[1]
MacMillan, D.W. The advent and development of organocatalysis. Nlm., 2008, 455, 304-308.
[2]
Bertelsen, S.; Jørgensen, K.A. Organocatalysis-after the gold rush. Chem. Soc. Rev., 2009, 38, 2178-2189.
[3]
McMorn, P.; Hutchings, G.J. Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem. Soc. Rev., 2004, 33, 108-122.
[4]
Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev., 2008, 37, 1666-1688.
[5]
Z., Hasanpour Maleki, A.; Hosseini, M.; Gorgannezhad, L.; Nejadshafiee, V.; Ramazani, A.; Haririan, I.; Shafiee, A.; Khoobi, M. Efficient multicomponent synthesis of 1, 2, 3-triazoles catalyzed by Cu (II) supported on PEI@ Fe3O4 mnps in a water/PEG 300 system. Turk. J. Chem., 2017, 41, 294-307.
[6]
Ramazani, A.; Khoobi, M.; Sadri, F.; Tarasi, R.; Shafiee, A.; Aghahosseini, H.; Joo, S.W. Efficient and selective oxidation of alcohols in water employing palladium supported nanomagnetic Fe3O4@hyperbranched polyethylenimine (Fe3O4@HPEI. Pd) as a new organic-inorganic hybrid nanocatalyst. Appl. Organomet. Chem., 2018, 32.
[7]
Motevalizadeh, S.F.; Khoobi, M.; Sadighi, A.; Khalilvand-Sedagheh, M.; Pazhouhandeh, M.; Ramazani, A.; Faramarzi, M.A.; Shafiee, A. Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. J. Mol. Catal., B Enzym., 2015, 120, 75-83.
[8]
Dayyani, N.; Khoee, S.; Ramazani, A. Design and synthesis of ph-sensitive polyamino-ester magneto-dendrimers: Surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur. J. Med. Chem., 2015, 98, 190-202.
[9]
Khoobi, M.; Khalilvand‐Sedagheh, M.; Ramazani, A.; Asadgol, Z.; Forootanfar, H.; Faramarzi, M.A. Synthesis of polyethyleneimine (PEI) and β‐cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. J. Chem. Technol. Biotechnol., 2016, 91, 375-384.
[10]
Tarasi, R.; Khoobi, M.; Niknejad, H.; Ramazani, A.; Ma’mani, L.; Bahadorikhalili, S.; Shafiee, A. B-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: A novel biocompatible nanocomposite for targeted docetaxel delivery. J. Magn. Magn. Mater., 2016, 417, 451-459.
[11]
Yıldız, Y.; Erken, E.; Pamuk, H.; Sert, H.; Sen, F. Monodisperse pt nanoparticles assembled on reduced graphene oxide: Highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5951-5958.
[12]
Erken, E.; Yıldız, Y.; Kilba, B.; Sen, F. Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5944-5950.
[13]
Yildiz, Y.; Okyay, T.O.; Sen, B.; Gezer, B.; Kuzu, S.; Savk, A.; Demir, E.; Dasdelen, Z.; Sert, H.; Sen, F. Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect, 2017, 2, 697-701.
[14]
Goksu, H.; Yıldız, Y.; Celik, B.; Yazıcı, M.; Kılbas, B.; Sen, F. Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 5, 953-958.
[15]
Aday1, B.; Pamuk, H.; Kaya, M.; Sen, F. Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 2016, 16, 6498-6504.
[16]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. J. Nanostruct. Nano-Objects, 2017, 11, 25-31.
[17]
Ranganath, K.V.; Glorius, F. Superparamagnetic nanoparticles for asymmetric catalysis—a perfect match. Catal. Sci. Technol., 2011, 1, 13-22.
[18]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42, 3371-3393.
[19]
Luo, S.; Zhen, X.; Cheng, J-P. Asymmetric bifunctional primary aminocatalysis on magnetic nanoparticles. ChemComm., 2008, 44, 5719-5721.
[20]
Lee, K.S.; Woo, M.H. H.S, Kim.; E.Y, Lee.; Lee, I.S. Synthesis of hybrid Fe3O4–silica–Nio superstructures and their application as magnetically separable high-performance biocatalysts. ChemComm., 2009, 25, 3780-3782.
[21]
Ramazani, A.; Mahyari, A.; Farshadi, A.; Rouhani, M. Preparation of silica nanoparticles from organic laboratory waste of silica gel HF254 and their use as a highly efficient catalyst for the one‐pot synthesis of 2, 3-dihydro‐1H‐isoindolone derivatives. Helvetica Chimica. Acta, 2011, 94, 1831-1837.
[22]
Arabian, R.; Ramazani, A.; Mohta, B.; Azizkhani, V.; Joo, S.W.; Rouhani, M. A convenient and efficient protocol for the synthesis of HBIW catalyzed by silica nanoparticles under ultrasound irradiation. J. Energ. Mater., 2014, 32, 300-305.
[23]
Ramazani, A.; Dastanra, K.; Nasrabadi, F.Z.; Karimi, Z.; Rouhani, M.; Hosseini, M. Silica nanoparticles as a high efficient catalyst for the one-pot synthesis of 3-oxo-3-phenylpropanamid derivatives from isocyanides, phenylacetaldehyde and secondary amines. Turk. J. Chem., 2012, 36, 467-476.
[24]
Rezaei, A.; Ramazani, A.; Gouranlou, F.; Woo Joo, S. Silica nanoparticles/nanosilica sulfuric acid as a reusable catalyst for fast, highly efficient and green synthesis of 2-(heteroaryl) acetamide derivatives. Lett. Org. Chem., 2017, 14, 86-92.
[25]
Khoobi, M.; Ramazani, A.; Hojjati, Z.; Shakeri, R. M, Khoshneviszadeh.; Ardestani, S.K.; Shafiee, A.; A, Foroumadi.; Joo, S.W. Synthesis of novel 4 h-chromenes containing a pyrimidine-2-thione function in the presence of Fe3O4 magnetic nanoparticles and study of their antioxidant activity. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189, 1586-1595.
[26]
Sadri, F.; Ramazani, A.; Ahankar, H. Taghavi, Fardood S.; Azimzadeh Asiabi, P.; Khoobi, M.; Woo Joo, S.; Dayyani, N. Aqueous-phase oxidation of alcohols with green oxidants (Oxone and hydrogen peroxide) in the presence of MgFe2O4 magnetic nanoparticles as an efficient and reusable catalyst. J. Nanostruct., 2016, 6, 264-272.
[27]
Ramazani, A.; Sadri, F.; Massoudi, A.; Khoobi, M.; Joo, S.W.; Dolatyari, L.; Dayyani, N. Magnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant; Iranian J. Catal, 2015, pp. 285-291.
[28]
Sadri, F.; Ramazani, A.; Massoudi, A.; Khoobi, M.; Tarasi, R.; Shafiee, A.; Azizkhani, V.; Dolatyari, L.; Joo, S.W. Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem. Lett. Rev., 2014, 7, 257-264.
[29]
Baig, R.N.; Leazer, J.; Varma, R.S. Magnetically separable Fe3O4@ DOPA–Pd: a heterogeneous catalyst for aqueous Heck reaction. Clean Technol. Environ. Policy, 2015, 17, 2073-2077.
[30]
Sun, X.; Zheng, Y.; Sun, L.; Su, H.; Qi, C. Pd nanoparticles immobilized on orange-like magnetic polymer-supported FE3O4/ppy nanocomposites: a novel and highly active catalyst for suzuki reaction in water. Catal. Lett., 2015, 145, 1047-1053.
[31]
Baig, R.N.; Varma, R.S. A highly active and magnetically retrievable nanoferrite–DOPA–copper catalyst for the coupling of thiophenols with aryl halides. Chem. Comm., 2012, 48, 2582-2584.
[32]
Baig, R.N.; Varma, R.S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem., 2013, 15, 398-417.
[33]
Arundhathi, R.; Damodara, D.; Likhar, P.R.; Kantam, M.L.; Saravanan, P.; Magdaleno, T.; Kwon, S.H. Fe3O4@ mesoporouspolyaniline: A highly efficient and magnetically separable catalyst for cross coupling of aryl chlorides and phenols. Adv. Synth. Catal., 2011, 353, 1591-1600.
[34]
Jin, M.J.; Lee, D.H. A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew. Chem., 2010, 122, 1137-1140.
[35]
Stevens, P.D.; Fan, J.; Gardimalla, H.M.; Yen, M.; Gao, Y. Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions. Org. Lett., 2005, 7, 2085-2088.
[36]
Sun, J.; Yu, G.; Liu, L.; Li, Z.; Kan, Q.; Huo, Q.; Guan, J. Core–shell structured Fe3O4@ sio2 supported cobalt (ii) or copper (ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catal. Sci. Technol., 2014, 4, 1246-1252.
[37]
Baig, R.N.; Nadagouda, M.N.; Varma, R.S. Carbon-coated magnetic palladium: Applications in partial oxidation of alcohols and coupling reactions. Green Chem., 2014, 16, 4333-4338.
[38]
Chen, L.; Li, B.; Liu, D. Schiff base complex coated Fe3O4 nanoparticles: a highly recyclable nanocatalyst for selective oxidation of alkyl aromatics. Catal. Lett., 2014, 144, 1053-1061.
[39]
Fang, Y.; Chen, Y.; Li, X.; Zhou, X.; Li, J.; Tang, W.; Huang, J.; Jin, J.; Ma, J. Gold on thiol-functionalized magnetic mesoporous silica sphere catalyst for the aerobic oxidation of olefins. J. Mol. Catal. Chem., 2014, 392, 16-21.
[40]
Podolean, I.; Kuncser, V.; Gheorghe, N.; Macovei, D.; Parvulescu, V.I. Coman, S.M. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem., 2013, 15, 3077-3082.
[41]
Vaquer, L.; Riente, P.; Sala, X.; Jansat, S.; Benet-Buchholz, J.; Llobet, A.; Pericàs, M.A. Molecular ruthenium complexes anchored on magnetic nanoparticles that act as powerful and magnetically recyclable stereospecific epoxidation catalysts. Catal. Sci. Technol., 2013, 3, 706-714.
[42]
Zhang, Z.; Zhang, F.; Zhu, Q.; Zhao, W.; Ma, B.; Ding, Y. Magnetically separable polyoxometalate catalyst for the oxidation of dibenzothiophene with H2O2. J. Colloid Interface Sci., 2011, 360, 189-194.
[43]
Oliveira, R.L.; Zanchet, D.; Kiyohara, P.K.; Rossi, L.M. On the stabilization of gold nanoparticles over silica‐based magnetic supports modified with organosilanes. Chem. Eur. J., 2011, 17, 4626-4631.
[44]
Masteri-Farahani, M.; Tayyebi, N. A new magnetically recoverable nanocatalyst for epoxidation of olefins. J. Mol. Catal. Chem., 2011, 348, 83-87.
[45]
Ucoski, G.M.; Nunes, F.S.; DeFreitas-Silva, G.; Idemori, Y.M.; Nakagaki, S. Metalloporphyrins immobilized on silica-coated Fe3O4 nanoparticles. Magnetically recoverable catalysts for the oxidation of organic substrates. Appl. Catal. A., 2013, 459, 121-130.
[46]
Anastas, P.T.; Bartlett, L.B.; Kirchhoff, M.M.; Williamson, T.C. The role of catalysis in the design, development, and implementation of green chemistry. Catal. Today, 2000, 55, 11-22.
[47]
Shi, F.; Tse, M.K.; Pohl, M.M.; Brückner, A.; Zhang, S.; Beller, M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano‐fe2o3 in selective oxidations. Angew. Chem., 2007, 46, 8866-8868.
[48]
Chen, J.; Zhang, Q.; Wang, Y.; Wan, H. Size‐dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols. Adv. Synth. Catal., 2008, 350, 453-464.
[49]
Mak, C.A.; Ranjbar, S.; Riente, P.; Rodríguez-Escrich, C.; Pericàs, M.A. Hybrid magnetic materials (Fe3O4–κ-carrageenan) as catalysts for the Michael addition of aldehydes to nitroalkenes. Tetrahedron, 2014, 70, 6169-6173.
[50]
Sobhani, S.; Bazrafshan, M.; Delluei, A.A.; Parizi, Z.P. Phospha-michael addition of diethyl phosphite to α, β-unsaturated malonates catalyzed by nano γ-Fe2O3-pyridine based catalyst as a new magnetically recyclable heterogeneous organic base. Appl. Catal. A., 2013, 454, 145-151.
[51]
Riente, P.; Mendoza, C.; Pericás, M.A. Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic michael reactions. J. Mater. Chem., 2011, 21, 7350-7355.
[52]
Zeng, T.; Yang, L.; Hudson, R.; Song, G.; Moores, A.R.; Li, C-J. Fe3O4 nanoparticle-supported copper (I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines. Org. Lett., 2010, 13, 442-445.
[53]
Sharma, R.; Monga, Y.; Puri, A. Magnetically separable silica@ Fe3O4 core–shell supported nano-structured copper (II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous medium at room temperature. J. Mol. Catal.A: Chem., 2014, 393, 84-95.
[54]
Baig, R.N.; Varma, R.S. Magnetic silica-supported ruthenium nanoparticles: an efficient catalyst for transfer hydrogenation of carbonyl compounds. ACS Sustain. Chem. Eng., 2013, 1, 805-809.
[55]
Hu, A.; Yee, G.T.; Lin, W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J. Amer. Chem. Soc., 2005, 127, 12486-12487.
[56]
Scolaro, C.; Bergamo, A.; Brescacin, L. R, Delfino.; Cocchietto, M.; Laurenczy, G.; Geldbach, T.J.; Sava, G.; Dyson, P.J. In vitro and in vivo evaluation of ruthenium (II)− arene PTA complexes. J. Med. Chem., 2005, 48, 4161-4171.
[57]
Phillips, A.D.; Gonsalvi, L.; Romerosa, A.; Vizza, F. M, Peruzzini. Coordination chemistry of 1, 3, 5-triaza-7-phosphaadamantane (PTA): Transition metal complexes and related catalytic, medicinal and photoluminescent applications. Coord. Chem. Rev., 2004, 248, 955-993.
[58]
Hartinger, C.G.; Dyson, P.J. Bioorganometallic chemistry-from teaching paradigms to medicinal applications. Chem. Soc. Rev., 2009, 38, 391-401.
[59]
Polshettiwar, V.; Varma, R.S. Nanoparticle‐supported and magnetically recoverable ruthenium hydroxide catalyst: efficient hydration of nitriles to amides in aqueous medium. Chem. Eur. J., 2009, 15, 1582-1586.
[60]
Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium (II). J. Am. Chem. Soc., 1995, 117, 7562-7563.
[61]
Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T. Noyor, R i. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc., 1996, 118, 4916-4917.
[62]
Li, J.; Zhang, Y.; Han, D.; Gao, Q.; Li, C. Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica. J. Mol. Catal. Chem., 2009, 298, 31-35.
[63]
Van Laren, M.W.; Duin, M.A.; Klerk, C.; Naglia, M.; Rogolino, D.; Pelagatti, P.; Bacchi, A.; Pelizzi, C.; Elsevier, C.J. Palladium (0) complexes with unsymmetric bidentate nitrogen ligands for the stereoselective hydrogenation of 1-phenyl-1-propyne to (Z)-1-phenyl-1-propene. Organometallics, 2002, 21, 1546-1553.
[64]
Kluwer, A.M.; Koblenz, T.S.; Jonischkeit, T.; Woelk, K.; Elsevier, C.J. Kinetic and spectroscopic studies of the [palladium (Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne. J. Amer. Chem. Soc., 2005, 127, 15470-15480.
[65]
López-Serrano, J.; Duckett, S.B.; Aiken, S.; Almeida Leñero, K.Q.; Drent, E.; Dunne, J.P.; Konya, D.; Whitwood, A.C. A para-hydrogen investigation of palladium-catalyzed alkyne hydrogenation. J. Am. Chem. Soc., 2007, 129, 6513-6527.
[66]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem., 2009, 11, 127-131.
[67]
Guin, D.; Baruwati, B.; Manorama, S.V. Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. Org. Lett., 2007, 9, 1419-1421.
[68]
Sun, Y.; Liu, G.; Gu, H.; Huang, T.; Zhang, Y.; Li, H. Magnetically recoverable sio2-coated Fe3O4 nanoparticles: a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. Chem. Commun., 2011, 47, 2583-2585.
[69]
Xu, R.; Xie, T.; Zhao, Y.; Li, Y. Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology, 2007, 18, 005-602.
[70]
Dhiman, M.; Chalke, B.; Polshettiwar, V. Efficient synthesis of monodisperse metal (Rh, Ru, Pd) nanoparticles supported on fibrous nanosilica (KCC-1) for catalysis. ACS Sustain. Chem.& Eng., 2015, 3, 3224-3230.
[71]
Pagoti, S.; Dutta, D.; Dash, J. A Magnetoclick Imidazolidinone Nanocatalyst for Asymmetric 1, 3‐Dipolar Cycloadditions. Adv. Synth. Catal., 2013, 355, 3532-3538.
[72]
Wang, D.; Salmon, L.; Ruiz, J.; Astruc, D. A recyclable ruthenium (II) complex supported on magnetic nanoparticles: A regioselective catalyst for alkyne-azide cycloaddition. ChemComm., 2013, 49, 6956-6958.
[73]
García‐Garrido, S.E.; Francos, J.; Cadierno, V.; Basset, J.M.; Polshettiwar, V. Chemistry by nanocatalysis: first example of a solid‐supported RAPTA complex for organic reactions in aqueous medium. ChemSusChem, 2011, 4, 104-111.
[74]
Baig, R.N.; Varma, R.S. A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1, 3-dipolar cycloadditions. Green Chem., 2012, 14, 625-632.
[75]
Polshettiwar, V.; Thivolle‐Cazat, J.; Taoufik, M.; Stoffelbach, F.; Norsic, S.; Basset, J.M. “Hydro‐metathesis” of Olefins: A catalytic reaction using a bifunctional single‐site tantalum hydride catalyst supported on fibrous silica (kcc‐1) nanospheres. Angew. Chem. Int. Ed., 2011, 50, 2747-2751.
[76]
Park, K.H.; Jang, K.; Son, S.U.; Sweigart, D.A. Self-supported organometallic rhodium quinonoid nanocatalysts for stereoselective polymerization of phenylacetylene. J. Am. Chem. Soc., 2006, 128, 8740-8741.
[77]
Astruc, D.; Diallo, A.K.; Gatard, S.; Liang, L.; Ornelas, C.; Martinez, V.; Méry, D.; Ruiz, J. Olefin metathesis in nano-sized systems. Beilstein J. Org. Chem., 2011, 7, 94.
[78]
Kong, Y.; Tan, R.; Zhao, L.; Yin, D. L-Proline supported on ionic liquid-modified magnetic nanoparticles as a highly efficient and reusable organocatalyst for direct asymmetric aldol reaction in water. Green Chem., 2013, 15, 2422-2433.
[79]
Wang, B.G.; Ma, B.C.; Wang, Q. Wang. W. Superparamagnetic nanoparticle‐supported (s)‐diphenyl‐prolinol trimethylsilyl ether as a recyclable catalyst for asymmetric Michael addition in water. Adv. Synth. Catal., 2010, 352, 2923-2928.
[80]
Claesson, E.M.; Mehendale, N.C.; Gebbink, R.J.K.; Van Koten, G.; Philipse, A.P. Magnetic silica colloids for catalysis. J. Magn. Magn. Mater., 2007, 311, 41-45.
[81]
MB Gawande.; A, Velhinho.; I.D, Nogueira.; C, Ghumman.; O, Teodoro. P.S, Branco. A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions—a sustainable protocol. Rsc. Adv., 2012, 2, 6144-6149.
[82]
Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@ mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones via the Biginelli reaction. Dalton Trans., 2012, 41, 6173-6181.
[83]
Rostamizadeh, S.; Azad, M.; Shadjou, N.; Hasanzadeh, M. (α-Fe2O3)-MCM-41-SO3H as a novel magnetic nanocatalyst for the synthesis of N-aryl-2-amino-1, 6-naphthyridine derivatives. Catal. Commun., 2012, 25, 83-91.
[84]
Zhang, Q.; Su, H.; Luo, J.; Wei, Y. A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem., 2012, 14, 201-208.
[85]
Pourjavadi, A.; Hosseini, S.H.; Hosseini, S.T.; Aghayeemeibody, S.A. Magnetic nanoparticles coated by acidic functionalized poly (amidoamine) dendrimer: Effective acidic organocatalyst. Catal. Commun., 2012, 28, 86-89.
[86]
Celik, B. Baskaya Gaye.; Sert, H.; Karatepe, O.; Erken E.; Sen, F. Monodisperse Pt (0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB Int. J. Hydrogen Energy., 2016, 41 13, 5661-5669.
[87]
Celik, B.; Kuzu, S.; Erken, E.; Sert, H. koskun, Y.; Sen, F. Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int. J. Hydrogen Energy, 2016, 41(4), 3093-3101.
[88]
Daşdelen, Z.; Yıldız, Y.; Eriş, S.; Şen, F. Enhanced electro catalyticactivity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl. Catal. B Environ., 2019, 511-516.
[89]
Karatepe, O.; Yıldız, Y.; Pamuk, H.; Eris, S.; Dasdelen, Z.; Sen, F. Enhanced electrocatalytic activity and durability of highly monodisperse Pt@ppy–PANI nanocomposites as a novel catalyst for the electrooxidation of methanol. RSC Advances, 2016, 6(56), 50851-50857.
[90]
Torki, M.; Tangestaninejad, S.; Mirkhanil, V.; Moghadam, M.; Mohammadpoor‐Baltork, I. RuIII (OTf) SalophenCH2–NHSiO2–Fe: an efficient and magnetically recoverable catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane. Appl. Organomet. Chem., 2014, 28, 304-309.
[91]
Gleeson, O. Davies. G.-L.; Peschiulli, A.; Tekoriute, R.; Gun’ko, Y.K.; Connon, S.J. The immobilisation of chiral organocatalysts on magnetic nanoparticles: the support particle cannot always be considered inert. Org. Biomol. Chem., 2011, 9, 7929-7940.
[92]
Hirakawa, T.; Tanaka, S.; Usuki, N.; Kanzaki, H.; Kishimoto, M.; Kitamura, M. A magnetically separable heterogeneous deallylation catalyst: [cpru (η3‐C3H5) (2‐pyridinecarboxylato)]PF6 complex supported on a ferromagnetic microsize particle Fe3O4@ sio2. Eur. J. Org. Chem., 2009, 789-792.
[93]
Dálaigh Corr, S.A.; Gun’ko, Y.; Connon, S.J. A magnetic‐nanoparti-cle‐supported 4‐N, N‐dialkylaminopyridine catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability. Angew. Chem. Int. Ed., 2007, 46, 4329-4332.