
Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017; 183: 57-70.
[150]
Alcala-Diaz JF, Delgado-Lista J, Perez-Martinez P, et al. Hypertriglyceridemia influences the degree of postprandial lipemic response in patients with metabolic syndrome and coronary artery disease: From the CORDIOPREV study. PLoS One 2014; 9e96297
[151]
Teramura M, Emoto M, Araki T, et al. Clinical impact of metabolic syndrome by modified NCEP-ATPIII criteria on carotid atherosclerosis in Japanese adults. J Atheroscler Thromb 2007; 14: 172-8.
[152]
Sattar N, Gaw A, Scherbakova O, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland coronary prevention study. Circulation 2003; 108: 414-9.
[153]
Annuzzi G, Bozzetto L, Costabile G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: A randomized controlled trial. Am J Clin Nutr 2014; 99: 463-71.
[154]
Maraki MI, Aggelopoulou N, Christodoulou N, et al. Lifestyle intervention leading to moderate weight loss normalizes postprandial triacylglycerolemia despite persisting obesity. Obesity (Silver Spring) 2011; 19: 968-76.
[155]
James AP, Watts GF, Barrett PH, et al. Effect of weight loss on postprandial lipemia and low-density lipoprotein receptor binding in overweight men. Metabolism 2003; 52: 136-41.
[156]
Simonen P, Gylling H, Howard AN, Miettinen TA. Introducing a new component of the metabolic syndrome: low cholesterol absorption. Am J Clin Nutr 2000; 72: 82-8.
[157]
Chan DC, Watts GF, Barrett PHR, O’Neill FH, Redgrave TG, Thompson GR. Relationships between cholesterol homeostasis and triacylglycerol-rich lipoprotein remnant metabolism in the metabolic syndrome. Clin Sci 2003; 104: 383-8.
[158]
Moran LJ, Noakes M, Clifton PM, Norman RJ. The effect of modifying dietary protein and carbohydrate in weight loss on arterial compliance and postprandial lipidemia in overweight women with polycystic ovary syndrome. Fertil Steril 2010; 94: 2451-4.
[159]
Chang CY, Kanthimathi MS, Tan AT, Nesaretnam K, Teng KT. The amount and types of fatty acids acutely affect insulin, glycemic and gastrointestinal peptide responses but not satiety in metabolic syndrome subjects. Eur J Nutr 2018; 57: 179-90.
[160]
Ohno Y, Miyoshi T, Noda Y, et al. Bezafibrate improves postprandial hypertriglyceridemia and associated endothelial dysfunction in patients with metabolic syndrome: A randomized crossover study. Cardiovasc Diabetol 2014; 13: 71.
[161]
Kolovou GD, Kostakou PM, Anagnostopoulou KK, Cokkinos DV. Therapeutic effects of fibrates in postprandial lipemia. Am J Cardiovasc Drugs 2008; 8: 243-55.
[162]
Tentolouris N, Eleftheriadou I, Katsilambros N. The effects of medications used for the management of dyslipidemia on postprandial lipemia. Curr Med Chem 2009; 16: 203-17.
[163]
Sahebkar A, Watts GF. Challenges in the treatment of hypertriglyceridemia: Glass half empty or half full? Expert Rev Clin Pharmacol 2015; 8: 363-6.
[164]
Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism 2016; 65: 1109-23.
[165]
Simon TG, Corey KE, Chung RT, Giugliano R. Cardiovascular risk reduction in patients with nonalcoholic fatty liver disease: The potential role of ezetimibe. Dig Dis Sci 2016; 61: 3425-35.
[166]
Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387: 679-90.
[167]
Athyros VG, Katsiki N, Mikhailidis DP. Editorial: Resolution of non-alcoholic-steatohepatitis. more than one drug needed? Curr Vasc Pharmacol 2016; 14: 313-5.
[168]
Athyros VG, Katsiki N, Karagiannis A. Editorial: Can glucagon like peptide 1 (GLP1) agonists or sodium-glucose co-transporter 2 (SGLT2) inhibitors ameliorate non-alcoholic steatohepatitis in people with or without diabetes? Curr Vasc Pharmacol 2016; 14: 494-7.
[169]
Athyros VG, Alexandrides TK, Bilianou H, et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017; 71: 17-32.
[170]
Levey AS. Controlling the epidemic of cardiovascular disease in chronic renal disease: Where do we start? Am J Kidney Dis 1998; 32: 5-13.
[171]
Saland JM, Ginsberg HN. Lipoprotein metabolism in chronic renal insufficiency. Pediatr Nephrol 2007; 22: 1095-112.
[172]
Vaziri ND. Causes of dysregulation of lipid metabolism in chronic renal failure. Semin Dial 2009; 22: 644-51.
[173]
Miyamoto T, Rashid Qureshi A, Yamamoto T, et al. Postprandial metabolic response to a fat- and carbohydrate-rich meal in patients with chronic kidney disease. Nephrol Dial Transplant 2011; 26: 2231-7.
[174]
Weintraub M, Burstein A, Rassin T, et al. Severe defect in clearing postprandial chylomicron remnants in dialysis patients. Kidney Int 1992; 42: 1247-52.
[175]
Charlesworth JA, Kriketos AD, Jones JE, Erlich JH, Campbell LV, Peake PW. Insulin resistance and postprandial triglyceride levels in primary renal disease. Metabolism 2005; 54: 821-8.
[176]
Kolovou G, Kolovou V, Mavrogeni S. Cigarette smoking/cessation and metabolic syndrome. Clin Lipidol 2016; 11: 6-14.
[177]
Axelsen M, Eliasson B, Joheim E, Lenner RA, Taskinen MR, Smith U. Lipid intolerance in smokers. J Intern Med 1995; 237: 449-55.
[178]
Eliasson B, Mero N, Taskinen MR, Smith U. The insulin resistance syndrome and postprandial lipid intolerance in smokers. Atherosclerosis 1997; 129: 79-88.
[179]
Mero N, Syvanne M, Eliasson B, Smith U, Taskinen MR. Postprandial elevation of ApoB-48-containing triglyceride-rich particles and retinyl esters in normolipemic males who smoke. Arterioscler Thromb Vasc Biol 1997; 17: 2096-102.
[180]
Bloomer RJ, Solis AD, Fisher-Wellman KH, Smith WA. Postprandial oxidative stress is exacerbated in cigarette smokers. Br J Nutr 2008; 99: 1055-60.
[181]
Kabagambe EK, Ordovas JM, Tsai MY, et al. Smoking, inflammatory patterns and postprandial hypertriglyceridemia. Atherosclerosis 2009; 203: 633-9.
[182]
Oguogho A, Lupattelli G, Palumbo B, Sinzinger H. Isoprostanes quickly normalize after quitting cigarette smoking in healthy adults. Vasa 2000; 29: 103-5.
[183]
Plaisance EP, Fisher G. Exercise and dietary-mediated reductions in postprandial lipemia. J Nutr Metab 2014; 2014902065
[184]
Tsetsonis NV, Hardman AE, Mastana SS. Acute effects of exercise on postprandial lipemia: A comparative study in trained and untrained middle-aged women. Am J Clin Nutr 1997; 65: 525-33.
[185]
Hardman AE, Lawrence JEM, Herd SL. Postprandial lipemia in endurance-trained people during a short interruption to training. J Appl Physiol 1998; 84: 1895-901.
[186]
Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: A randomized, controlled trial. Ann Intern Med 2004; 140: 769-77.
[187]
Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Perez-Caballero AI, Perez-Jimenez F, Lopez-Miranda J. Mediterranean diet and cardiovascular risk: Beyond traditional risk factors. Crit Rev Food Sci Nutr 2016; 56: 788-801.
[188]
Gomez-Marin B, Gomez-Delgado F, Lopez-Moreno J, et al. Long-term consumption of a Mediterranean diet improves postprandial lipemia in patients with type 2 diabetes: The Cordioprev randomized trial. Am J Clin Nutr 2018; 108: 963-70.
[189]
Kristensen M, Savorani F, Christensen S, et al. Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutr Metab Cardiovasc Dis 2013; 23: 136-43.
[190]
Strasser B, Fuchs D. Diet versus exercise in weight loss and maintenance: Focus on tryptophan. Int J Tryptophan Res 2016; 9: 9-16.
[191]
Harrison M, O’Gorman DJ, McCaffrey N, et al. Influence of acute exercise with and without carbohydrate replacement on postprandial lipid metabolism. J Appl Physiol 2009; 106: 943-9.
[192]
Chu A, Boutcher YN, Boutcher SH. Effect of acute interval sprinting exercise on postprandial lipemia of sedentary young men. J Exerc Nutrition Biochem 2016; 20: 9-14.
[193]
Tiihonen K, Rautonen N, Alhoniemi E, Ahotupa M, Stowell J, Vasankari T. Postprandial triglyceride response in normolipidemic, hyperlipidemic and obese subjects - the influence of polydextrose, a non-digestible carbohydrate. Nutr J 2015; 14: 23.
[194]
Kolovou GD, Salpea KD, Anagnostopoulou KK, Mikhailidis DP. Alcohol use, vascular disease, and lipid-lowering drugs. J Pharmacol Exp Ther 2006; 318: 1-7.
[195]
Kolovou GD, Anagnostopoulou KK, Kostakou PM, Bilianou H, Mikhailidis DP. Primary and secondary hypertriglyceridaemia. Curr Drug Targets 2009; 10: 336-43.
[196]
Kolovou GD, Mikhailidis DP, Daskalova DC, et al. The effect of co-administration of simvastatin and alcohol in rats. In Vivo 2003; 17: 523-7.
[197]
Kolovou GD, Mikhailidis DP, Kafaltis N, et al. The effect of alcohol and gemfibrozil co-administration in Wistar rats. In Vivo 2004; 18: 49-53.
[198]
Kolovou GD, Mikhailidis DP, Adamopoulou EN, et al. The effect of nicotinic acid and alcohol co-administration in Wistar rats. Methods Find Exp Clin Pharmacol 2005; 27: 17-23.
[199]
Ginsberg H, Olefsky J, Farquhar JW, Reaven GM. Moderate ethanol ingestion and plasma triglyceride levels. A study in normal and hypertriglyceridemic persons. Ann Intern Med 1974; 80: 143-9.
[200]
Dupont I, Bodenez P, Berthou F, Simon B, Bardou LG, Lucas D. Cytochrome P-450 2E1 activity and oxidative stress in alcoholic patients. Alcohol Alcohol 2000; 35: 98-103.
[201]
Lieber CS. Relationships between nutrition, alcohol use and liver disease. Alcohol Res Health 2003; 27: 220-31.
[202]
US Government. Alcoholic beverages: Dietary guidelines for americans 2005. US Government Printing Office; Washington, DC, USA: 2005.
[203]
Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: |Meta-analysis of effects on lipids and haemostatic factors. BMJ 1999; 319: 1523-8.
[204]
Andreasson S. Alcohol and J-shaped curves. Alcohol Clin Exp Res 1998; 22: 359S-64.
[205]
Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: A meta-analysis. Am J Clin Nutr 1992; 56: 320-8.
[206]
Lunagariya NA, Patel NK, Jagtap SC, Bhutani KK. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. EXCLI J 2014; 13: 897-921.
[207]
Gadde KM, Allison DB, Ryan DH, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): A randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377: 1341-52.
[208]
Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): A randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr 2012; 95: 297-308.
[209]
Fidler MC, Sanchez M, Raether B, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: The blossom trial. J Clin Endocrinol Metab 2011; 96: 3067-77.
[210]
Astrup A, Rössner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: A randomised, double-blind, placebo-controlled study. Lancet 2009; 374: 1606-16.
[211]
Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The scale maintenance randomized study. Int J Obes (Lond) 2013; 37: 1443-51.
[212]
Halpern B, Mancini MC. Safety assessment of combination therapies in the treatment of obesity: Focus on naltrexone/bupropion extended release and phentermine-topiramate extended release. Expert Opin Drug Saf 2017; 16: 27-39.
[213]
Mancini MC, Halpern A. Orlistat in the prevention of diabetes in the obese patient. Vasc Health Risk Manag 2008; 4: 325-36.
[214]
Guerciolini R. Mode of action of orlistat. Int J Obes Relat Metab Disord 1997; 21: 12-23.
[215]
Zhi J, Melia AT, Eggers H, Joly R, Patel IH. Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J Clin Pharmacol 1995; 35: 1103-8.
[216]
Sweeting AN, Tabet E, Caterson ID, Markovic TP. Management of obesity and cardiometabolic risk - role of phentermine/extended release topiramate. Diabetes Metab Syndr Obes 2014; 7: 35-44.
[217]
Rizzo M, Rizvi AA, Patti AM, et al. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: An 18-month prospective study. Cardiovasc Diabetol 2016; 15: 162.
[218]
Hermansen K, Bækdal TA, Düring M, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab 2013; 15: 1040-8.
[219]
Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: An overview of systematic reviews. JAMA Cardiol 2016; 1: 341-9.
[220]
Fulcher J, O’Connell R, Voysey M, et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015; 385: 1397-405.
[221]
Kolovou GD, Anagnostopoulou KK, Salpea KD, Daskalopoulou SS, Mikhailidis DP. The effect of statins on postprandial lipemia. Curr Drug Targets 2007; 8: 551-60.
[222]
Pang J, Chan DC, Barrett PH, Watts GF. Postprandial dyslipidaemia and diabetes: mechanistic and therapeutic aspects. Curr Opin Lipidol 2012; 23: 303-9.
[223]
Delgado-Lista J, Perez-Jimenez F, Ruano J, et al. Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men. J Lipid Res 2010; 51: 63-73.
[224]
López-Miranda J, Pérez-Martínez P, Marín C, Moreno JA, Gómez P, Pérez-Jiménez F. Postprandial lipoprotein metabolism, genes and risk of cardiovascular disease. Curr Opin Lipidol 2006; 17: 132-8.
[225]
Kolovou GD, Kostakou PM, Anagnostopoulou KK. Familial hypercholesterolemia and triglyceride metabolism. Int J Cardiol 2011; 147: 349-58.
[226]
Kolovou GD, Anagnostopoulou KK, Kostakou PM, Mikhailidis DP. Cholesterol Ester Transfer Protein (CETP), postprandial lipemia and hypolipidemic drugs. Curr Med Chem 2009; 16: 4345-60.
[227]
Ooi EM, Watts GF, Ng TW, Barrett PH. Effect of dietary fatty acids on human lipoprotein metabolism: A comprehensive update. Nutrients 2015; 7: 4416-25.
[228]
Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019; 380: 11-22.
[229]
Kim KJ, Kim SH, Yoon YW, et al. Effect of fixed-dose combinations of ezetimibe plus rosuvastatin in patients with primary hypercholesterolemia: MRS-ROZE (multicenter randomized study of rosuvastatin and ezetimibe). Cardiovasc Ther 2016; 34: 371-82.
[230]
Rosen JB, Jimenez JG, Pirags V, et al. Consistency of effect of ezetimibe/simvastatin compared with intensified lipid-lowering treatment strategies in obese and non-obese diabetic subjects. Lipids Health Dis 2013; 12: 103.
[231]
Oikawa S, Yamashita S, Nakaya N, Sasaki J, Kono S. Efficacy and safety of long-term coadministration of fenofibrate and ezetimibe in patients with combined hyperlipidemia: Results of the EFECTL study. J Atheroscler Thromb 2017; 24: 77-94.
[232]
Torimoto K, Okada Y, Mori H, et al. Efficacy of combination of Ezetimibe 10 mg and rosuvastatin 2.5 mg versus rosuvastatin 5 mg monotherapy for hypercholesterolemia in patients with type 2 diabetes. Lipids Health Dis 2013; 12: 137.
[233]
Kotani K, Sakane N, Taniguchi N. Effect of ezetimibe on remnant-like particle cholesterol in subjects with metabolic syndrome. Med Princ Pract 2012; 21: 134-8.
[234]
Shigematsu E, Yamakawa T, Taguri M, et al. Efficacy of ezetimibe is associated with gender and baseline lipid levels in patients with type 2 diabetes. J Atheroscler Thromb 2012; 19: 846-53.
[235]
Adachi H, Nakano H, Yamamoto K, et al. Ezetimibe ameliorates atherogenic lipids profiles, insulin resistance and hepatocyte growth factor in obese patients with hypercholesterolemia. Lipids Health Dis 2015; 14: 1.
[236]
Chan DC, Pang J, Romic G, Watts GF. Postprandial hypertriglyceridemia and cardiovascular disease: Current and future therapies. Curr Atheroscler Rep 2013; 15: 309.
[237]
Abramson BL, Benlian P, Hanson ME, Lin J, Shah A, Tershakovec AM. Response by sex to statin plus ezetimibe or statin monotherapy: A pooled analysis of 22,231 hyperlipidemic patients. Lipids Health Dis 2011; 10: 146.
[238]
Bozzetto L, Annuzzi G, Corte GD, et al. Ezetimibe beneficially influences fasting and postprandial triglyceride-rich lipoproteins in type 2 diabetes. Atherosclerosis 2011; 217: 142-8.
[239]
Park H, Shima T, Yamaguchi K, et al. Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J Gastroenterol 2011; 46: 101-7.
[240]
Chan DC, Watts GF, Gan SK, Ooi EM, Barrett PH. Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care 2010; 33: 1134-9.
[241]
Morrone D, Weintraub WS, Toth PP, et al. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: A pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis 2012; 223: 251-61.
[242]
Nakamura K, Miyoshi T, Yunoki K, Ito H. Postprandial hyperlipidemia as a potential residual risk factor. J Cardiol 2016; 67: 335-9.
[243]
Nakamura T, Hirano M, Kitta Y, et al. A comparison of the efficacy of combined ezetimibe and statin therapy with doubling of statin dose in patients with remnant lipoproteinemia on previous statin therapy. J Cardiol 2012; 60: 12-7.
[244]
Tamaki N, Ueno H, Morinaga Y, Shiiya T, Nakazato M. Ezetimibe ameliorates atherosclerotic and inflammatory markers, atherogenic lipid profiles, insulin sensitivity, and liver dysfunction in Japanese patients with hypercholesterolemia. J Atheroscler Thromb 2012; 19: 532-8.
[245]
Yunoki K, Nakamura K, Miyoshi T, et al. Ezetimibe improves postprandial hyperlipemia and its induced endothelial dysfunction. Atherosclerosis 2011; 217: 486-91.
[246]
Kawagoe Y, Hattori Y, Nakano A, et al. Comparative study between high-dose fluvastatin and low-dose fluvastatin and ezetimibe with regard to the effect on endothelial function in diabetic patients. Endocr J 2011; 58: 171-5.
[247]
Miyashita Y, Endo K, Saiki A, et al. Effect of ezetimibe monotherapy on lipid metabolism and arterial stiffness assessed by cardio-ankle vascular index in type 2 diabetic patients. J Atheroscler Thromb 2010; 17: 1070-6.
[248]
Daskalova DC, Kolovou GD, Panagiotakos DB, Pilatis ND, Cokkinos DV. Increase in aortic pulse wave velocity is associated with abnormal postprandial triglyceride response. Clin Cardiol 2005; 28: 577-83.
[249]
Sugizaki T, Watanabe M, Horai Y, et al. The Niemann-Pick C1 like 1 (NPC1L1) inhibitor ezetimibe improves metabolic disease via decreased liver X receptor (LXR) activity in liver of obese male mice. Endocrinology 2014; 155: 2810-9.
[250]
Muraoka T, Aoki K, Iwasaki T, et al. Ezetimibe decreases SREBP-1c expression in liver and reverses hepatic insulin resistance in mice fed a high-fat diet. Metabolism 2011; 60: 617-28.
[251]
Naples M, Baker C, Lino M, Iqbal J, Hussain MM, Adeli K. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. Am J Physiol Gastrointest Liver Physiol 2012; 302: 1043-52.
[252]
Sandoval JC, Nakagawa-Toyama Y, Masuda D, et al. Molecular mechanisms of ezetimibe-induced attenuation of postprandial hypertriglyceridemia. J Atheroscler Thromb 2010; 17: 914-24.
[253]
Jia L, Ma Y, Rong S, et al. Niemann-Pick C1-Like 1 deletion in mice prevents high-fat diet-induced fatty liver by reducing lipogenesis. J Lipid Res 2010; 51: 3135-44.
[254]
Fukuda M, Nakamura T, Kataoka K, et al. Ezetimibe ameliorates cardiovascular complications and hepatic steatosis in obese and type 2 diabetic db/db mice. J Pharmacol Exp Ther 2010; 335: 70-5.
[255]
Ahmed O, Littmann K, Gustafsson U, et al. Ezetimibe in combination with simvastatin reduces remnant cholesterol without affecting biliary lipid concentrations in gallstone patients. J Am Heart Assoc 2018; 7e009876
[256]
Nakamura A, Sato K, Kanazawa M, et al. Impact of decreased insulin resistance by ezetimibe on postprandial lipid profiles and endothelial functions in obese, non-diabetic-metabolic syndrome patients with coronary artery disease. Heart Vessels 2019; 34: 916-25.
[257]
Druce I, Abujrad H, Ooi TC. PCSK9 and triglyceride-rich lipoprotein metabolism. J Biomed Res 2015; 29.
[258]
Kwakernaak AJ, Lambert G, Dullaart RPF. Plasma proprotein convertase subtilisin-kexin type 9 is predominantly related to intermediate density lipoproteins. J Clin Biochem 2014; 47: 679-82.
[259]
Kwakernaak AJ, Lambert G, Slagman MC, et al. Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis 2013; 226: 459-65.
[260]
Sahebkar A. Circulating levels of proprotein convertase subtilisin kexin type 9 are elevated by fibrate therapy: A systematic review and meta-analysis of clinical trials. Cardiol Rev 2014; 22: 306-12.
[261]
Cariou B, Langhi C, Le Bras M, et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab (Lond) 2013; 10: 4.
[262]
Chan DC, Wong AT, Pang J, Barrett PH, Watts GF. Inter-relationships between proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III and plasma apolipoprotein B-48 transport in obese subjects: A stable isotope study in the postprandial state. Clin Sci (Lond) 2015; 128: 379-85.
[263]
Robinson JG, Nedergaard BS, Rogers WJ, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia the LAPLACE-2 randomized clinical trial. JAMA 2014; 311: 1870-82.
[264]
Roth EM, Taskinen M, Ginsberg HN, et al. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24 week double-blind, randomized Phase 3 trial. Int J Cardiol 2014; 176: 55-61.
[265]
Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol. JAMA 2014; 308: 2497-506.
[266]
Blom DJ, Hala T, Bolognese M, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med 2014; 370: 1809-19.
[267]
Giugliano RP, Desai NR, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): A randomised, placebo-controlled, dose-ranging, phase-2 study. Lancet 2007; 380: 2007-17.
[268]
Hirayama A, Honarpour N, Yoshida M, et al. Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk. Circ J 2014; 78: 1073-82.
[269]
Koren MJ, Lundqvist P, Bolognese M, et al. Anti-PCSK9 monotherapy for hypercholesterolemia clinical trial of evolocumab. J Am Coll Cardiol 2014; 63: 2531-40.
[270]
Le May C, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol 2009; 29: 684-90.
[271]
Le May C, Berger JM, Lespine A, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 2013; 33: 1484-93.
[272]
Stein EA, Giugliano RP, Koren MJ, et al. Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J 2014; 35: 2249-59.
[273]
Tan CK, Zhuang Y, Wahli W. Synthetic and natural Peroxisome Proliferator-Activated Receptor (PPAR) agonists as candidates for the therapy of the metabolic syndrome. Expert Opin Ther Targets 2017; 21: 333-48.
[274]
Khvorova A. Oligonucleotide therapeutics - a new class of cholesterol-lowering drugs. N Engl J Med 2017; 376: 4-7.
[275]
Gryn SE, Hegele RA. Novel therapeutics in hypertriglyceridemia. Curr Opin Lipidol 2015; 26: 484-91.
[276]
Yamashita S. Effects of pemafibrate (K-877) on cholesterol efflux capacity and postprandial hyperlipidemia in patients with atherogenic dyslipidemia. J Clin Lipidol 2018; 12: 1267-79.
[277]
Arai H, Yamashita S, Yokote K, Araki E, Suganami H, Ishibashi S. Efficacy and safety of K-877, a novel selective peroxisome proliferator- activated receptor alpha modulator (SPPARMalpha), in combination with statin treatment: Two randomised, double-blind, placebo-controlled clinical trials in patients with dyslipidaemia. Atherosclerosis 2017; 261: 144-52.
[278]
Meyers CD, Tremblay K, Amer A, Chen J, Jiang L, Gaudet D. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis 2015; 14: 8.
[279]
Scott LJ. Alipogene tiparvovec: A review of its use in adults with familial lipoprotein lipase deficiency. Drugs 2015; 75: 175-82.
[280]
Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 2015; 373: 438-47.
[281]
Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med 2017; 377: 211-21.
[282]
US National Library of Medicine Efficacy and safety of gemcabene in patients with homozygous familial hypercholesterolemia on stable, lipid-lowering therapy (COBALT-1) Available at ( https: //clinicaltrials.gov/ct2/show/NCT02722408
[283]
Betteridge DJ, Bakowski M, Taylor KG, Reckless JP, de Silva SR, Galton DJ. Treatment of severe diabetic hypertriglyceridemia by plasma exchange. Lancet 1978; 1: 1368.
[284]
Iskandar SB, Olive KE. Plasmapheresis as an adjuvant therapy for hypertriglyceridemia-induced pancreatitis. Am J Med Sci 2004; 328: 290-4.
[285]
Stefanutti C, Di Giacomo S, Vivenzio A, et al. Therapeutic plasma exchange in patients with severe hypertriglyceridemia: A multicenter study. Artif Organs 2009; 33: 1096-102.
[286]
Diakoumakou O, Hatzigeorgiou G, Gontoras N, et al. Severe/extreme hypertriglyceridemia and LDL apheretic treatment: review of the literature, original findings. Cholesterol 2014; 2014109263
[287]
Griffo E, Cotugno M, Nosso G, et al. Effects of sleeve gastrectomy and gastric bypass on postprandial lipid profile in obese type 2 diabetic patients: A 2-year follow-up. Obes Surg 2016; 26: 1247-53.
[288]
Umeda LM, Pereira AZ, Carneiro G, Arasaki CH, Zanella MT. Postprandial adiponectin levels are associated with improvements in postprandial triglycerides after Roux-en-Y gastric bypass in type 2 diabetic patients. Metab Syndr Relat Disord 2013; 11: 343-8.
[289]
Tinahones FJ, Queipo-Ortuño MI, Clemente-Postigo M, Fernnadez-Garcia D, Mingrone G, Cardona F. Postprandial hypertriglyceridemia predicts improvement in insulin resistance in obese patients after bariatric surgery. Surg Obes Relat Dis 2013; 9: 213-8.
[290]
Stefater MA, Sandoval DA, Chambers AP, et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology 2011; 141: 939-49.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy