Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Astaxanthin Combine with Human Serum Albumin to Abrogate Cell Proliferation, Migration, and Drug-resistant in Human Ovarian Carcinoma SKOV3 Cells

Author(s): Xiu-Zhen Su, Ran Chen, Cai-Bing Wang, Xi-Lin Ouyang*, Yan Jiang and Ming-Yi Zhu

Volume 19, Issue 6, 2019

Page: [792 - 801] Pages: 10

DOI: 10.2174/1871520619666190225123003

Price: $65

conference banner
Abstract

Background: Astaxanthin (AST) shows a large range of beneficial effects together with anti-cancer and antioxidation properties. Human Serum Albumin (HSA) is the most abundant protein in blood plasma which plays the role of a depot and transport protein for many exogenous compounds. However, whether HSA could enhance AST-induced cytotoxic effects in human ovarian cancer cells has not been examined to date.

Objective: This study aims to explore the anticancer effect and the molecular mechanism of AST combine with HSA induced cytotoxicity in ovarian cancer SKOV3 cells.

Methods: The ovarian cancer SKOV3 cells were treated by AST combined with HSA to study the effects of cell proliferation, cell morphology, cell cycle arrest, related protein expression, nuclear transfer, cell migration, and drug-resistant.

Results: Our data confirmed that AST+HSA treatment enhanced the anticancer effects of AST, arrested G1 phase cell cycle and induced apoptosis in SKOV3 cells. AST+HSA induced apoptosis via mitochondrial apoptotic pathways was related to the increased ratio of Bcl-2/Bax and activation of caspase-3. Besides, exposure of cells to AST+HSA triggered the inactivation of NF-κB and activation p53 and MAPKs signaling pathways. Furthermore, AST+HSA significantly overcome the drug-resistant and inhibited the migration of SKOV3 cells.

Conclusion: AST combined treatment with HSA considerably inhibited NF-κB expression and translocation to nucleus, thereby improving the AST-induced cytotoxic effect on SKOV3 cells. These findings may provide rationale to combine AST with HSA for the treatment of ovarian cancer.

Keywords: Astaxanthin, human serum albumin, NF-κB signaling pathway, drug-resistant, migration, cell proliferation.

Graphical Abstract
[1]
Coleman, R.L.; Monk, B.J.; Sood, A.K.; Herzog, T.J. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat. Rev. Clin. Oncol., 2013, 10(4), 211-224.
[2]
Vaughan, S.; Coward, J.I.; Bast, Jr, R.C.; Berchuck, A.; Berek, J.S.; Brenton, J.D.; Coukos, G.; Crum, C.C.; Drapkin, R.; Etemadmoghadam, D. Rethinking ovarian cancer: Recommendations for improving outcomes. Nat. Rev. Cancer, 2011, 11(10), 719-725.
[3]
He, C.B.; Lu, K.D.; Liu, D.M.; Lin, W.B. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184.
[4]
Goto, S.; Kogure, K.; Abe, K.; Kimata, Y.; Kitahama, K.; Yamashita, E.; Terada, H. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. BBA-Biomembranes, 2001, 1512(2), 251-258.
[5]
Rao, A.R.; Sindhuja, H.; Dharmesh, S.M.; Sankar, K.U.; Sarada, R.; Ravishankar, G.A. Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J. Agric. Food Chem., 2013, 61(16), 3842-3851.
[6]
Yasui, Y.; Hosokawa, M.; Mikami, N.; Miyashita, K.; Tanaka, T. Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem. Biol. Interact., 2011, 193(1), 79-87.
[7]
Niu, T.T.; Xuan, R.R.; Jiang, L.G.; Wu, W.; Zhen, Z.H.; Song, Y.L.; Hong, L.L.; Zheng, K.Q.; Zhang, J.X.; Xu, Q.S. Astaxanthin induces the Nrf2/HO-1 antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. J. Agric. Food Chem., 2018, 66(6), 1551-1559.
[8]
Kavitha, K.; Kowshik, J.; Kishore, T.K.K.; Baba, A.B.; Nagini, S. Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. BBA-Biomembranes, 2013, 1830(10), 4433-4444.
[9]
Nagendraprabhu, P.; Sudhandiran, G. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Invest. New Drugs, 2011, 29(2), 207-224.
[10]
Lordan, S.; O’Neill, C.; O’Brien, N.M. Effects of apigenin, lycopene and astaxanthin on 7β-hydroxycholesterol-induced apoptosis and Akt phosphorylation in U937 cells. Br. J. Nutr., 2008, 100(2), 287-296.
[11]
Li, J.J.; Dai, W.Q.; Xia, Y.J.; Chen, K.; Li, S.N.; Liu, T.; Zhang, R.; Wang, J.R.; Lu, W.X.; Zhou, Y.Q. Astaxanthin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cells via Inhibition of NF-κB P65 and Wnt/β-catenin in vitro. Mar. Drugs, 2015, 13(10), 6064-6081.
[12]
Ko, J.C.; Chen, J.C.; Wang, T.J.; Zheng, H.Y.; Chen, W.C.; Chang, P.Y.; Lin, Y.W. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells. Biochem. Pharmacol., 2016, 105, 91-100.
[13]
Chen, Y.T.; Kao, C.J.; Huang, H.Y.; Huang, S.Y.; Chen, C.Y.; Lin, Y.S.; Wen, Z.H.; Wang, H.M.D. Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of in vitro and in vivo models in melanoma. J. Funct. Foods, 2017, 31, 20-31.
[14]
Kowshik, J.; Baba, A.B.; Giri, H.; Reddy, G.D.; Dixit, M.; Nagini, S. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer. PLoS One, 2014, 9(10), e109114.
[15]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[16]
Zheng, Y.R.; Suntharalingam, K.; Johnstone, T.C.; Yoo, H.; Lin, W.; Brooks, J.G.; Lippard, S.J. Pt (IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J. Am. Chem. Soc., 2014, 136(24), 8790-8798.
[17]
Liu, H.; Moynihan, K.D.; Zheng, Y.; Szeto, G.L.; Li, A.V.; Huang, B.; Van Egeren, D.S.; Park, C.; Irvine, D.J. Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 2014, 507(7493), 519-522.
[18]
Ma, J.; Wang, Q.P.; Huang, Z.L.; Yang, X.D.; Nie, Q.D.; Hao, W.P.; Wang, P.G.; Wang, X. Glycosylated platinum (IV) complexes as substrates for glucose transporters (GLUTs) and organic cation transporters (OCTs) exhibited cancer targeting and human serum albumin binding properties for drug delivery. J. Med. Chem., 2017, 60(13), 5736-5748.
[19]
Espósito, B.P.; Najjar, R. Interactions of antitumoral platinum-group metallodrugs with albumin. Coord. Chem. Rev., 2002, 232(1-2), 137-149.
[20]
Qi, J.X.; Gou, Y.; Zhang, Y.; Yang, K.; Chen, S.F.; Liu, L.
Wu, X.Y.; Wang, T.; Zhang, W.; Yang, F. Developing anticancer ferric prodrugs based on the N-donor residues of human serum albumin carrier IIA subdomain. J. Med. Chem., 2016, 59(16), 7497-7511.
[21]
Li, X.R.; Wang, G.K.; Chen, D.J.; Lu, Y. β-Carotene and astaxanthin with human and bovine serum albumins. Food Chem., 2015, 179, 213-221.
[22]
Luo, J.L.; Kamata, H.; Karin, M. IKK/NF-κB signaling: balancing life and death–a new approach to cancer therapy. J. Clin. Invest., 2005, 115(10), 2625-2632.
[23]
Perkins, N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer, 2012, 12(2), 121-132.
[24]
Li, X.G.; Yang, X.Y.; Liu, Y.L.; Gong, N.X.; Yao, W.B.; Chen, P.Z.; Qin, J.J.; Jin, H.Z.; Li, J.Q.; Chu, R.A. Japonicone A suppresses growth of Burkitt lymphoma cells through its effect on NF-κB. Clin. Cancer Res., 2013, 19(11), 2917-2928.
[25]
Yang, L.N.; Zhou, Y.J.; Li, Y.H.; Zhou, J.; Wu, Y.G.; Cui, Y.Q.; Yang, G.; Hong, Y. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett., 2015, 357(2), 520-526.
[26]
Liu, X.J.; Song, M.Y.; Gao, Z.L.; Cai, X.K.; Dixon, W.; Chen, X.F.; Cao, Y.; Xiao, H. Stereoisomers of astaxanthin inhibit human colon cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. J. Agric. Food Chem., 2016, 64(41), 7750-7759.
[27]
Sowmya, P.R-R.; Arathi, B.P.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Astaxanthin from shrimp efficiently modulates oxidative stress and allied cell death progression in MCF-7 cells treated synergistically with β-carotene and lutein from greens. Food Chem. Toxicol., 2017, 106, 58-69.
[28]
Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004, 431(7007), 461-466.
[29]
Kong, Y.J.; Li, F.B.; Nian, Y.; Zhou, Z.M.; Yang, R.X.; Qiu, M.H.; Chen, C.S. KHF16 is a leading structure from Cimicifuga foetida that suppresses breast cancer partially by inhibiting the NF-κB signaling pathway. Theranostics, 2016, 6(6), 875-886.
[30]
Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis-the p53 network. J. Cell Sci., 2003, 116(20), 4077-4085.
[31]
Huang, S.; Pettaway, C.A.; Uehara, H.; Bucana, C.D.; Fidler, I.J. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 2001, 20(31), 4188-4197.
[32]
Tafani, M.; Schito, L.; Pellegrini, L.; Villanova, L.; Marfe, G.; Anwar, T.; Rosa, R.; Indelicato, M.; Fini, M.; Pucci, B. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-κB. Carcinogenesis, 2011, 32(8), 1167-1175.
[33]
Bai, Z.T.; Wu, Z.R.; Xi, L.L.; Li, X.; Chen, P.; Wang, F.Q.; Meng, W.B.; Zhou, W.C.; Wu, X.A.; Yao, X.J.; Zhang, M. Inhibition of invasion by N-trans-feruloyloctopamine via AKT, p38MAPK and EMT related signals in hepatocellular carcinoma cells. Bioorg. Med. Chem. Lett., 2017, 27(4), 989-993.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy