Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Research Article

Synthesis and Molecular Docking of New Thiophene Derivatives as Lactate Dehydrogenase-A Inhibitors

Author(s): Abd El-Galil E. Amr*, Mohamed F. El-Shehry, Alhussein A. Ibrahim, Hanaa M. Hosni, Mohamed A. Al-Omar and Hazem A. Ghabbour

Volume 19, Issue 10, 2019

Page: [833 - 841] Pages: 9

DOI: 10.2174/1389557519666190212165302

Price: $65

conference banner
Abstract

Background & Objective: A series of novel derivatives possessing the thiophene moiety were synthesized using ethyl 5'-amino-2,3'-bithiophene-4'-carboxylate as the starting material.

Methods: The new synthesized derivatives were screened as lactate dehydrogenase (LDH) inhibitors. LDH plays an important role in glucose metabolism in cancer cells and can affect tumor genesis and metastasis.

Results: 3-Substituted p-tolylthieno[2,3-d]pyrimidin-4(3H)-ones 4 were the most potent inhibitors in this study compared to Galloflavin reference drug.

Conclusion: Molecular docking studies on the Human Lactate Dehydrogenase active site were carried out on the synthesized compounds and the MolDock scores ranged between -127 to -171.

Keywords: Thiophene derivatives, thieno[2, 3-d]pyrimidin-4(3H)-ones, molecular modeling, lactate dehydrogenase inhibitors, anticancer drug target, tumor genesis.

Graphical Abstract
[1]
Äikiä, M.; Jutila, L.; Salmenperä, T.; Mervaala, E.; Kälviäinen, R. Long-term effects of tiagabine monotherapy on cognition and mood in adult patients with chronic partial epilepsy. Epilepsy Behav., 2006, 8, 750-755.
[2]
Almsherqi, Z.A.; McLachlan, C.S.; Mossop, P.; Deng, Y. Optimal antiplatelet treatment for percutaneous coronary intervention: Clopidogrel vs. ticlopidine. Int. J. Cardiol., 2007, 114, 101-102.
[3]
Hunziker, M.E.; Suehs, B.T.; Bettinger, T.L.; Crismon, L. Duloxetine hydrochloride: A new dual-acting medication for the treatment of major depressive disorder. Clin. Therapeut., 2005, 27, 1126-1143.
[4]
Waugh, C.D. Tioconazole, In xPharm: The Comprehensive Pharmacology Reference, edited by S.J. Enna and David B. Bylund, Elsevier, New York. 2007, Pages 1-4, ISBN 9780080552323.
[5]
Cuyun, L.O.; Kaneko, M.; Takafuta, T.; Satoh, K.; Ohnishi, M.; Yatomi, Y.; Ozaki, Y. Inhibitory effects of ticlopidine on platelet function as assessed by three different methods. Eur. J. Pharm. Sci., 2007, 30, 21-25.
[6]
Aguilar, M.I.; Kuo, R.S.; Freeman, W.D. New anticoagulants (dabigatran, apixaban, rivaroxaban) for stroke prevention in atrial fibrillation. Neurol. Clin., 2013, 31, 659-675.
[7]
Giardin, J. Anticonvulsant action of tiagabine, a new GABA-uptake inhibitor. J. Epilepsy, 1994, 7, 161-166.
[8]
Ashalatha, B.V.; Narayana, B.; Raj, K.K.V.; Kumari, N.S. Synthesis of some new bioactive 3-amino-2-mercapto-5,6,7,8-tetrahydro [1]benzothieno [2,3-d]pyrimidin-4(3H)-one derivatives. Eur. J. Med. Chem., 2007, 42, 719-728.
[9]
Chambhare, R.V.; Khadse, B.G.; Bobde, A.S.; Bahekar, R.H. Synthesis and preliminary evaluation of some N-[5-(2-furanyl)-2-methyl-4-oxo-4H-thieno [2,3-d]pyrimidin-3-yl]-carbox-amide and 3-substituted-5-(2-furanyl)-2-methyl-3H-thieno [2,3-d]pyrimidin-4-ones as antimicrobial agents. Eur. J. Med. Chem., 2003, 38, 89-100.
[10]
Al-Omar, M.A.; Amr, A.E. Synthesis of some new pyridine-2,6-carboxamide-derived schiff bases as potential antimicrobial agents. Molecules, 2010, 15(7), 4711-4721.
[11]
Khalifa, N.M.; Al-Omar, M.A.; Amr, A.E.; Haiba, M.E. HIV-1 and HSV-1 virus activities of some new polycyclic nucleoside pyrene candidates. Int. J. Biol. Macromol., 2013, 54, 51-56.
[12]
Abdel Wahab, B.F.; Mohamed, S.F.; Amr, A.E.; Abdalla, M.M. Synthesis and reactions of thiosemicarbazides, triazoles, and Schiff bases as antihypertensive α-blocking agents. Monatsh. Chem., 2008, 139, 1083-1090.
[13]
Alagarsamy, V.; Meena, S.; Ramseshu, K.V.; Solomon, V.R.; Thirumurugan, K.; Dhanabal, K.; Murugan, M. Synthesis, analgesic, anti-inflammatory, ulcerogenic index and anti-bacterial activities of novel 2-methylthio-3-substituted-5,6,7,8-tetrahydrobenzo (b) thieno [2,3-d]pyrimidin-4(3H)-ones. Eur. J. Med. Chem., 2006, 41, 1293-1300.
[14]
Deng, J.F.; Peng, L.; Zhang, G.C.; Lan, X.B.; Li, C.F.; Chen, F.X.; Zhou, Y.Y.; Lin, Z.X.; Chen, L.; Dai, R.K.; Xu, H.J.; Yang, L.; Zhang, X.Q.; Hu, W.H. The highly potent and selective dipeptidyl peptidase IV inhibitors bearing a thienopyrimidine scaffold effectively treat type 2 diabetes. Eur. J. Med. Chem., 2011, 46, 71-76.
[15]
Horiuchi, T.; Nagata, M.; Kitagawa, M.; Akahane, K.; Uoto, K. Discovery of novel thieno [2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of cyclin D1-CDK4: synthesis, biological evaluation and structure-activity relationships. Part 2. Bioorg. Med. Chem., 2009, 17, 7850-7860.
[16]
Aly, A.A.; Brown, A.B.; Ramadan, M.; Gamal-Eldeen, A.M.; Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.A.; Radwan, M.F. Thieno [2,3-d]pyrimidines in the synthesis of antitumor and antioxidant agents. Archiv Der Pharmazie, 2010, 343, 301-309.
[17]
Al-Taisan, K.M.; Al-Hazimi, H.M.A.; Al-Shihry, S.S. Synthesis, characterization and biological studies of some novel thieno [2,3-d]pyrimidines. Molecules, 2010, 15, 3932-3957.
[18]
Rashad, A.E.; Shamroukh, A.H.; Abdel-Megeid, R.E.; Mostafa, A.; El-Shesheny, R.; Kandeil, A.; Ali, M.A.; Banert, K. Synthesis and screening of some novel fused thiophene and thienopyrimidine derivatives for anti-avian influenza virus (H5N1) activity. Eur. J. Med. Chem., 2010, 45, 5251-5257.
[19]
Patil, V.D.; Wise, D.S.; Townsend, L.B. The synthesis of thieno [2,3-d]pyrimidine nucleosides related to the naturally occurring nucleosides cytidine and uridine. J. Chem. Soc-Perkin Trans, 1980, 1, 1853-1858.
[20]
Amr, A.E.; Abdel-Latif, N.A.; Abdalla, M.M. Synthesis of some new testosterone derivatives fused with substituted pyrazoline ring as promising 5alpha-reductase inhibitors. Acta Pharm., 2006, 56, 203-218.
[21]
Amr, A.E.; Abou-Ghalia, M.H.; Abdallah, M.M. Synthesis of new (Nalpha-dipicolinoyl)-bis-L-valyl-L-phenylalanyl linear and macrocyclic bridged peptides as anti-inflammatory agents. Arch. Pharm. Chem. Life Sci, 2007, 340, 304-309.
[22]
Amr, A.E.; Sayed, H.H.; Abdalla, M.M. Synthesis and reactions of some new substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and antiparkinsonian agents. Arch. Pharm. Chem. Life Sci., 2005, 338, 433-440.
[23]
Altamimi, A.S.; Alafeefy, A.M.; Balode, A.; Vozny, I.; Pustenko, A.; El Shikh, M.E.; Alasmary, F.A.S.; Abdel-Gawad, S.A.; Žalubovskis, R. Symmetric molecules with 1,4-triazole moieties as potent inhibitors of tumour-associated lactate dehydrogenase-A. J. Enzyme Inhib. Med. Chem., 2017, 33, 147-150.
[24]
Molegro Virtual Docker (MVD 2013.6.0.0), Molegro bioinformatics solutions, 2013, (Danish). http://www.molegro.com
[25]
Kerwin, S.M. ChemBioOffice Ultra 2010 Suite. J. Am. Chem. Soc., 2010, 132, 2466-2467.
[26]
Marvinsketch, “version 6.1.0, Chemaxon company cheminformatics technology products services,” 2013 http://www.chemaxon.com/
[27]
Purkey, H.E.; Robarge, K.; Chen, J.; Chen, Z.; Corson, L.B.; Ding, C.Z.; DiPasquale, A.G.; Dragovich, P.S.; Eigenbrot, C.; Evangelista, M.; Fauber, B.P.; Gao, Z.; Ge, H.; Hitz, A.; Ho, Q.; Labadie, S.S.; Lai, K.W.; Liu, W.; Liu, Y.; Li, C.; Ma, S.; Malek, S.; O’Brien, T.; Pang, J.; Peterson, D.; Salphati, L.; Sideris, S.; Ultsch, M.; Wei, B.; Yen, I.; Yue, Q.; Zhang, H.; Zhou, A. Cell Active Hydroxylactam Inhibitors of Human Lactate Dehydrogenase with Oral Bioavailability in Mice. ACS Med. Chem. Lett., 2016, 7, 896-901.
[28]
Mathew, V.; Keshavayya, J.; Vaidya, V.P. Heterocyclic system containing bridgehead nitrogen atom: synthesis and pharmacological activities of some substituted 1,2,4-triazolo [3,4-b]-1,3,4-thiadiazoles. Eur. J. Med. Chem., 2006, 41, 1048-1058.
[29]
Manerba, M.; Vettraino, M.; Fiume, L.; Di Stefano, G.; Sartini, A.; Giacomini, E.; Buonfiglio, R.; Roberti, M.; Recanatini, M. Galloflavin (CAS 568-80-9): A novel inhibitor of lactate dehydrogenase. ChemMedChem, 2012, 7, 311-317.
[30]
Farabegoli, F.; Vettraino, M.; Manerba, M.; Fiume, L.; Roberti, M.; Di Stefano, G. Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur. J. Pharm. Sci., 2012, 47, 729-738.
[31]
Vettraino, M.; Manerba, M.; Govoni, M.; Di Stefano, G. Galloflavin suppresses lactate dehydrogenase activity and causes MYC downregulation in Burkitt lymphoma cells through NAD/NADH-dependent inhibition of sirtuin-1. Anticancer Drugs, 2013, 24, 862-870.
[32]
Manerba, M.; Di Ianni, L.; Fiume, L.; Roberti, M.; Recanatini, M.; Di Stefano, G. Lactate dehydrogenase inhibitors sensitize lymphoma cells to cisplatin without enhancing the drug effects on immortalized normal lymphocytes. Eur. J. Pharm. Sci., 2015, 74, 95-102.
[33]
Han, X.; Sheng, X.; Jones, H.M.; Jackson, A.L.; Kilgore, J.; Stine, J.E.; Schointuch, M.N.; Zhou, C.; Bae-Jump, V.L. Evaluation of the anti-tumor effects of lactate dehydrogenase inhibitor galloflavin in endometrial cancer cells. J. Hematol. Oncol., 2015, 8, 2-8.
[34]
Manerba, M.; Di Ianni, L.; Govoni, M. Lactate dehydrogenase inhibitors can reverse inflammation induced changes in colon cancer cells. Eur. J. Pharm. Sci., 2017, 96, 37-44.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy