Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry

Author(s): Mamunur Rashid, Mohd Yaseen Malik, Sandeep K. Singh, Swati Chaturvedi, Jiaur R Gayen and Muhammad Wahajuddin*

Volume 25, Issue 9, 2019

Page: [987 - 1020] Pages: 34

DOI: 10.2174/1381612825666190130110653

Price: $65

conference banner
Abstract

Background: Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become the subject of importance in drug discovery and development studies.

Methods: A systematic literature review in the field of bioavailability and the approaches towards its enhancement have been comprehensively done, purely focusing upon recent papers. The data mining was performed using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively studied and summarized in a generalized manner.

Results: The main prospect of this review was to generate a comprehensive one-stop summary of the numerous available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.

Conclusion: The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers, solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage forms with adequate systemic availability and improved patient compliance, further research is required.

Keywords: Bioavailability, solubility, permeability, nanoparticles, BCS, BDDCS.

[1]
Smolen VF, Weigand WA. Drug bioavailability and pharmacokinetic analysis from pharmacological data. J Pharmacokinet Biopharm 1973; 1(4): 329-36. [http://dx.doi.org/10.1007/BF01060040].
[2]
Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci 2006; 29(3-4): 240-50. [http://dx.doi.org/10.1016/j.ejps.2006.06.004]. [PMID: 16876987].
[3]
Health UDo, Services H. Bioanalytical Method Validation, Guidance for Industry. http://www.fda gov/cder/guidance/4252fnl htm.2001.
[4]
Food S. Drug Administration FDA guidance (152): Guidance for industry: evaluating the safety of antimicrobial new animal drugs with regard to their microbiological effects on bacteria of human health concern. Fed Regist 2003; 68: 61221.
[5]
Chiou WL. The rate and extent of oral bioavailability versus the rate and extent of oral absorption: clarification and recommendation of terminology. J Pharmacokinet Pharmacodyn 2001; 28(1): 3-6. [http://dx.doi.org/10.1023/A:1011544501243]. [PMID: 11253613].
[6]
Bailey DG, Dresser GK, Kreeft JH, Munoz C, Freeman DJ, Bend JR. Grapefruit-felodipine interaction: effect of unprocessed fruit and probable active ingredients. Clin Pharmacol Ther 2000; 68(5): 468-77. [http://dx.doi.org/10.1067/mcp.2000.110774]. [PMID: 11103749].
[7]
Schellens JHM, Malingré MM, Kruijtzer CM, et al. Modulation of oral bioavailability of anticancer drugs: from mouse to man. Eur J Pharm Sci 2000; 12(2): 103-10. [http://dx.doi.org/10.1016/S0928-0987(00)00153-6]. [PMID: 11102737].
[8]
Dressman JB, Lennernas H. Oral drug absorption: Prediction and assessment. CRC Press 2000. [http://dx.doi.org/10.1201/b15445]
[9]
HÃtrter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 2001; 46(1-3): 75-87.
[10]
Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 1997; 25(1): 3-14. [http://dx.doi.org/10.1016/S0169-409X(96)00487-5]. [PMID: 10837528].
[11]
Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005; 22(1): 11-23. [http://dx.doi.org/10.1007/s11095-004-9004-4]. [PMID: 15771225].
[12]
Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci 2013; 102(1): 34-42. [http://dx.doi.org/10.1002/jps.23359]. [PMID: 23147500].
[13]
Chen M-L, Amidon GL, Benet LZ, Lennernas H, Yu LX. The BCS, BDDCS, and regulatory guidances. Pharm Res 2011; 28(7): 1774-8. [http://dx.doi.org/10.1007/s11095-011-0438-1]. [PMID: 21491148].
[14]
Broccatelli F, Cruciani G, Benet LZ, Oprea TI. BDDCS class prediction for new molecular entities. Mol Pharm 2012; 9(3): 570-80. [http://dx.doi.org/10.1021/mp2004302]. [PMID: 22224483].
[15]
Larregieu CA, Benet LZ. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery. Mol Pharm 2014; 11(4): 1335-44. [http://dx.doi.org/10.1021/mp4007858]. [PMID: 24628254].
[16]
Broccatelli F, Larregieu CA, Cruciani G, Oprea TI, Benet LZ. Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev 2012; 64(1): 95-109. [http://dx.doi.org/10.1016/j.addr.2011.12.008]. [PMID: 22261306].
[17]
Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J 2011; 13(4): 519-47. [http://dx.doi.org/10.1208/s12248-011-9290-9]. [PMID: 21818695].
[18]
Calabrese EJ. Toxicological consequences of multiple chemical interactions: a primer. Toxicology 1995; 105(2-3): 121-35. [http://dx.doi.org/10.1016/0300-483X(95)03206-U]. [PMID: 8571351].
[19]
Alsaidan SM, Alsughayer AA, Eshra AG. Improved dissolution rate of indomethacin by adsorbents. Drug Dev Ind Pharm 1998; 24(4): 389-94. [http://dx.doi.org/10.3109/03639049809085635]. [PMID: 9876600].
[20]
Yu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 2002; 19(7): 921-5. [http://dx.doi.org/10.1023/A:1016473601633]. [PMID: 12180542].
[21]
Polli JE, Yu LX, Mehta MU, Amidon GL, Zhao H, Lesko LJ, et al. Biopharmaceutics Classification System: The Scientific Basis for Biowaiver Extensions. 2002.
[22]
Panchagnula R, Thomas NS. Biopharmaceutics and pharmacokinetics in drug research. Int J Pharm 2000; 201(2): 131-50. [http://dx.doi.org/10.1016/S0378-5173(00)00344-6]. [PMID: 10878321].
[23]
Pang KS. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab Dispos 2003; 31(12): 1507-19. [http://dx.doi.org/10.1124/dmd.31.12.1507]. [PMID: 14625347].
[24]
Hamman JH, Demana PH, Olivier EI. Targeting receptors, transporters and site of absorption to improve oral drug delivery. Drug Target Insights 2007; 2: 71-81. [http://dx.doi.org/10.1177/117739280700200003]. [PMID: 21901064].
[25]
Fleisher D, Li C, Zhou Y, Pao L-H, Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet 1999; 36(3): 233-54. [http://dx.doi.org/10.2165/00003088-199936030-00004]. [PMID: 10223170].
[26]
Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J. Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev 2016; 48(2): 281-327. [http://dx.doi.org/10.3109/03602532.2016.1157600]. [PMID: 26987379].
[27]
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2012; 64: 138-53. [http://dx.doi.org/10.1016/j.addr.2012.09.027]. [PMID: 12535572].
[28]
Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 2016; 370(1): 153-64. [http://dx.doi.org/10.1016/j.canlet.2015.10.010]. [PMID: 26499806].
[29]
Dantzig AH, de Alwis DP, Burgess M. Considerations in the design and development of transport inhibitors as adjuncts to drug therapy. Adv Drug Deliv Rev 2003; 55(1): 133-50. [http://dx.doi.org/10.1016/S0169-409X(02)00175-8]. [PMID: 12535578].
[30]
Broder S, Duchin KL, Selim S. . Method, compositions and kits for increasing the oral bioavailability of pharmaceutical agents. US20030069301A1 2001.
[31]
Humphrey MJ. Compositions having improved bioavailability. US6579898B2, 2003.
[32]
Charman WN, Porter CJH, Mithani S, Dressman JB. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 1997; 86(3): 269-82. [http://dx.doi.org/10.1021/js960085v]. [PMID: 9050793].
[33]
Evans AM. Influence of dietary components on the gastrointestinal metabolism and transport of drugs. Ther Drug Monit 2000; 22(1): 131-6. [http://dx.doi.org/10.1097/00007691-200002000-00028]. [PMID: 10688276].
[34]
Dresser GK, Bailey DG. The effects of fruit juices on drug disposition: a new model for drug interactions. Eur J Clin Invest 2003; 33(Suppl. 2): 10-6. [http://dx.doi.org/10.1046/j.1365-2362.33.s2.2.x]. [PMID: 14641551].
[35]
Thilakarathna SH, Rupasinghe HP. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013; 5(9): 3367-87. [http://dx.doi.org/10.3390/nu5093367]. [PMID: 23989753].
[36]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47. [http://dx.doi.org/10.1093/ajcn/79.5.727]. [PMID: 15113710].
[37]
Monobe M, Ema K, Tokuda Y, Maeda-Yamamoto M. Increased plasma concentration of epigallocatechin in mice after orally administering a green tea (Camellia sinensis L.) extract supplemented by steamed rice. Biosci Biotechnol Biochem 2011; 75(1): 152-4. [http://dx.doi.org/10.1271/bbb.100593]. [PMID: 21228465].
[38]
Jilani H, Cilla A, Barberá R, Hamdi M. Biosorption of green and black tea polyphenols into Saccharomyces cerevisiae improves their bioaccessibility. J Funct Foods 2015; 17: 11-21. [http://dx.doi.org/10.1016/j.jff.2015.05.006].
[39]
Moruisi KG. The Effect of a Fatty Acid-based Carrier on the Bioavailability of Epigallocatechin Gallate: Citeseer. 2008.
[40]
Lee C, Cheng H, Sim S. Bioavailability of dietary flavonoids and carotenoids. Curr Top Nutraceutical Res 2006; 4(1): 33.
[41]
Singh BN, Rawat AK, Bhagat RM, Singh BR. Black tea: Phytochemicals, cancer chemoprevention, and clinical studies. Crit Rev Food Sci Nutr 2017; 57(7): 1394-410. [http://dx.doi.org/10.1080/10408398.2014.994700]. [PMID: 26561007].
[42]
Xiao J, Cao Y, Huang Q. Edible nanoencapsulation vehicles for oral delivery of phytochemicals: a perspective paper. J Agric Food Chem 2017; 65(32): 6727-35. [http://dx.doi.org/10.1021/acs.jafc.7b02128]. [PMID: 28737908].
[43]
Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 2011; 76(1): R6-R15. [http://dx.doi.org/10.1111/j.1750-3841.2010.01957.x]. [PMID: 21535705].
[44]
Parada J, Aguilera JM. Food microstructure affects the bioavailability of several nutrients. J Food Sci 2007; 72(2): R21-32. [http://dx.doi.org/10.1111/j.1750-3841.2007.00274.x]. [PMID: 17995848].
[45]
Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 1995; 62(6): 1276-82. [http://dx.doi.org/10.1093/ajcn/62.6.1276]. [PMID: 7491892].
[46]
Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M. Contribution of honey in nutrition and human health: a review. Med J Nutrition Metab 2010; 3(1): 15-23. [http://dx.doi.org/10.1007/s12349-009-0051-6].
[47]
Day AJ, DuPont MS, Ridley S, et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett 1998; 436(1): 71-5. [http://dx.doi.org/10.1016/S0014-5793(98)01101-6]. [PMID: 9771896].
[48]
Zhang M, Li H, Lang B, et al. Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur J Pharm Biopharm 2012; 82(3): 534-44. [http://dx.doi.org/10.1016/j.ejpb.2012.06.016]. [PMID: 22974985].
[49]
Betageri GV, Makarla KR. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharm 1995; 126(1-2): 155-60. [http://dx.doi.org/10.1016/0378-5173(95)04114-1].
[50]
Sarkari M, Brown J, Chen X, Swinnea S, Williams RO III, Johnston KP. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm 2002; 243(1-2): 17-31. [http://dx.doi.org/10.1016/S0378-5173(02)00072-8]. [PMID: 12176292].
[51]
Boghra RJ, Kothawade PC, Belgamwar VS, Nerkar PP, Tekade AR, Surana SJ. Solubility, dissolution rate and bioavailability enhancement of irbesartan by solid dispersion technique. Chem Pharm Bull (Tokyo) 2011; 59(4): 438-41. [http://dx.doi.org/10.1248/cpb.59.438]. [PMID: 21467670].
[52]
Zhao M, Barker SA, Belton PS, McGregor C, Craig DQM. Development of fully amorphous dispersions of a low T(g) drug via co-spray drying with hydrophilic polymers. Eur J Pharm Biopharm 2012; 82(3): 572-9. [http://dx.doi.org/10.1016/j.ejpb.2012.07.012]. [PMID: 22922419].
[53]
Aguiar AJ, Zelmer JE, Kinkel AW. Deaggregation behavior of a relatively insoluble substituted benzoic acid and its sodium salt. J Pharm Sci 1967; 56(10): 1243-52. [http://dx.doi.org/10.1002/jps.2600561006]. [PMID: 6059441].
[54]
Karaman R. Prodrugs design based on inter- and intramolecular chemical processes. Chem Biol Drug Des 2013; 82(6): 643-68. [http://dx.doi.org/10.1111/cbdd.12224]. [PMID: 23998799].
[55]
Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 1971; 60(9): 1281-302. [http://dx.doi.org/10.1002/jps.2600600902]. [PMID: 4935981].
[56]
Cha Y, Choi YK, Pai CM. . Preparation of peptide containing biodegradable microspheres by melt process. WO1997015389A1, 1997.
[57]
Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59(7): 617-30. [http://dx.doi.org/10.1016/j.addr.2007.05.011]. [PMID: 17597252].
[58]
Kumar RS, Yagnesh TNS. Solid dispersions: An approach to enhance solubility of poorly soluble drugs. Indo Am J Pharm Res 2016; 5(11): 7036-56.
[59]
Tiwari R, Tiwari G, Srivastava B, Rai AK. Solid dispersions: an overview to modify bioavailability of poorly water soluble drugs. Int J Pharm Tech Res 2009; 1(4): 1338-49.
[60]
Tran TH, Poudel BK, Marasini N, et al. Development of raloxifene-solid dispersion with improved oral bioavailability via spray-drying technique. Arch Pharm Res 2013; 36(1): 86-93. [http://dx.doi.org/10.1007/s12272-013-0012-y]. [PMID: 23325488].
[61]
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75. [http://dx.doi.org/10.1016/j.drudis.2007.09.005]. [PMID: 18061887].
[62]
Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharma Sci 2014; 9(6): 304-16.
[63]
Prakash SJ, Santhiagu A, Jasemine S. Preparation, characterization and in vitro evaluation of novel gellan gum-raloxifene HCl nanoparticles. J Pharm Biomed Sci 2014; 2: 63-71.
[64]
GHANEM SF.Preparation and evaluation of rapidly dissolving tablets of raloxifene hydrochloride by ternary system formation. Int J Pharm Pharm Sci 2016; 8: 127-36.
[65]
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60. [http://dx.doi.org/10.1016/S0939-6411(00)00076-X]. [PMID: 10840192].
[66]
Zhang GG, Law D, Schmitt EA, Qiu Y. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev 2004; 56(3): 371-90. [http://dx.doi.org/10.1016/j.addr.2003.10.009]. [PMID: 14962587].
[67]
Sethia S, Squillante E III. Solid dispersions: revival with greater possibilities and applications in oral drug delivery. Crit Rev Ther Drug Carrier Syst 2003; 20(2-3): 215-47. [http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i23.40].
[68]
Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8(10): 1361-78. [http://dx.doi.org/10.1517/17425247.2011.606808]. [PMID: 21810062].
[69]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66. [http://dx.doi.org/10.1016/j.addr.2007.05.012]. [PMID: 17601630].
[70]
Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 2007; 123(2): 78-99. [http://dx.doi.org/10.1016/j.jconrel.2007.07.018]. [PMID: 17888540].
[71]
Rasheed A. VVNS SS. Cyclodextrins as drug carrier molecule: a review. Sci Pharm 2008; 76(4): 567-98. [http://dx.doi.org/10.3797/scipharm.0808-05].
[72]
Becket G, Schep LJ, Tan MY. Improvement of the in vitro dissolution of praziquantel by complexation with α-, β- and γ-cyclodextrins. Int J Pharm 1999; 179(1): 65-71. [http://dx.doi.org/10.1016/S0378-5173(98)00382-2]. [PMID: 10053203].
[73]
Rawat S, Jain SK. Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Eur J Pharm Biopharm 2004; 57(2): 263-7. [http://dx.doi.org/10.1016/j.ejpb.2003.10.020]. [PMID: 15018983].
[74]
Nair AB, Attimarad M, Al-Dhubiab BE, Wadhwa J, Harsha S, Ahmed M. Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin. Drug Deliv 2014; 21(7): 540-7. [http://dx.doi.org/10.3109/10717544.2013.853213]. [PMID: 24215288].
[75]
Wu J, Shen Q, Fang L. Sulfobutylether-β-cyclodextrin/chitosan nanoparticles enhance the oral permeability and bioavailability of docetaxel. Drug Dev Ind Pharm 2013; 39(7): 1010-9. [http://dx.doi.org/10.3109/03639045.2012.694588]. [PMID: 22681515].
[76]
Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci 2009; 71(4): 359-70. [http://dx.doi.org/10.4103/0250-474X.57283]. [PMID: 20502540].
[77]
Sekhon BS. Pharmaceutical co-crystals-a review. Ars Pharm 2009; p. 50.
[78]
Kelley SP, Narita A, Holbrey JD, Green KD, Reichert WM, Rogers RD. Understanding the effects of ionicity in salts, solvates, co-crystals, ionic co-crystals, and ionic liquids, rather than nomenclature, is critical to understanding their behavior. Cryst Growth Des 2013; 13(3): 965-75. [http://dx.doi.org/10.1021/cg4000439].
[79]
Elder DP, Holm R, Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm 2013; 453(1): 88-100. [http://dx.doi.org/10.1016/j.ijpharm.2012.11.028]. [PMID: 23182973].
[80]
Trask AV, Motherwell WD, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 2006; 320(1-2): 114-23. [http://dx.doi.org/10.1016/j.ijpharm.2006.04.018]. [PMID: 16769188].
[81]
Steed JW. The role of co-crystals in pharmaceutical design. Trends Pharmacol Sci 2013; 34(3): 185-93. [http://dx.doi.org/10.1016/j.tips.2012.12.003]. [PMID: 23347591].
[82]
Aakeröy CB, Desper J, Urbina JF. Supramolecular reagents: versatile tools for non-covalent synthesis. Chem Commun (Camb) 2005; (22): 2820-2. [http://dx.doi.org/10.1039/b503718b]. [PMID: 15928769].
[83]
Stegemann S, Leveiller F, Franchi D, de Jong H, Lindén H. When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 2007; 31(5): 249-61. [http://dx.doi.org/10.1016/j.ejps.2007.05.110]. [PMID: 17616376].
[84]
Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci 2006; 95(3): 499-516. [http://dx.doi.org/10.1002/jps.20578]. [PMID: 16444755].
[85]
Hetal T, Bindesh P, Sneha T. A review on techniques for oral bioavailability enhancement of drugs. Health 2010; 4(3): 33.
[86]
Berry DJ, Seaton CC, Clegg W, et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des 2008; 8(5): 1697-712. [http://dx.doi.org/10.1021/cg800035w].
[87]
Ain S, Ain Q, Parveen S. An overview on various approaches used for solubilization of poorly soluble drugs. Pharm Res 2009; 2: 84-104.
[88]
Bouquet W, Ceelen W, Fritzinger B, et al. Paclitaxel/β-cyclodextrin complexes for hyperthermic peritoneal perfusion - formulation and stability. Eur J Pharm Biopharm 2007; 66(3): 391-7. [http://dx.doi.org/10.1016/j.ejpb.2006.11.025]. [PMID: 17240125].
[89]
Rong W-T, Lu Y-P, Tao Q, et al. Hydroxypropyl-sulfobutyl-β-cyclodextrin improves the oral bioavailability of edaravone by modulating drug efflux pump of enterocytes. J Pharm Sci 2014; 103(2): 730-42. [http://dx.doi.org/10.1002/jps.23807]. [PMID: 24311389].
[90]
Leonardi D, Bombardiere ME, Salomon CJ. Effects of benznidazole:cyclodextrin complexes on the drug bioavailability upon oral administration to rats. Int J Biol Macromol 2013; 62: 543-8. [http://dx.doi.org/10.1016/j.ijbiomac.2013.10.007]. [PMID: 24120966].
[91]
Zhang X, Zhang T, Lan Y, Wu B, Shi Z. Nanosuspensions containing oridonin/HP-β-cyclodextrin inclusion complexes for oral bioavailability enhancement via improved dissolution and permeability. AAPS PharmSciTech 2016; 17(2): 400-8. [http://dx.doi.org/10.1208/s12249-015-0363-4]. [PMID: 26187778].
[92]
Balducci AG, Magosso E, Colombo G, et al. Agglomerated oral dosage forms of artemisinin/β-cyclodextrin spray-dried primary microparticles showing increased dissolution rate and bioavailability. AAPS PharmSciTech 2013; 14(3): 911-8. [http://dx.doi.org/10.1208/s12249-013-9982-9]. [PMID: 23703233].
[93]
Lu R, Liu S, Wang Q, Li X. Enhanced bioavailability of raloxifene hydrochloride via dry suspensions prepared from drug/HP-β-cyclodextrin inclusion complexes. Pharmazie 2015; 70(12): 791-7. [PMID: 26817276].
[94]
Bourkaib N, Zhou J, Yao J, Fang Z, Mezghrani O. Combination of β-cyclodextrin inclusion complex and self-microemulsifying drug delivery system for photostability and enhanced oral bioavailability of methotrexate: novel technique. Drug Dev Ind Pharm 2013; 39(6): 918-27. [http://dx.doi.org/10.3109/03639045.2012.718785]. [PMID: 22998295].
[95]
Liu M, Cao W, Sun Y, He Z. Preparation, characterization and in vivo evaluation of formulation of repaglinide with hydroxypropyl-β-cyclodextrin. Int J Pharm 2014; 477(1-2): 159-66. [http://dx.doi.org/10.1016/j.ijpharm.2014.10.038]. [PMID: 25455768].
[96]
Wu J, Bu X, Dou L, Fang L, Shen Q. Co-delivery of Docetaxel and Berbamine by Chitosan/Sulfobutylether-β-Cyclodextrin nanoparticles for enhancing bioavailability and anticancer activities. J Biomed Nanotechnol 2015; 11(10): 1847-57. [http://dx.doi.org/10.1166/jbn.2015.2110]. [PMID: 26502647].
[97]
Chauhan R, Madan J, Kaushik D, Sardana S, Pandey RS, Sharma R. Inclusion complex of colchicine in hydroxypropyl-β-cyclodextrin tenders better solubility and improved pharmacokinetics. Pharm Dev Technol 2013; 18(2): 313-22. [http://dx.doi.org/10.3109/10837450.2011.591801]. [PMID: 21699389].
[98]
Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G. Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr Polym 2014; 110: 329-37. [http://dx.doi.org/10.1016/j.carbpol.2014.04.006]. [PMID: 24906763].
[99]
Kumar N. Shishu, Bansal G, Kumar S, Jana AK. Preparation and cyclodextrin assisted dissolution rate enhancement of itraconazolium dinitrate salt. Drug Dev Ind Pharm 2013; 39(2): 342-51. [http://dx.doi.org/10.3109/03639045.2012.681382]. [PMID: 22553909].
[100]
Shulman M, Cohen M, Soto-Gutierrez A, et al. Enhancement of naringenin bioavailability by complexation with hydroxypropyl-β-cyclodextrin. PLoS One 2011; 6(4): e18033. [http://dx.doi.org/10.1371/journal.pone.0018033]. [PMID: 21494673].
[101]
Lv H-X, Zhang Z-H. Hui-Jiang, Waddad AY, Zhou JP. Preparation, physicochemical characteristics and bioavailability studies of an atorvastatin hydroxypropyl-β-cyclodextrin complex. Pharmazie 2012; 67(1): 46-53. [PMID: 22393830].
[102]
Grecu M, Năstasă V, Ilie C, Miron L, Mareş M. Comparative assessment of effectiveness of ketoprofen and ketoprofen/beta-cyclodextrin complex in two experimental models of inflammation in rats. Lab Anim 2014; 48(1): 20-6. [http://dx.doi.org/10.1177/0023677213503823]. [PMID: 24072487].
[103]
Devasari N, Dora CP, Singh C, et al. Inclusion complex of erlotinib with sulfobutyl ether-β-cyclodextrin: Preparation, characterization, in silico, in vitro and in vivo evaluation. Carbohydr Polym 2015; 134: 547-56. [http://dx.doi.org/10.1016/j.carbpol.2015.08.012]. [PMID: 26428157].
[104]
Gu FG, Wang Y, Meng GD, Han HB, Wu CZ. Investigation of a fenofibrate-hydroxypropyl-β-cyclodextrin system prepared by a co-grinding method. Pharmazie 2012; 67(2): 143-6. [PMID: 22512084].
[105]
Hymas RV, Ho NF, Higuchi WI. Capric Acid Absorption in the Presence of Hydroxypropyl-β-Cyclodextrin in the Rat Ileum using the In Situ Single-Pass Perfusion Technique. J Pharm Sci 2015; 104(9): 2832-44. [http://dx.doi.org/10.1002/jps.24212]. [PMID: 25393711].
[106]
Holm R, Olesen NE, Hartvig RA, Jørgensen EB, Larsen DB, Westh P. Effect of cyclodextrin concentration on the oral bioavailability of danazol and cinnarizine in rats. Eur J Pharm Biopharm 2016; 101: 9-14. [http://dx.doi.org/10.1016/j.ejpb.2016.01.007]. [PMID: 26776271].
[107]
Samrén EB, van Duijn CM, Koch S, et al. Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy. Epilepsia 1997; 38(9): 981-90. [http://dx.doi.org/10.1111/j.1528-1157.1997.tb01480.x]. [PMID: 9579936].
[108]
Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug Discov Today 2008; 13(9-10): 440-6. [http://dx.doi.org/10.1016/j.drudis.2008.03.004]. [PMID: 18468562].
[109]
Zaworotko MJ, Arora KK. Pharmaceutical co-crystals: A new opportunity in pharmaceutical science for a long-known but little-studied class of compounds. Polymorphism in Pharmaceutical Solids, Second Edition: CRC Press; 2p 292-327.
[110]
Shan N, Zaworotko MJ. Polymorphic crystal forms and cocrystals in drug delivery (crystal engineering). Burger's Medicinal Chemistry and Drug Discovery 2003; pp. 187-218.
[111]
Prasad RV, Rakesh MG, Jyotsna RM, Mangesh ST, Anita PS, Mayur PK. Pharmaceutical cocrystallization: a review. Int J Pharm Chem Sci 2012; 1(3): 725-36.
[112]
Zerkowski JA, Seto CT, Whitesides GM. Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice. J Am Chem Soc 1992; 114(13): 5473-5. [http://dx.doi.org/10.1021/ja00039a096].
[113]
Das B, Baruah JB. Supramolecular synthons and hydrates in stabilization of multicomponent crystals of nicotinamide and isonicotinamide with N-containing aromatic dicarboxylic acids. Cryst Growth Des 2011; 11(12): 5522-32. [http://dx.doi.org/10.1021/cg201096c].
[114]
Bučar D-K, Henry RF, Lou X, et al. Co-crystals of caffeine and hydroxy-2-naphthoic acids: unusual formation of the carboxylic acid dimer in the presence of a heterosynthon. Mol Pharm 2007; 4(3): 339-46. [http://dx.doi.org/10.1021/mp070004b]. [PMID: 17489605].
[115]
Jayasankar A, Reddy LS, Bethune SJ, Rodríguez-Hornedo N. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry. Cryst Growth Des 2009; 9(2): 889-97. [http://dx.doi.org/10.1021/cg800632r].
[116]
Rasenack N, Müller BW. Properties of ibuprofen crystallized under various conditions: a comparative study. Drug Dev Ind Pharm 2002; 28(9): 1077-89. [http://dx.doi.org/10.1081/DDC-120014575]. [PMID: 12455467].
[117]
Morissette SL, Almarsson O, Peterson ML, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 2004; 56(3): 275-300. [http://dx.doi.org/10.1016/j.addr.2003.10.020]. [PMID: 14962582].
[118]
Hickey MB, Peterson ML, Scoppettuolo LA, et al. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm 2007; 67(1): 112-9. [http://dx.doi.org/10.1016/j.ejpb.2006.12.016]. [PMID: 17292592].
[119]
Smith AJ, Kavuru P, Wojtas L, Zaworotko MJ, Shytle RD. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm 2011; 8(5): 1867-76. [http://dx.doi.org/10.1021/mp200209j]. [PMID: 21846121].
[120]
Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm 2011; 419(1-2): 1-11. [http://dx.doi.org/10.1016/j.ijpharm.2011.07.037]. [PMID: 21827842].
[121]
Xu C, Gu K, Yasen Y, Hou Y. Efficacy and safety of celecoxib therapy in osteoarthritis: A meta-analysis of randomized controlled trials. Medicine 2016; 95(20): e3585. [http://dx.doi.org/10.1097/MD.0000000000003585]. [PMID: 27196460].
[122]
Bensen WG, Fiechtner JJ, McMillen JI, Zhao WW, Shawn SY, Woods EM, Eds. Treatment of osteoarthritis with celecoxib, a cyclooxygenase-2 inhibitor: a randomized controlled trial Mayo Clinic Proceedings. Elsevier 1999.
[123]
Mutalik S, Usha N, Ranjith AK, Umesh S, Musmade P, Anup N. Preparation and physicochemical and preclinical evaluations of recrystallized celecoxib. PDA J Pharm Sci Technol 2007; 61(5): 362-74. [PMID: 18047175].
[124]
Cao M, Ren L, Chen G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech 2017; 18(6): 1960-71. [http://dx.doi.org/10.1208/s12249-016-0667-z]. [PMID: 27914040].
[125]
Guzmán HR, Tawa M, Zhang Z, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 2007; 96(10): 2686-702. [http://dx.doi.org/10.1002/jps.20906]. [PMID: 17518357].
[126]
Gupta P, Chawla G, Bansal AK. Physical stability and solubility advantage from amorphous celecoxib: the role of thermodynamic quantities and molecular mobility. Mol Pharm 2004; 1(6): 406-13. [http://dx.doi.org/10.1021/mp049938f]. [PMID: 16028352].
[127]
Paulson SK, Vaughn MB, Jessen SM, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther 2001; 297(2): 638-45. [PMID: 11303053].
[128]
Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci 2014; 103(8): 2330-7. [http://dx.doi.org/10.1002/jps.24048]. [PMID: 24903146].
[129]
Childs SL, Kandi P, Lingireddy SR. Formulation of a danazol cocrystal with controlled supersaturation plays an essential role in improving bioavailability. Mol Pharm 2013; 10(8): 3112-27. [http://dx.doi.org/10.1021/mp400176y]. [PMID: 23822591].
[130]
Ganesh M, Jeon UJ, Ubaidulla U, et al. Chitosan cocrystals embedded alginate beads for enhancing the solubility and bioavailability of aceclofenac. Int J Biol Macromol 2015; 74: 310-7. [http://dx.doi.org/10.1016/j.ijbiomac.2014.12.038]. [PMID: 25557368].
[131]
Jung MS, Kim JS, Kim MS, et al. Bioavailability of indomethacin-saccharin cocrystals. J Pharm Pharmacol 2010; 62(11): 1560-8. [http://dx.doi.org/10.1111/j.2042-7158.2010.01189.x]. [PMID: 21039541].
[132]
Ullah M, Hussain I, Sun CC. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev Ind Pharm 2016; 42(6): 969-76. [http://dx.doi.org/10.3109/03639045.2015.1096281]. [PMID: 26460090].
[133]
Liu M, Hong C, Yao Y, et al. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm 2016; 107: 151-9. [http://dx.doi.org/10.1016/j.ejpb.2016.07.008]. [PMID: 27395394].
[134]
Wang J-R, Yu X, Zhou C, et al. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorg Med Chem Lett 2015; 25(5): 1036-9. [http://dx.doi.org/10.1016/j.bmcl.2015.01.022]. [PMID: 25630224].
[135]
Stavropoulos K, Johnston SC, Zhang Y, et al. Cocrystalline solids of telaprevir with enhanced oral absorption. J Pharm Sci 2015; 104(10): 3343-50. [http://dx.doi.org/10.1002/jps.24534]. [PMID: 26094780].
[136]
Huang Y, Li J-M, Lai Z-H, Wu J, Lu T-B, Chen J-M. Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement. Eur J Pharm Sci 2017; 109: 581-6. [http://dx.doi.org/10.1016/j.ejps.2017.09.020]. [PMID: 28917964].
[137]
Ober CA, Gupta RB. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech 2012; 13(4): 1396-406. [http://dx.doi.org/10.1208/s12249-012-9866-4]. [PMID: 23054991].
[138]
Sanphui P, Tothadi S, Ganguly S, Desiraju GR. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt. Mol Pharm 2013; 10(12): 4687-97. [http://dx.doi.org/10.1021/mp400516b]. [PMID: 24168322].
[139]
Suresh K, Mannava MK, Nangia A. Cocrystals and alloys of nitazoxanide: enhanced pharmacokinetics. Chem Commun (Camb) 2016; 52(22): 4223-6. [http://dx.doi.org/10.1039/C6CC00975A]. [PMID: 26911515].
[140]
Liu C, Liu Z, Chen Y, et al. Oral bioavailability enhancement of β-lapachone, a poorly soluble fast crystallizer, by cocrystal, amorphous solid dispersion, and crystalline solid dispersion. Eur J Pharm Biopharm 2018; 124: 73-81. [http://dx.doi.org/10.1016/j.ejpb.2017.12.016]. [PMID: 29305142].
[141]
Lin Y, Yang H, Yang C, Wang J. Preparation, characterization, and evaluation of dipfluzine-benzoic acid co-crystals with improved physicochemical properties. Pharm Res 2014; 31(3): 566-78. [http://dx.doi.org/10.1007/s11095-013-1181-6]. [PMID: 24065588].
[142]
Bruni G, Maietta M, Maggi L, et al. Preparation and physicochemical characterization of acyclovir cocrystals with improved dissolution properties. J Pharm Sci 2013; 102(11): 4079-86. [http://dx.doi.org/10.1002/jps.23721]. [PMID: 24030886].
[143]
Arafa MF, El-Gizawy SA, Osman MA, El Maghraby GM. Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: preparation and evaluation of sublingual tablets. Pharm Dev Technol 2018; 23(5): 454-63. [http://dx.doi.org/10.1080/10837450.2016.1242625]. [PMID: 27681386].
[144]
Abbas N, Latif S, Afzal H, et al. Simultaneously Improving Mechanical, Formulation, and in vivo performance of naproxen by co-crystallization. AAPS PharmSciTech 2018; 19(7): 3249-57. [http://dx.doi.org/10.1208/s12249-018-1152-7]. [PMID: 30194682].
[145]
Ali HS, Khan GA, Elhaj BM. Approaches to Enhance Dissolution In Pharmaceutical Technologies. Am J Pharm Health Res 2017; 5(1): 1-15.
[146]
Mohammed AR, Weston N, Coombes AG, Fitzgerald M, Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm 2004; 285(1-2): 23-34. [http://dx.doi.org/10.1016/j.ijpharm.2004.07.010]. [PMID: 15488676].
[147]
Zhang JA, Anyarambhatla G, Ma L, et al. Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm 2005; 59(1): 177-87. [http://dx.doi.org/10.1016/j.ejpb.2004.06.009]. [PMID: 15567316].
[148]
Crowe LM, Crowe JH, Rudolph A, Womersley C, Appel L. Preservation of freeze-dried liposomes by trehalose. Arch Biochem Biophys 1985; 242(1): 240-7. [http://dx.doi.org/10.1016/0003-9861(85)90498-9]. [PMID: 4051504].
[149]
Ghanbarzadeh S, Valizadeh H, Zakeri-Milani P. The effects of lyophilization on the physico-chemical stability of sirolimus liposomes. Adv Pharm Bull 2013; 3(1): 25-9. [PMID: 24312808].
[150]
Yang T, Cui F-D, Choi M-K, et al. Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv 2007; 14(5): 301-8. [http://dx.doi.org/10.1080/10717540601098799]. [PMID: 17613018].
[151]
Yang T, Cui F-D, Choi M-K, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 2007; 338(1-2): 317-26. [http://dx.doi.org/10.1016/j.ijpharm.2007.02.011]. [PMID: 17368984].
[152]
Zhu Y, Wang M, Zhang J, et al. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats. Arch Pharm Res 2015; 38(4): 512-21. [http://dx.doi.org/10.1007/s12272-014-0481-7]. [PMID: 25231341].
[153]
Kumar N, Rai A, Reddy ND, et al. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol Rep 2014; 66(5): 788-98. [http://dx.doi.org/10.1016/j.pharep.2014.04.007]. [PMID: 25149982].
[154]
Bader H, Ringsdorf H, Schmidt B. Watersoluble polymers in medicine. Appl Macromol Chem Phy 1984; 123(1): 457-85. [http://dx.doi.org/10.1002/apmc.1984.051230121].
[155]
Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 2005; 109(1-3): 169-88. [http://dx.doi.org/10.1016/j.jconrel.2005.09.034]. [PMID: 16289422].
[156]
Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 2004; 56(9): 1273-89. [http://dx.doi.org/10.1016/j.addr.2003.12.004]. [PMID: 15109769].
[157]
Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004; 61(19-20): 2549-59. [http://dx.doi.org/10.1007/s00018-004-4153-5]. [PMID: 15526161].
[158]
Jones M, Leroux J. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48(2): 101-11. [http://dx.doi.org/10.1016/S0939-6411(99)00039-9]. [PMID: 10469928].
[159]
Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 1996; 21(2): 107-16. [http://dx.doi.org/10.1016/S0169-409X(96)00401-2].
[160]
Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromolecules 2007; 8(1): 202-8. [http://dx.doi.org/10.1021/bm060307b]. [PMID: 17206808].
[161]
Shin H-C, Alani AW, Rao DA, Rockich NC, Kwon GS. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release 2009; 140(3): 294-300. [http://dx.doi.org/10.1016/j.jconrel.2009.04.024]. [PMID: 19409432].
[162]
Yu BG, Okano T, Kataoka K, Kwon G. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release 1998; 53(1-3): 131-6. [http://dx.doi.org/10.1016/S0168-3659(97)00245-9]. [PMID: 9741920].
[163]
Kwon SH, Kim SY, Ha KW, et al. Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch Pharm Res 2007; 30(9): 1138-43. [http://dx.doi.org/10.1007/BF02980249]. [PMID: 17958332].
[164]
Pierri E, Avgoustakis K. Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J Biomed Mater Res A 2005; 75(3): 639-47. [http://dx.doi.org/10.1002/jbm.a.30490]. [PMID: 16110497].
[165]
Kim SY, Shin IG, Lee YM, Cho CS, Sung YK. Methoxy poly(ethylene glycol) and ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Control Release 1998; 51(1): 13-22. [http://dx.doi.org/10.1016/S0168-3659(97)00124-7]. [PMID: 9685900].
[166]
Sant VP, Smith D, Leroux J-C. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 2005; 104(2): 289-300. [http://dx.doi.org/10.1016/j.jconrel.2005.02.010]. [PMID: 15907580].
[167]
Liu X, Ma R, Shen J, Xu Y, An Y, Shi L. Controlled release of ionic drugs from complex micelles with charged channels. Biomacromolecules 2012; 13(5): 1307-14. [http://dx.doi.org/10.1021/bm2018382]. [PMID: 22428577].
[168]
Yi Y, Yoon HJ, Kim BO, et al. A mixed polymeric micellar formulation of itraconazole: Characteristics, toxicity and pharmacokinetics. J Control Release 2007; 117(1): 59-67. [http://dx.doi.org/10.1016/j.jconrel.2006.10.001]. [PMID: 17097755].
[169]
Alakhov V, Pietrzynski G, Patel K, Kabanov A, Bromberg L, Hatton TA. Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate. J Pharm Pharmacol 2004; 56(10): 1233-41. [http://dx.doi.org/10.1211/0022357044427]. [PMID: 15482637].
[170]
Chiappetta DA, Facorro G, de Celis ER, Sosnik A. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine (Lond) 2011; 7(5): 624-37. [http://dx.doi.org/10.1016/j.nano.2011.01.017]. [PMID: 21371572].
[171]
Dou J, Zhang H, Liu X, Zhang M, Zhai G. Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration. Colloids Surf B Biointerfaces 2014; 114: 20-7. [http://dx.doi.org/10.1016/j.colsurfb.2013.09.010]. [PMID: 24157590].
[172]
Zhang Y, Li X, Zhou Y, et al. Cyclosporin A-loaded poly(ethylene glycol)-b-poly(d,l-lactic acid) micelles: preparation, in vitro and in vivo characterization and transport mechanism across the intestinal barrier. Mol Pharm 2010; 7(4): 1169-82. [http://dx.doi.org/10.1021/mp100033k]. [PMID: 20540526].
[173]
Barreiro-Iglesias R, Bromberg L, Temchenko M, Hatton TA, Concheiro A, Alvarez-Lorenzo C. Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers. J Control Release 2004; 97(3): 537-49. [http://dx.doi.org/10.1016/j.jconrel.2004.04.007]. [PMID: 15212885].
[174]
Dabholkar RD, Sawant RM, Mongayt DA, Devarajan PV, Torchilin VP. Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm 2006; 315(1-2): 148-57. [http://dx.doi.org/10.1016/j.ijpharm.2006.02.018]. [PMID: 16616818].
[175]
Mo R, Jin X, Li N, et al. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials 2011; 32(20): 4609-20. [http://dx.doi.org/10.1016/j.biomaterials.2011.03.005]. [PMID: 21440934].
[176]
Ould-Ouali L, Noppe M, Langlois X, et al. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J Control Release 2005; 102(3): 657-68. [http://dx.doi.org/10.1016/j.jconrel.2004.10.022]. [PMID: 15681087].
[177]
Kim M-S, Kim J-S, Cho WK, Hwang S-J. Enhanced solubility and oral absorption of sirolimus using D-α-tocopheryl polyethylene glycol succinate micelles. Artif Cells Nanomed Biotechnol 2013; 41(2): 85-91. [http://dx.doi.org/10.3109/21691401.2012.742100]. [PMID: 23305536].
[178]
Tang B, Cheng G, Gu J-C, Xu C-H. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today 2008; 13(13-14): 606-12. [http://dx.doi.org/10.1016/j.drudis.2008.04.006]. [PMID: 18598917].
[179]
Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm 2008; 70(2): 439-44. [http://dx.doi.org/10.1016/j.ejpb.2008.05.001]. [PMID: 18603415].
[180]
Kim DW, Kang JH, Oh DH, Yong CS, Choi H-G. Development of novel flurbiprofen-loaded solid self-microemulsifying drug delivery system using gelatin as solid carrier. J Microencapsul 2012; 29(4): 323-30. [http://dx.doi.org/10.3109/02652048.2011.651497]. [PMID: 22233141].
[181]
Balakrishnan P, Lee B-J, Oh DH, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm 2009; 72(3): 539-45. [http://dx.doi.org/10.1016/j.ejpb.2009.03.001]. [PMID: 19298857].
[182]
Chen Y, Chen C, Zheng J, Chen Z, Shi Q, Liu H. Development of a solid supersaturatable self-emulsifying drug delivery system of docetaxel with improved dissolution and bioavailability. Biol Pharm Bull 2011; 34(2): 278-86. [http://dx.doi.org/10.1248/bpb.34.278]. [PMID: 21415541].
[183]
Yan Y-D, Kim JA, Kwak MK, Yoo BK, Yong CS, Choi H-G. Enhanced oral bioavailability of curcumin via a solid lipid-based self-emulsifying drug delivery system using a spray-drying technique. Biol Pharm Bull 2011; 34(8): 1179-86. [http://dx.doi.org/10.1248/bpb.34.1179]. [PMID: 21804203].
[184]
Agarwal V, Alayoubi A, Siddiqui A, Nazzal S. Powdered self-emulsified lipid formulations of meloxicam as solid dosage forms for oral administration. Drug Dev Ind Pharm 2013; 39(11): 1681-9. [http://dx.doi.org/10.3109/03639045.2012.729594]. [PMID: 23072611].
[185]
Kanaujia P, Ng WK, Tan RB. Solid self-emulsifying drug delivery system (S-SEDDS) for improved dissolution rate of fenofibrate. J Microencapsul 2014; 31(3): 293-8. [http://dx.doi.org/10.3109/02652048.2013.843601]. [PMID: 24156747].
[186]
Gao P, Rush BD, Pfund WP, et al. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci 2003; 92(12): 2386-98. [http://dx.doi.org/10.1002/jps.10511]. [PMID: 14603484].
[187]
Kang MJ, Jung SY, Song WH, et al. Immediate release of ibuprofen from Fujicalin®-based fast-dissolving self-emulsifying tablets. Drug Dev Ind Pharm 2011; 37(11): 1298-305. [http://dx.doi.org/10.3109/03639045.2011.571695]. [PMID: 21476949].
[188]
Robinson J. Introduction: semi-solid formulations of oral drug delivery. Bulletin Technique-Gattefosse 1996; pp. 11-4.
[189]
Chavan RB, Modi SR, Bansal AK. Role of solid carriers in pharmaceutical performance of solid supersaturable SEDDS of celecoxib. Int J Pharm 2015; 495(1): 374-84. [http://dx.doi.org/10.1016/j.ijpharm.2015.09.011]. [PMID: 26364711].
[190]
Agarwal V, Siddiqui A, Ali H, Nazzal S. Dissolution and powder flow characterization of solid self-emulsified drug delivery system (SEDDS). Int J Pharm 2009; 366(1-2): 44-52. [http://dx.doi.org/10.1016/j.ijpharm.2008.08.046]. [PMID: 18832019].
[191]
Weerapol Y, Limmatvapirat S, Jansakul C, Takeuchi H, Sriamornsak P. Enhanced dissolution and oral bioavailability of nifedipine by spontaneous emulsifying powders: effect of solid carriers and dietary state. Eur J Pharm Biopharm 2015; 91: 25-34. [http://dx.doi.org/10.1016/j.ejpb.2015.01.011]. [PMID: 25615879].
[192]
Nekkanti V, Karatgi P, Prabhu R, Pillai R. Solid self-microemulsifying formulation for candesartan cilexetil. AAPS PharmSciTech 2010; 11(1): 9-17. [http://dx.doi.org/10.1208/s12249-009-9347-6]. [PMID: 20013081].
[193]
Krupa A, Szlęk J, Jany BR, Jachowicz R. Preformulation studies on solid self-emulsifying systems in powder form containing magnesium aluminometasilicate as porous carrier. AAPS PharmSciTech 2015; 16(3): 623-35. [http://dx.doi.org/10.1208/s12249-014-0247-z]. [PMID: 25501870].
[194]
Shazly G, Mohsin K. Dissolution improvement of solid self-emulsifying drug delivery systems of fenofibrate using an inorganic high surface adsorption material. Acta Pharm 2015; 65(1): 29-42. [http://dx.doi.org/10.1515/acph-2015-0003]. [PMID: 25781702].
[195]
Ito Y, Kusawake T, Ishida M, Tawa R, Shibata N, Takada K. Oral solid gentamicin preparation using emulsifier and adsorbent. J Control Release 2005; 105(1-2): 23-31. [http://dx.doi.org/10.1016/j.jconrel.2005.03.017]. [PMID: 15908031].
[196]
Milović M, Djuriš J, Djekić L, Vasiljević D, Ibrić S. Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release. Int J Pharm 2012; 436(1-2): 58-65. [http://dx.doi.org/10.1016/j.ijpharm.2012.06.032]. [PMID: 22721847].
[197]
Beg S, Jena SS, Patra ChN, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B Biointerfaces 2013; 101: 414-23. [http://dx.doi.org/10.1016/j.colsurfb.2012.06.031]. [PMID: 23010049].
[198]
Inugala S, Eedara BB, Sunkavalli S, et al. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: in vitro and in vivo evaluation. Eur J Pharm Sci 2015; 74: 1-10. [http://dx.doi.org/10.1016/j.ejps.2015.03.024]. [PMID: 25845633].
[199]
Lee DH, Yeom DW, Song YS, et al. Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). Int J Pharm 2015; 478(1): 341-7. [http://dx.doi.org/10.1016/j.ijpharm.2014.11.060]. [PMID: 25437113].
[200]
Lee DR, Ho MJ, Jung HJ, et al. Enhanced dissolution and oral absorption of tacrolimus by supersaturable self-emulsifying drug delivery system. Int J Nanomedicine 2016; 11: 1109-17. [PMID: 27051286].
[201]
Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007; 6(3): 231-48. [http://dx.doi.org/10.1038/nrd2197]. [PMID: 17330072].
[202]
Benita S, Donbrow M. Effect of polyisobutylene on ethyl cellulose-walled microcapsules: wall structure and thickness of salicylamide and theophylline microcapsules. J Pharm Sci 1982; 71(2): 205-10. [http://dx.doi.org/10.1002/jps.2600710217]. [PMID: 7062247].
[203]
Singh MN, Hemant KS, Ram M, Shivakumar HG. Microencapsulation: A promising technique for controlled drug delivery. Res Pharm Sci 2010; 5(2): 65-77. [PMID: 21589795].
[204]
Mudgil M, Pawar PK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci Pharm 2013; 81(2): 591-606. [http://dx.doi.org/10.3797/scipharm.1204-16]. [PMID: 23833723].
[205]
Masood F, Chen P, Yasin T, Fatima N, Hasan F, Hameed A. Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater Sci Eng C 2013; 33(3): 1054-60. [http://dx.doi.org/10.1016/j.msec.2012.11.025]. [PMID: 23827542].
[206]
Shah M, Ullah N, Choi MH, Kim MO, Yoon SC. Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur J Pharm Biopharm 2012; 80(3): 518-27. [http://dx.doi.org/10.1016/j.ejpb.2011.11.014]. [PMID: 22178562].
[207]
Yadav KS, Sawant KK. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr Drug Deliv 2010; 7(1): 51-64. [http://dx.doi.org/10.2174/156720110790396517]. [PMID: 20044908].
[208]
Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007; 117(3): 421-9. [http://dx.doi.org/10.1016/j.jconrel.2006.12.003]. [PMID: 17239471].
[209]
Sawdon AJ, Peng C-A. Polymeric micelles for acyclovir drug delivery. Colloids Surf B Biointerfaces 2014; 122: 738-45. [http://dx.doi.org/10.1016/j.colsurfb.2014.08.011]. [PMID: 25193154].
[210]
Danhier F, Lecouturier N, Vroman B, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 2009; 133(1): 11-7. [http://dx.doi.org/10.1016/j.jconrel.2008.09.086]. [PMID: 18950666].
[211]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine (Lond) 2010; 6(2): 324-33. [http://dx.doi.org/10.1016/j.nano.2009.10.004]. [PMID: 19857606].
[212]
Derakhshandeh K, Erfan M, Dadashzadeh S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur J Pharm Biopharm 2007; 66(1): 34-41. [http://dx.doi.org/10.1016/j.ejpb.2006.09.004]. [PMID: 17070678].
[213]
Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci USA 2008; 105(45): 17356-61. [http://dx.doi.org/10.1073/pnas.0809154105].
[214]
Pu X, Sun J, Wang Y, et al. Development of a chemically stable 10-hydroxycamptothecin nanosuspensions. Int J Pharm 2009; 379(1): 167-73. [http://dx.doi.org/10.1016/j.ijpharm.2009.05.062]. [PMID: 19505545].
[215]
Allémann E, Leroux J-C, Gurny R, Doelker E. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res 1993; 10(12): 1732-7. [http://dx.doi.org/10.1023/A:1018970030327]. [PMID: 7905625].
[216]
Vu M-T, Jeong Y-I, Choi C, Nam J-P, Son D-H, Park J-K, et al. Surfactant-free nanoparticles of doxorubicin-conjugated poly (DL-lactide-co-glycolide). Macromol Res 2010; 18(11): 1115-20. [http://dx.doi.org/10.1007/s13233-010-1114-8].
[217]
Pathak P, Meziani MJ, Desai T, Sun Y-P. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J Supercrit Fluids 2006; 37(3): 279-86. [http://dx.doi.org/10.1016/j.supflu.2005.09.005].
[218]
Silva AC, González-Mira E, García ML, et al. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces 2011; 86(1): 158-65. [http://dx.doi.org/10.1016/j.colsurfb.2011.03.035]. [PMID: 21530187].
[219]
Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 2004; 278(1): 71-7. [http://dx.doi.org/10.1016/j.ijpharm.2004.02.032]. [PMID: 15158950].
[220]
Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 2007; 328(2): 191-5. [http://dx.doi.org/10.1016/j.ijpharm.2006.08.007]. [PMID: 16978810].
[221]
Silpa N, Chakravarthi N, Chandramouli Y, Hemanth K, Kumar P. Moxifloxacin loaded solid lipid nanoparticles (SLNs): Preparation and characterization. Asian J Pharm Res 2012; 2012: 2.
[222]
Verma VK, Alpana R. Development of piroxicam loaded SLN-based hydrogel for transdermal delivery. Int J Pharm Sci Nanotechnol 2014; 7: 2338-45.
[223]
Hu J, Ng WK, Dong Y, Shen S, Tan RB. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int J Pharm 2011; 404(1-2): 198-204. [http://dx.doi.org/10.1016/j.ijpharm.2010.10.055]. [PMID: 21056643].
[224]
Liu J, Gong T, Fu H, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 2008; 356(1-2): 333-44. [http://dx.doi.org/10.1016/j.ijpharm.2008.01.008]. [PMID: 18281169].
[225]
Chen YJ, Jin RX, Zhou YQ, Zeng J, Zhang H, Feng QR. [Preparation of solid lipid nanoparticles loaded with Xionggui powder-supercritical carbon dioxide fluid extraction and their evaluation in vitro release]. Zhongguo Zhongyao Zazhi 2006; 31(5): 376-9. [PMID: 16711418].
[226]
Li Y-Z, Sun X, Gong T, Liu J, Zuo J, Zhang Z-R. Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles. Pharm Res 2010; 27(9): 1977-86. [http://dx.doi.org/10.1007/s11095-010-0201-z]. [PMID: 20625801].
[227]
Brazel CS, Peppas NA. Modeling of drug release from swellable polymers. Eur J Pharm Biopharm 2000; 49(1): 47-58. [http://dx.doi.org/10.1016/S0939-6411(99)00058-2]. [PMID: 10613927].
[228]
Zhang Y, Chu C-C. In vitro release behavior of insulin from biodegradable hybrid hydrogel networks of polysaccharide and synthetic biodegradable polyester. J Biomater Appl 2002; 16(4): 305-25. [http://dx.doi.org/10.1106/088532802024248]. [PMID: 12099510].
[229]
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21(23): 2475-90. [http://dx.doi.org/10.1016/S0142-9612(00)00115-0]. [PMID: 11055295].
[230]
Jabeen M, Begum S, Siddique A, Fatima SS. Journal of Inventions in Biomedical and Pharmaceutical Sciences (JIBPS).
[231]
Baracat MM, Nakagawa AM, Casagrande R, Georgetti SR, Verri WA Jr, de Freitas O. Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS PharmSciTech 2012; 13(2): 364-72. [http://dx.doi.org/10.1208/s12249-012-9752-0]. [PMID: 22322381].
[232]
Estevinho BN, Rocha F, Santos L, Alves A. Microencapsulation with chitosan by spray drying for industry applications–A review. Trends Food Sci Technol 2013; 31(2): 138-55. [http://dx.doi.org/10.1016/j.tifs.2013.04.001].
[233]
Yang J, Han S, Zheng H, Dong H, Liu J. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 2015; 123: 53-66. [http://dx.doi.org/10.1016/j.carbpol.2015.01.029]. [PMID: 25843834].
[234]
Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998; 15(9): 1326-31. [http://dx.doi.org/10.1023/A:1011929016601]. [PMID: 9755881].
[235]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11. [http://dx.doi.org/10.4103/2230-973X.96920]. [PMID: 23071954].
[236]
Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: In vivo performances. J Control Release 2012; 160(3): 418-30. [http://dx.doi.org/10.1016/j.jconrel.2012.03.013]. [PMID: 22465393].
[237]
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004; 3(9): 785-96. [http://dx.doi.org/10.1038/nrd1494]. [PMID: 15340388].
[238]
Garg R, Gupta G. Progress in controlled gastroretentive delivery systems. Trop J Pharm Res 2008; 7(3): 1055-66. [http://dx.doi.org/10.4314/tjpr.v7i3.14691].
[239]
Sahil K, Akanksha M, Premjeet S, Bilandi A, Kapoor B. Microsphere: a review. Int J Res Pharm Chem 2011; 1(4): 1184-98.
[240]
Klaine SJ, Alvarez PJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 2008; 27(9): 1825-51. [http://dx.doi.org/10.1897/08-090.1]. [PMID: 19086204].
[241]
Shaikh S, Khan G, Shaikh S, Fakir H, Shaikh S, Shaikh M. Microspheres as a multiparticulate drug delivery system: A review. World J Pharm Pharm Sci 2016; 5: 274-92.
[242]
de la Torre-Iglesias PM, García-Rodriguez JJ, Torrado G, Torrado S, Torrado-Santiago S, Bolás-Fernández F. Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible microparticles with low-substituted hydroxypropylcellulose. Drug Des Devel Ther 2014; 8: 1467-79. [PMID: 25258515].
[243]
Zhang Y, Zhi Z, Li X, Gao J, Song Y. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Int J Pharm 2013; 454(1): 403-11. [http://dx.doi.org/10.1016/j.ijpharm.2013.07.009]. [PMID: 23850816].
[244]
Zhu Y, Wang M, Zhang Y, et al. In vitro release and bioavailability of silybin from micelle-templated porous calcium phosphate microparticles. AAPS PharmSciTech 2016; 17(5): 1232-9. [http://dx.doi.org/10.1208/s12249-015-0460-4]. [PMID: 26669888].
[245]
Sui X, Wei W, Yang L, et al. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Int J Pharm 2012; 423(2): 471-9. [http://dx.doi.org/10.1016/j.ijpharm.2011.12.007]. [PMID: 22183131].
[246]
Yazdi IK, Murphy MB, Loo C, et al. Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against Staphylococcus aureus. J Tissue Eng 2014; 52041731414536573. [http://dx.doi.org/10.1177/2041731414536573]. [PMID: 24904728].
[247]
Baek J-S, Kwon H-H, Hwang J-S, et al. Alendronate-loaded microparticles for improvement of intestinal cellular absorption. J Drug Target 2011; 19(1): 37-48. [http://dx.doi.org/10.3109/10611861003667599]. [PMID: 20477555].
[248]
Park C-W, Kim J-Y, Rhee Y-S, Oh T-O, Ha J-M, Park E-S. Preparation and in vivo evaluation of spray dried matrix type controlled-release microparticles of tamsulosin hydrochloride for orally disintegrating tablet. Drug Dev Ind Pharm 2012; 38(10): 1179-87. [http://dx.doi.org/10.3109/03639045.2011.643894]. [PMID: 22200122].
[249]
Khonsari F, Zakeri-Milani P, Jelvehgari M. Formulation and evaluation of in vitro characterization of gastic-mucoadhesive microparticles/discs containing metformin hydrochloride. Iran J Pharm Res 2014; 13(1): 67-80. [PMID: 24734057].
[250]
Kousar R, Ahmad M, Murtaza G, Khan SA, Karim S, Hussain I. Pharmacokinetic study of hydroxypropylmethylcellulose microparticles loaded with cimetidine. Adv Clin Exp Med 2013; 22(1): 41-5. [PMID: 23468261].
[251]
Khan F, Katara R, Ramteke S. Enhancement of bioavailability of cefpodoxime proxetil using different polymeric microparticles. AAPS PharmSciTech 2010; 11(3): 1368-75. [http://dx.doi.org/10.1208/s12249-010-9505-x]. [PMID: 20821175].
[252]
Patel JK, Patil PS, Sutariya VB. Formulation and characterization of mucoadhesive microparticles of cinnarizine hydrochloride using supercritical fluid technique. Curr Drug Deliv 2013; 10(3): 317-25. [http://dx.doi.org/10.2174/1567201811310030008]. [PMID: 23286919].
[253]
Ghorab DM, Amin MM, Khowessah OM, Tadros MI. Colon-targeted celecoxib-loaded Eudragit® S100-coated poly-ε-caprolactone microparticles: preparation, characterization and in vivo evaluation in rats. Drug Deliv 2011; 18(7): 523-35. [http://dx.doi.org/10.3109/10717544.2011.595841]. [PMID: 21793779].
[254]
Kim JS, Lee J-S, Chang P-S, Lee HG. Optimization, in vitro release and bioavailability of γ-oryzanol-loaded calcium pectinate microparticles reinforced with chitosan. N Biotechnol 2010; 27(4): 368-73. [http://dx.doi.org/10.1016/j.nbt.2010.02.018]. [PMID: 20193784].
[255]
Nishino Y, Kubota A, Kanazawa T, Takashima Y, Ozeki T, Okada H. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion. J Pharm Sci 2012; 101(11): 4191-200. [http://dx.doi.org/10.1002/jps.23278]. [PMID: 22864998].
[256]
Alipour S, Montaseri H, Khalili A, Tafaghodi M. Non-invasive endotracheal delivery of paclitaxel-loaded alginate microparticles. J Chemother 2016; 28(5): 411-6. [http://dx.doi.org/10.1080/1120009X.2015.1105624]. [PMID: 27447444].
[257]
Cruz L, Fattal E, Tasso L, et al. Formulation and in vivo evaluation of sodium alendronate spray-dried microparticles intended for lung delivery. J Control Release 2011; 152(3): 370-5. [http://dx.doi.org/10.1016/j.jconrel.2011.02.030]. [PMID: 21396412].
[258]
Piccirilli GN, García A, Leonardi D, et al. Chitosan microparticles: influence of the gelation process on the release profile and oral bioavailability of albendazole, a class II compound. Drug Dev Ind Pharm 2014; 40(11): 1476-82. [http://dx.doi.org/10.3109/03639045.2013.829486]. [PMID: 23971494].
[259]
Zhong M, Feng Y, Liao H, et al. Azithromycin cationic non-lecithoid nano/microparticles improve bioavailability and targeting efficiency. Pharm Res 2014; 31(10): 2857-67. [http://dx.doi.org/10.1007/s11095-014-1382-7]. [PMID: 25208873].
[260]
Gao Y, Li Z, Sun M, et al. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 2011; 18(2): 131-42. [http://dx.doi.org/10.3109/10717544.2010.520353]. [PMID: 20939679].
[261]
Junghanns J-UA, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 2008; 3(3): 295-309. [PMID: 18990939].
[262]
Diallo O, Philip M, Talwar N. . Orally Disintegrating Tablet of Nabilone Comprising Mannitol-Based Granules. WO2015131269A1, 2017.
[263]
Till MC, Simkin MM, Maebius S. Nanotech meets the FDA: a success story about the first nanoparticulate drugs approved by the FDA. HeinOnline 2005.
[264]
Kesisoglou F, Panmai S, Wu Y. Application of nanoparticles in oral delivery of immediate release formulations. Curr Nanosci 2007; 3(2): 183-90. [http://dx.doi.org/10.2174/157341307780619251].
[265]
Hu X, Lin C, Chen D, et al. Sirolimus solid self-microemulsifying pellets: formulation development, characterization and bioavailability evaluation. Int J Pharm 2012; 438(1-2): 123-33. [http://dx.doi.org/10.1016/j.ijpharm.2012.07.055]. [PMID: 22850296].
[266]
Horn D, Rieger J. Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew Chem Int Ed Engl 2001; 40(23): 4330-61. [http://dx.doi.org/10.1002/1521-3773(20011203)40:23<4330:AID-ANIE4330>3.0.CO;2-W]. [PMID: 12404417].
[267]
Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004; 113(1-3): 151-70. [http://dx.doi.org/10.1016/j.jbiotec.2004.06.007]. [PMID: 15380654].
[268]
Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 2008; 36(1): 43-8. [http://dx.doi.org/10.1177/0192623307310946]. [PMID: 18337220].
[269]
Liu M, Fréchet JM. Designing dendrimers for drug delivery. Pharm Sci Technol Today 1999; 2(10): 393-401. [http://dx.doi.org/10.1016/S1461-5347(99)00203-5]. [PMID: 10498919].
[270]
Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65(3): 259-69. [http://dx.doi.org/10.1016/j.ejpb.2006.11.009]. [PMID: 17196803].
[271]
Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 2000; 11(Suppl. 2): S93-8. [http://dx.doi.org/10.1016/S0928-0987(00)00167-6]. [PMID: 11033431].
[272]
Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 1995; 125(1): 91-7. [http://dx.doi.org/10.1016/0378-5173(95)00122-Y].
[273]
Müller RH, Benita S, Böhm BH. Emulsions and nanosuspensions for the formulation of poorly soluble drugs. CRC Press 1998.
[274]
Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897; 19(12): 930-4. [http://dx.doi.org/10.1021/ja02086a003].
[275]
Jani P, Florence A, McCarthy D. Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharm 1992; 84(3): 245-52. [http://dx.doi.org/10.1016/0378-5173(92)90162-U].
[276]
Hillery AM, Florence AT. The effect of adsorbed poloxamer 188 and 407 surfactants on the intestinal uptake of 60-nm polystyrene particles after oral administration in the rat. Int J Pharm 1996; 132(1-2): 123-30. [http://dx.doi.org/10.1016/0378-5173(95)04353-5].
[277]
Wu Y, Loper A, Landis E, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm 2004; 285(1-2): 135-46. [http://dx.doi.org/10.1016/j.ijpharm.2004.08.001]. [PMID: 15488686].
[278]
Langguth P, Hanafy A, Frenzel D, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm 2005; 31(3): 319-29. [http://dx.doi.org/10.1081/DDC-52182]. [PMID: 15830727].
[279]
De Zordi N, Moneghini M, Kikic I, et al. Applications of supercritical fluids to enhance the dissolution behaviors of Furosemide by generation of microparticles and solid dispersions. Eur J Pharm Biopharm 2012; 81(1): 131-41. [http://dx.doi.org/10.1016/j.ejpb.2012.01.002]. [PMID: 22266263].
[280]
Imperiale JC, Bevilacqua G, Rosa Pde T, Sosnik A. Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method. Drug Dev Ind Pharm 2014; 40(12): 1607-15. [http://dx.doi.org/10.3109/03639045.2013.838581]. [PMID: 24050705].
[281]
Beck C, Dalvi SV, Dave RN. Controlled liquid antisolvent precipitation using a rapid mixing device. Chem Eng Sci 2010; 65(21): 5669-75. [http://dx.doi.org/10.1016/j.ces.2010.04.001].
[282]
Su J-C, Liang SY, Liu WL, Jan TC. Ceramic micro/nanoparticle size evolution in wet grinding in stirred ball mill. J Manuf Sci Eng 2004; 126(4): 779-86. [http://dx.doi.org/10.1115/1.1811117].
[283]
Peukert W, Schwarzer H-C, Stenger F. Control of aggregation in production and handling of nanoparticles. Chemical Engineering and Processing: Process Intensification 2005; 44(2): 245-52. [http://dx.doi.org/10.1016/j.cep.2004.02.018].
[284]
Muller R, Bohm B, Grau J. Nanosuspensions: a formulation approach for poorly soluble and poorly bioavailable drugs 2000.
[285]
Liversidge GG, Cundy KC, Bishop JF, Czekai DA. Surface modified drug nanoparticles. US5145684A, 1992.
[286]
Lee J. Drug nano- and microparticles processed into solid dosage forms: physical properties. J Pharm Sci 2003; 92(10): 2057-68. [http://dx.doi.org/10.1002/jps.10471]. [PMID: 14502544].
[287]
Van Eerdenbrugh B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, Van den Mooter G. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci 2008; 35(1-2): 127-35. [http://dx.doi.org/10.1016/j.ejps.2008.06.009]. [PMID: 18644441].
[288]
Bhakay A, Merwade M, Bilgili E, Dave RN. Novel aspects of wet milling for the production of microsuspensions and nanosuspensions of poorly water-soluble drugs. Drug Dev Ind Pharm 2011; 37(8): 963-76. [http://dx.doi.org/10.3109/03639045.2010.551775]. [PMID: 21323486].
[289]
Salazar J, Ghanem A, Müller RH, Möschwitzer JP. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 2012; 81(1): 82-90. [http://dx.doi.org/10.1016/j.ejpb.2011.12.015]. [PMID: 22233547].
[290]
Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007; 59(7): 631-44. [http://dx.doi.org/10.1016/j.addr.2007.05.003]. [PMID: 17601629].
[291]
Li M, Azad M, Davé R, Bilgili E. Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics 2016; 8(2): 17. [http://dx.doi.org/10.3390/pharmaceutics8020017]. [PMID: 27213434].
[292]
Bruno JA, Doty BD, Gustow E, Illig KJ, Rajagopalan N, Sarpotdar P. P. Method of grinding pharmaceutical substances. US5518187A, 1996.
[293]
Sommer M, Stenger F, Peukert W, Wagner N. Agglomeration and breakage of nanoparticles in stirred media mills-a comparison of different methods and models. Chem Eng Sci 2006; 61(1): 135-48. [http://dx.doi.org/10.1016/j.ces.2004.12.057].
[294]
Knieke C, Sommer M, Peukert W. Identifying the apparent and true grinding limit. Powder Technol 2009; 195(1): 25-30. [http://dx.doi.org/10.1016/j.powtec.2009.05.007].
[295]
Bhakay A, Rahman M, Dave RN, Bilgili E. Bioavailability Enhancement of Poorly Water-Soluble Drugs via Nanocomposites: Formulation−Processing Aspects and Challenges. Pharmaceutics 2018; 10(3): 86. [http://dx.doi.org/10.3390/pharmaceutics10030086]. [PMID: 29986543].
[296]
Kim C-j. Advanced pharmaceutics: physicochemical principles. CRC Press 2004. [http://dx.doi.org/10.1201/9780203492918]
[297]
Zhang J, Huang Y, Liu D, Gao Y, Qian S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci 2013; 48(4-5): 740-7. [http://dx.doi.org/10.1016/j.ejps.2012.12.026]. [PMID: 23305994].
[298]
Chen L, Wang Y, Zhang J, et al. Bexarotene nanocrystal-Oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur J Pharm Biopharm 2014; 87(1): 160-9. [http://dx.doi.org/10.1016/j.ejpb.2013.12.005]. [PMID: 24333772].
[299]
Liu D, Pan H, He F, et al. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation. Int J Nanomedicine 2015; 10: 6425-34. [http://dx.doi.org/10.2147/IJN.S87143]. [PMID: 26508852].
[300]
Ahuja BK, Jena SK, Paidi SK, Bagri S, Suresh S. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. Int J Pharm 2015; 478(2): 540-52. [http://dx.doi.org/10.1016/j.ijpharm.2014.12.003]. [PMID: 25490182].
[301]
Quan P, Shi K, Piao H, et al. A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability. Int J Pharm 2012; 430(1-2): 366-71. [http://dx.doi.org/10.1016/j.ijpharm.2012.04.025]. [PMID: 22531846].
[302]
Onoue S, Yamamoto K, Kawabata Y, Yamada S. In vitro/in vivo characterization of nanocrystalline formulation of tranilast with improved dissolution and hepatoprotective properties. Eur J Pharm Biopharm 2013; 85(3 Pt B): 952-7. [http://dx.doi.org/10.1016/j.ejpb.2013.09.003]. [PMID: 24055688].
[303]
Vergote GJ, Vervaet C, Van Driessche I, et al. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen. Int J Pharm 2002; 240(1-2): 79-84. [http://dx.doi.org/10.1016/S0378-5173(02)00114-X]. [PMID: 12062503].
[304]
Hanafy A, Spahn-Langguth H, Vergnault G, et al. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 2007; 59(6): 419-26. [http://dx.doi.org/10.1016/j.addr.2007.04.005]. [PMID: 17566595].
[305]
Müller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm 2006; 317(1): 82-9. [http://dx.doi.org/10.1016/j.ijpharm.2006.02.045]. [PMID: 16580159].
[306]
Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm 2011; 413(1-2): 237-44. [http://dx.doi.org/10.1016/j.ijpharm.2011.04.034]. [PMID: 21540090].
[307]
Li Y, Sun S, Chang Q, et al. A strategy for the improvement of the bioavailability and antiosteoporosis activity of BCS IV flavonoid glycosides through the formulation of their lipophilic aglycone into nanocrystals. Mol Pharm 2013; 10(7): 2534-42. [http://dx.doi.org/10.1021/mp300688t]. [PMID: 23659498].
[308]
Miao X, Sun C, Jiang T, Zheng L, Wang T, Wang S. Investigation of nanosized crystalline form to improve the oral bioavailability of poorly water soluble cilostazol. J Pharm Pharm Sci 2011; 14(2): 196-214. [http://dx.doi.org/10.18433/J3PW2W]. [PMID: 21733409].
[309]
Gao L, Zhang D, Chen M, et al. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. Int J Pharm 2008; 355(1-2): 321-7. [http://dx.doi.org/10.1016/j.ijpharm.2007.12.016]. [PMID: 18242896].
[310]
Ganta S, Paxton JW, Baguley BC, Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm 2009; 367(1-2): 179-86. [http://dx.doi.org/10.1016/j.ijpharm.2008.09.022]. [PMID: 18848873].
[311]
Saindane NS, Pagar KP, Vavia PR. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. AAPS PharmSciTech 2013; 14(1): 189-99. [http://dx.doi.org/10.1208/s12249-012-9896-y]. [PMID: 23255198].
[312]
Clement M, Pugh W, Parikh I. Tissue distribution and plasma clearance of a novel microcrystalline-coated flurbiprofen formulation. Pharmacologist 1992; 34: 204.
[313]
Schöler N, Krause K, Kayser O, et al. Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 2001; 45(6): 1771-9. [http://dx.doi.org/10.1128/AAC.45.6.1771-1779.2001]. [PMID: 11353624].
[314]
Ali HS, York P, Ali AM, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011; 149(2): 175-81. [http://dx.doi.org/10.1016/j.jconrel.2010.10.007]. [PMID: 20946923].
[315]
Wang L, Liu Z, Liu D, Liu C, Juan Z, Zhang N. Docetaxel-loaded-lipid-based-nanosuspensions (DTX-LNS): preparation, pharmacokinetics, tissue distribution and antitumor activity. Int J Pharm 2011; 413(1-2): 194-201. [http://dx.doi.org/10.1016/j.ijpharm.2011.04.023]. [PMID: 21540085].
[316]
Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm 2011; 415(1-2): 293-300. [http://dx.doi.org/10.1016/j.ijpharm.2011.05.075]. [PMID: 21679755].
[317]
Pokharkar VB, Malhi T, Mandpe L. Bicalutamide nanocrystals with improved oral bioavailability: in vitro and in vivo evaluation. Pharm Dev Technol 2013; 18(3): 660-6. [http://dx.doi.org/10.3109/10837450.2012.663391]. [PMID: 22394215].
[318]
Hao L, Wang X, Zhang D, et al. Studies on the preparation, characterization and pharmacokinetics of Amoitone B nanocrystals. Int J Pharm 2012; 433(1-2): 157-64. [http://dx.doi.org/10.1016/j.ijpharm.2012.05.002]. [PMID: 22579996].
[319]
Wang Y, Ma Y, Zheng Y, et al. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. Int J Pharm 2013; 441(1-2): 728-35. [http://dx.doi.org/10.1016/j.ijpharm.2012.10.021]. [PMID: 23089583].
[320]
Talekar M, Kendall J, Denny W, Jamieson S, Garg S. Development and evaluation of PIK75 nanosuspension, a phosphatidylinositol-3-kinase inhibitor. Eur J Pharm Sci 2012; 47(5): 824-33. [http://dx.doi.org/10.1016/j.ejps.2012.09.015]. [PMID: 23069617].
[321]
Huang Y, Luo X, You X, Xia Y, Song X, Yu L. The preparation and evaluation of water-soluble SKLB610 nanosuspensions with improved bioavailability. AAPS PharmSciTech 2013; 14(3): 1236-43. [http://dx.doi.org/10.1208/s12249-013-0005-7]. [PMID: 23934433].
[322]
Shegokar R, Singh KK. Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. Int J Pharm 2011; 421(2): 341-52. [http://dx.doi.org/10.1016/j.ijpharm.2011.09.041]. [PMID: 21986114].
[323]
Baert L, van ’t Klooster G, Dries W, et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. Eur J Pharm Biopharm 2009; 72(3): 502-8. [http://dx.doi.org/10.1016/j.ejpb.2009.03.006]. [PMID: 19328850].
[324]
Patel GV, Patel VB, Pathak A, Rajput SJ. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm 2014; 40(1): 80-91. [http://dx.doi.org/10.3109/03639045.2012.746362]. [PMID: 23323843].
[325]
Guo JJ, Yue P-F, Lv JL, et al. Development and in vivo/in vitro evaluation of novel herpetrione nanosuspension. Int J Pharm 2013; 441(1-2): 227-33. [http://dx.doi.org/10.1016/j.ijpharm.2012.11.039]. [PMID: 23220096].
[326]
Shubar HM, Lachenmaier S, Heimesaat MM, et al. SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood-brain barriers. J Drug Target 2011; 19(2): 114-24. [http://dx.doi.org/10.3109/10611861003733995]. [PMID: 20367080].
[327]
Bajaj A, Rao MR, Pardeshi A, Sali D. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech 2012; 13(4): 1331-40. [http://dx.doi.org/10.1208/s12249-012-9860-x]. [PMID: 23054986].
[328]
Detroja C, Chavhan S, Sawant K. Enhanced antihypertensive activity of candesartan cilexetil nanosuspension: formulation, characterization and pharmacodynamic study. Sci Pharm 2011; 79(3): 635-51. [http://dx.doi.org/10.3797/scipharm.1103-17]. [PMID: 21886909].
[329]
Thakkar HP, Patel BV, Thakkar SP. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J Pharm Bioallied Sci 2011; 3(3): 426-34. [http://dx.doi.org/10.4103/0975-7406.84459]. [PMID: 21966165].
[330]
Salazar J, Müller RH, Möschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 2013; 49(4): 565-77. [http://dx.doi.org/10.1016/j.ejps.2013.04.003]. [PMID: 23587645].
[331]
Lemke A, Kiderlen AF, Petri B, Kayser O. Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas. Nanomedicine (Lond) 2010; 6(4): 597-603. [http://dx.doi.org/10.1016/j.nano.2009.12.004]. [PMID: 20060497].
[332]
Freag MS, Elnaggar YS, Abdallah OY. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Int J Pharm 2013; 454(1): 462-71. [http://dx.doi.org/10.1016/j.ijpharm.2013.06.039]. [PMID: 23830765].
[333]
Randhawa GK, Kullar JS. Rajkumar. Bioenhancers from mother nature and their applicability in modern medicine. Int J Appl Basic Med Res 2011; 1(1): 5-10. [http://dx.doi.org/10.4103/2229-516X.81972]. [PMID: 23776764].
[334]
Ajazuddin Alexander A. Qureshi A, et al Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia 2014; 97: 1-14. [http://dx.doi.org/10.1016/j.fitote.2014.05.005]. [PMID: 24862064].
[335]
Dudhatra GB, Mody SK, Awale MM, et al. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci World J 2012; 2012: 637953. [http://dx.doi.org/10.1100/2012/637953].
[336]
Han H-K. The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin Drug Metab Toxicol 2011; 7(6): 721-9. [http://dx.doi.org/10.1517/17425255.2011.570332]. [PMID: 21434835].
[337]
Khajuria A, Thusu N, Zutshi U. Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine 2002; 9(3): 224-31. [http://dx.doi.org/10.1078/0944-7113-00114]. [PMID: 12046863].
[338]
Atal CK, Zutshi U, Rao PG. Scientific evidence on the role of Ayurvedic herbals on bioavailability of drugs. J Ethnopharmacol 1981; 4(2): 229-32. [http://dx.doi.org/10.1016/0378-8741(81)90037-4]. [PMID: 7311598].
[339]
Choudhary N, Khajuria V, Gillani ZH, Tandon VR, Arora E. Effect of Carum carvi, a herbal bioenhancer on pharmacokinetics of antitubercular drugs: A study in healthy human volunteers. Perspect Clin Res 2014; 5(2): 80-4. [http://dx.doi.org/10.4103/2229-3485.128027]. [PMID: 24741485].
[340]
Li X, Choi J-S. Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats. Int J Pharm 2007; 337(1-2): 188-93. [http://dx.doi.org/10.1016/j.ijpharm.2007.01.002]. [PMID: 17267149].
[341]
Lim SC, Choi JS. Effects of naringin on the pharmacokinetics of intravenous paclitaxel in rats. Biopharm Drug Dispos 2006; 27(9): 443-7. [http://dx.doi.org/10.1002/bdd.523]. [PMID: 17009338].
[342]
Kurzer MS. Phytoestrogen supplement use by women. J Nutr 2003; 133(6): 1983S-6S. [http://dx.doi.org/10.1093/jn/133.6.1983S]. [PMID: 12771350].
[343]
Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997; 94(5): 2031-5. [http://dx.doi.org/10.1073/pnas.94.5.2031]. [PMID: 9050899].
[344]
Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22(47): 7340-58. [http://dx.doi.org/10.1038/sj.onc.1206938]. [PMID: 14576842].
[345]
Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 2005; 116(5): 824-9. [http://dx.doi.org/10.1002/ijc.21013]. [PMID: 15849751].
[346]
Takeda S, Isono T, Wakui Y, et al. Absorption and excretion of paeoniflorin in rats. J Pharm Pharmacol 1995; 47(12A): 1036-40. [http://dx.doi.org/10.1111/j.2042-7158.1995.tb03293.x]. [PMID: 8932691].
[347]
Liu ZQ, Zhou H, Liu L, et al. Influence of co-administrated sinomenine on pharmacokinetic fate of paeoniflorin in unrestrained conscious rats. J Ethnopharmacol 2005; 99(1): 61-7. [http://dx.doi.org/10.1016/j.jep.2005.01.052]. [PMID: 15848021].
[348]
Chan K, Liu ZQ, Jiang ZH, et al. The effects of sinomenine on intestinal absorption of paeoniflorin by the everted rat gut sac model. J Ethnopharmacol 2006; 103(3): 425-32. [http://dx.doi.org/10.1016/j.jep.2005.08.020]. [PMID: 16169700].
[349]
Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25. [http://dx.doi.org/10.1093/ajcn/74.4.418]. [PMID: 11566638].
[350]
Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 1989; 49(18): 5002-6. [PMID: 2569930].
[351]
Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. P-glycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett 1993; 324(1): 99-102. [http://dx.doi.org/10.1016/0014-5793(93)81540-G]. [PMID: 8099333].
[352]
Scambia G, Ranelletti FO, Panici PB, et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother Pharmacol 1994; 34(6): 459-64. [http://dx.doi.org/10.1007/BF00685655]. [PMID: 7923555].
[353]
Shapiro AB, Ling V. Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol 1997; 53(4): 587-96. [http://dx.doi.org/10.1016/S0006-2952(96)00826-X]. [PMID: 9105411].
[354]
Choi J-S, Li X. Enhanced diltiazem bioavailability after oral administration of diltiazem with quercetin to rabbits. Int J Pharm 2005; 297(1-2): 1-8. [http://dx.doi.org/10.1016/j.ijpharm.2004.12.004]. [PMID: 15907592].
[355]
Wang Y-H, Chao P-DL, Hsiu S-L, Wen K-C, Hou Y-C. Lethal quercetin-digoxin interaction in pigs. Life Sci 2004; 74(10): 1191-7. [http://dx.doi.org/10.1016/j.lfs.2003.06.044]. [PMID: 14697403].
[356]
Imai T, Sakai M, Ohtake H, Azuma H, Otagiri M. Absorption-enhancing effect of glycyrrhizin induced in the presence of capric acid. Int J Pharm 2005; 294(1-2): 11-21. [http://dx.doi.org/10.1016/j.ijpharm.2004.12.029]. [PMID: 15814227].
[357]
Sakai M, Imai T, Ohtake H, Azuma H, Otagiri M. Simultaneous use of sodium deoxycholate and dipotassium glycyrrhizinate enhances the cellular transport of poorly absorbed compounds across Caco-2 cell monolayers. J Pharm Pharmacol 1999; 51(1): 27-33. [http://dx.doi.org/10.1211/0022357991772051]. [PMID: 10197414].
[358]
Zhang H, Wong CW, Coville PF, Wanwimolruk S. Effect of the grapefruit flavonoid naringin on pharmacokinetics of quinine in rats. Drug Metabol Drug Interact 2000; 17(1-4): 351-63. [http://dx.doi.org/10.1515/DMDI.2000.17.1-4.351]. [PMID: 11201303].
[359]
Kasibhatta R, Naidu MU. Influence of piperine on the pharmacokinetics of nevirapine under fasting conditions: a randomised, crossover, placebo-controlled study. Drugs R D 2007; 8(6): 383-91. [http://dx.doi.org/10.2165/00126839-200708060-00006]. [PMID: 17963429].
[360]
Parveen B, Pillai KK, Tamboli ET, Ahmad S. Effect of piperine on pharmacokinetics of sodium valproate in plasma samples of rats using gas chromatography-mass spectrometry method. J Pharm Bioallied Sci 2015; 7(4): 317-20. [http://dx.doi.org/10.4103/0975-7406.168036]. [PMID: 26681892].
[361]
Atal S, Atal S, Vyas S, Phadnis P. Bio-enhancing effect of piperine with metformin on lowering blood glucose level in alloxan induced diabetic mice. Pharmacognosy Res 2016; 8(1): 56-60. [http://dx.doi.org/10.4103/0974-8490.171096]. [PMID: 26941537].
[362]
Sayyah M, Peirovi A, Kamalinejad M. Anti-nociceptive effect of the fruit essential oil of Cuminum cyminum L. in rat. Iran Biomed J 2002; 6(4): 141-5.
[363]
Qazi GN, Bedi KL, Johri RK, et al. 2006.
[364]
Khanuja S, Arya J, Srivastava S, et al. 2007.
[365]
Shukla M, Malik M, Jaiswal S, et al. A mechanistic investigation of the bioavailability enhancing potential of lysergol, a novel bioenhancer, using curcumin. RSC Advances 2016; 6(64): 58933-42. [http://dx.doi.org/10.1039/C6RA09307H].
[366]
Vinson JA, Al Kharrat H, Andreoli L. Effect of Aloe vera preparations on the human bioavailability of vitamins C and E. Phytomedicine 2005; 12(10): 760-5. [http://dx.doi.org/10.1016/j.phymed.2003.12.013]. [PMID: 16323295].
[367]
Qazi G, Bedi K, Johri R, et al. 2003.
[368]
Ogita A, Fujita K, Taniguchi M, Tanaka T. Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system. Planta Med 2006; 72(13): 1247-50. [http://dx.doi.org/10.1055/s-2006-947203]. [PMID: 16902870].
[369]
Khanuja SPS, Arya JS, Tiruppadiripuliyur RSK, et al. 2005.
[370]
Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 2012; 17(17-18): 1044-52. [http://dx.doi.org/10.1016/j.drudis.2012.05.010]. [PMID: 22652342].
[371]
Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3. J Pharmacol Exp Ther 2002; 302(2): 645-50.
[372]
Lai G-H, Zhang Z, Sirica AE. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -3. Mol Cancer Ther 2003; 2(3): 265-71. [PMID: 12657721].
[373]
Veiga F, Fernandes C, Teixeira F. Oral bioavailability and hypoglycaemic activity of tolbutamide/cyclodextrin inclusion complexes. Int J Pharm 2000; 202(1-2): 165-71. [http://dx.doi.org/10.1016/S0378-5173(00)00445-2]. [PMID: 10915940].
[374]
Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204(3): 216-37. [http://dx.doi.org/10.1016/j.taap.2004.10.012]. [PMID: 15845415].
[375]
Brand W, Schutte ME, Williamson G, et al. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients. Biomed Pharmacother 2006; 60(9): 508-19. [http://dx.doi.org/10.1016/j.biopha.2006.07.081]. [PMID: 16978825].
[376]
Gibaldi M, Feldman S. Mechanisms of surfactant effects on drug absorption. J Pharm Sci 1970; 59(5): 579-89. [http://dx.doi.org/10.1002/jps.2600590502]. [PMID: 4911055].
[377]
Mi F-L, Wu Y-Y, Lin Y-H, et al. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 2008; 19(6): 1248-55. [http://dx.doi.org/10.1021/bc800076n]. [PMID: 18517235].
[378]
Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 2002; 42(6): 620-43. [http://dx.doi.org/10.1177/00970002042006005]. [PMID: 12043951].
[379]
Porter CJ, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev 2001; 50(1-2): 61-80. [http://dx.doi.org/10.1016/S0169-409X(01)00151-X]. [PMID: 11489334].
[380]
Wang P, Heber D, Henning SM. Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct 2012; 3(6): 635-42. [http://dx.doi.org/10.1039/c2fo10254d]. [PMID: 22438067].
[381]
Jin MJ, Han HK. Effect of piperine, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food-drug interaction. J Food Sci 2010; 75(3): H93-6. [http://dx.doi.org/10.1111/j.1750-3841.2010.01542.x]. [PMID: 20492299].
[382]
Nair PK, Melnick SJ, Wnuk SF, Rapp M, Escalon E, Ramachandran C. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium. J Ethnopharmacol 2009; 122(3): 450-6. [http://dx.doi.org/10.1016/j.jep.2009.02.001]. [PMID: 19429311].
[383]
Pattanaik S, Hota D, Prabhakar S, Kharbanda P, Pandhi P. Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytother Res 2009; 23(9): 1281-6. [http://dx.doi.org/10.1002/ptr.2676]. [PMID: 19283724].
[384]
Babu PR, Babu KN, Peter PL, Rajesh K, Babu PJ. Influence of quercetin on the pharmacokinetics of ranolazine in rats and in vitro models. Drug Dev Ind Pharm 2013; 39(6): 873-9. [http://dx.doi.org/10.3109/03639045.2012.707209]. [PMID: 22817837].
[385]
Choi J-S, Kang KW. Enhanced tamoxifen bioavailability after oral administration of tamoxifen in rats pretreated with naringin. Arch Pharm Res 2008; 31(12): 1631-6. [http://dx.doi.org/10.1007/s12272-001-2161-7]. [PMID: 19099234].
[386]
Pattanaik S, Hota D, Prabhakar S, Kharbanda P, Pandhi P. Effect of piperine on the steady-state pharmacokinetics of phenytoin in patients with epilepsy. Phytother Res 2006; 20(8): 683-6. [http://dx.doi.org/10.1002/ptr.1937]. [PMID: 16767797].
[387]
Fuhr U, Maier-Brüggemann A, Blume H, et al. Grapefruit juice increases oral nimodipine bioavailability. Int J Clin Pharmacol Ther 1998; 36(3): 126-32. [PMID: 9562227].
[388]
Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J Nutr 2004; 134(8): 1948-52. [http://dx.doi.org/10.1093/jn/134.8.1948]. [PMID: 15284381].
[389]
Challa VR, Babu PR, Challa SR, Johnson B, Maheswari C. Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models. Drug Dev Ind Pharm 2013; 39(6): 865-72. [http://dx.doi.org/10.3109/03639045.2012.693502]. [PMID: 22670860].
[390]
Lee JH, Shin Y-J, Oh J-H, Lee Y-J. Pharmacokinetic interactions of clopidogrel with quercetin, telmisartan, and cyclosporine A in rats and dogs. Arch Pharm Res 2012; 35(10): 1831-7. [http://dx.doi.org/10.1007/s12272-012-1017-7]. [PMID: 23139136].
[391]
Sama V, Nadipelli M, Yenumula P, Bommineni MR, Mullangi R. Effect of piperine on antihyperglycemic activity and pharmacokinetic profile of nateglinide. Arzneimittelforschung 2012; 62(8): 384-8. [http://dx.doi.org/10.1055/s-0032-1314849]. [PMID: 22753154].
[392]
Venkatesh S, Durga KD, Padmavathi Y, Reddy BM, Mullangi R. Influence of piperine on ibuprofen induced antinociception and its pharmacokinetics. Arzneimittelforschung 2011; 61(9): 506-9. [http://dx.doi.org/10.1055/s-0031-1296235]. [PMID: 22029226].
[393]
Johnson JJ, Nihal M, Siddiqui IA, et al. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res 2011; 55(8): 1169-76. [http://dx.doi.org/10.1002/mnfr.201100117]. [PMID: 21714124].
[394]
Choi J-S, Piao Y-J, Kang KW. Effects of quercetin on the bioavailability of doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res 2011; 34(4): 607-13. [http://dx.doi.org/10.1007/s12272-011-0411-x]. [PMID: 21544726].
[395]
Singh M, Varshneya C, Telang RS, Srivastava AK. Alteration of pharmacokinetics of oxytetracycline following oral administration of Piper longum in hens. J Vet Sci 2005; 6(3): 197-200. [http://dx.doi.org/10.4142/jvs.2005.6.3.197]. [PMID: 16131821].
[396]
Balakrishnan V, Varma S, Chatterji D. Piperine augments transcription inhibitory activity of rifampicin by severalfold in Mycobacterium smegmatis. Curr Sci 2001; 80(10): 1302-5.
[397]
Robey RW, Shukla S, Finley EM, et al. Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 2008; 75(6): 1302-12. [http://dx.doi.org/10.1016/j.bcp.2007.12.001]. [PMID: 18234154].
[398]
Weber A, Jäger R, Börner A, et al. Can grapefruit juice influence ethinylestradiol bioavailability? Contraception 1996; 53(1): 41-7. [http://dx.doi.org/10.1016/0010-7824(95)00252-9]. [PMID: 8631189].
[399]
Bailey DG, Arnold JMO, Munoz C, Spence JD. Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53(6): 637-42. [http://dx.doi.org/10.1038/clpt.1993.84]. [PMID: 8513655].
[400]
Gupta SK, Bansal P, Bhardwaj RK, Velpandian T. Comparative anti-nociceptive, anti-inflammatory and toxicity profile of nimesulide vs. nimesulide and piperine combination. Pharmacol Res 2000; 41(6): 657-62. [http://dx.doi.org/10.1006/phrs.1999.0640]. [PMID: 10816335].
[401]
Lassoued MA, Sfar S, Bouraoui A, Khemiss F. Absorption enhancement studies of clopidogrel hydrogen sulphate in rat everted gut sacs. J Pharm Pharmacol 2012; 64(4): 541-52. [http://dx.doi.org/10.1111/j.2042-7158.2011.01434.x]. [PMID: 22420660].
[402]
Li X, Choi J-S. Effects of quercetin on the pharmacokinetics of Etoposide after oral or intravenous administration of etoposide in rats. Anticancer Res 2009; 29(4): 1411-5. [PMID: 19414395].
[403]
Sharma V, Nehru B, Munshi A, Jyothy A. Antioxidant potential of curcumin against oxidative insult induced by pentylenetetrazol in epileptic rats. Methods Find Exp Clin Pharmacol 2010; 32(4): 227-32. [http://dx.doi.org/10.1358/mf.2010.32.4.1452090]. [PMID: 20508869].
[404]
Karan R, Bhargava V, Garg S. Effect of trikatu (piperine) on the pharmacokinetic profile of isoniazid in rabbits. Indian J Pharmacol 1998; 30(4): 254.
[405]
Yeum C-H, Choi J-S. Effect of naringin pretreatment on bioavailability of verapamil in rabbits. Arch Pharm Res 2006; 29(1): 102-7. [http://dx.doi.org/10.1007/BF02977476]. [PMID: 16491851].
[406]
Dama MS, Varshneya C, Dardi MS, Katoch VC. Effect of trikatu pretreatment on the pharmacokinetics of pefloxacin administered orally in mountain Gaddi goats. J Vet Sci 2008; 9(1): 25-9. [http://dx.doi.org/10.4142/jvs.2008.9.1.25]. [PMID: 18296885].
[407]
Janakiraman K, Manavalan R. Studies on effect of piperine on oral bioavailability of ampicillin and norfloxacin. Afr J Tradit Complement Altern Med 2008; 5(3): 257-62. [http://dx.doi.org/10.4314/ajtcam.v5i3.31281]. [PMID: 20161946].
[408]
Bansal T, Awasthi A, Jaggi M, Khar RK, Talegaonkar S. Pre-clinical evidence for altered absorption and biliary excretion of irinotecan (CPT-11) in combination with quercetin: possible contribution of P-glycoprotein. Life Sci 2008; 83(7-8): 250-9. [http://dx.doi.org/10.1016/j.lfs.2008.06.007]. [PMID: 18619980].
[409]
Amar S, Pawar VK, Vikash J, Parabia MH, Rajendra A, Gaurav S. In vivo assessment of enhanced bioavailability of metronidazole with piperine in rabbits. Res J Pharm Biol Chem Sci 2010; 1(4): 273-8.
[410]
Mujumdar AM, Dhuley JN, Deshmukh VK, Raman PH, Thorat SL, Naik SR. Effect of piperine on pentobarbitone induced hypnosis in rats. Indian J Exp Biol 1990; 28(5): 486-7. [PMID: 2401524].
[411]
Einbond LS, Shimizu M, Ma H, et al. Actein inhibits the Na+-K+-ATPase and enhances the growth inhibitory effect of digitoxin on human breast cancer cells. Biochem Biophys Res Commun 2008; 375(4): 608-13. [http://dx.doi.org/10.1016/j.bbrc.2008.08.054]. [PMID: 18755149].
[412]
Liang X-L, Liao Z-G, Zhu J-Y, et al. The absorption characterization effects and mechanism of Radix Angelicae dahuricae extracts on baicalin in Radix Scutellariae using in vivo and in vitro absorption models. J Ethnopharmacol 2012; 139(1): 52-7. [http://dx.doi.org/10.1016/j.jep.2011.10.001]. [PMID: 22023882].
[413]
Xu Y, Wang Y, Yan L, et al. Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans: endogenous ROS augmentation. J Proteome Res 2009; 8(11): 5296-304. [http://dx.doi.org/10.1021/pr9005074]. [PMID: 19754040].
[414]
Sun J, Liu B-r, Wei J, et al. The extract of Paris polyphylla exerts apoptotic induction and synergic antiproliferative effect with anticancer drugs in SMMC-7721 human liver cancer cells. Biomedicine & Preventive Nutrition 2011; 1(3): 186-94. [http://dx.doi.org/10.1016/j.bionut.2011.06.019].
[415]
Chuanasa T, Phromjai J, Lipipun V, et al. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antiviral Res 2008; 80(1): 62-70. [http://dx.doi.org/10.1016/j.antiviral.2008.05.002]. [PMID: 18565600].
[416]
Liu J, He C, Zhou K, Wang J, Kang JX. Coptis extracts enhance the anticancer effect of estrogen receptor antagonists on human breast cancer cells. Biochem Biophys Res Commun 2009; 378(2): 174-8. [http://dx.doi.org/10.1016/j.bbrc.2008.10.169]. [PMID: 19000652].
[417]
Chen ZP, Sun J, Chen HX, et al. Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats. Fitoterapia 2010; 81(8): 1045-52. [http://dx.doi.org/10.1016/j.fitote.2010.06.028]. [PMID: 20603197].
[418]
Kuamwat RS, Mruthunjaya K, Gupta MK. Hepatoprotective effect of Gallic acid and Gallic acid Phytosome against Carbon Tetrachloride induced damage in albino rats. Res J Pharm Technol 2012; 5(5): 677.
[419]
Singh D, Rawat MS, Semalty A, Semalty M. Rutin-phospholipid complex: an innovative technique in novel drug delivery system- NDDS. Curr Drug Deliv 2012; 9(3): 305-14. [http://dx.doi.org/10.2174/156720112800389070]. [PMID: 22283645].
[420]
Habbu P, Madagundi S, Kulkarni R, Jadav S, Vanakudri R, Kulkarni V. Preparation and evaluation of Bacopa–phospholipid complex for antiamnesic activity in rodents. Drug Invent Today 2013; 5(1): 13-21. [http://dx.doi.org/10.1016/j.dit.2013.02.004].
[421]
Zhang J, Tang Q, Xu X, Li N. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm 2013; 448(1): 168-74. [http://dx.doi.org/10.1016/j.ijpharm.2013.03.021]. [PMID: 23524117].
[422]
Bhattacharya S. Phytosomes: emerging strategy in delivery of herbal drugs and nutraceuticals. Pharm Times 2009; 41(3): 9-12.
[423]
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 2007; 330(1-2): 155-63. [http://dx.doi.org/10.1016/j.ijpharm.2006.09.025]. [PMID: 17112692].
[424]
Maiti K, Mukherjee K, Gantait A, Nazeer Ahamed H, Saha BP, Kumar Mukherjee P. Enhanced therapeutic benefit of quercetinphospholipid complex in carbon tetrachloride-induced acute liver injury in rats: a comparative study. Ir J Pharmacol Therap 2005; 4(2): 84-0.
[425]
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J Pharm Pharmacol 2006; 58(9): 1227-33. [http://dx.doi.org/10.1211/jpp.58.9.0009]. [PMID: 16945181].
[426]
Elmowafy M, Viitala T, Ibrahim HM, et al. Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake. Eur J Pharm Sci 2013; 50(2): 161-71. [http://dx.doi.org/10.1016/j.ejps.2013.06.012]. [PMID: 23851081].
[427]
Einbond LS, Mighty J, Redenti S, Wu HA. Actein induces calcium release in human breast cancer cells. Fitoterapia 2013; 91: 28-38. [http://dx.doi.org/10.1016/j.fitote.2013.07.025]. [PMID: 23939423].
[428]
Zheng F-Y, Chen L-H, Li S-X, Qiu Y-Q. Effect of edible plants combination on mineral bioaccessibility and bioavailability, using in vitro digestion and liposome-affinity extraction. Food Res Int 2013; 53(1): 174-9. [http://dx.doi.org/10.1016/j.foodres.2013.04.004].
[429]
Alexander A. Ajazuddin, Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241: 110-24. [http://dx.doi.org/10.1016/j.jconrel.2016.09.017]. [PMID: 27663228].
[430]
You J, Cui FD, Han X, et al. Study of the preparation of sustained-release microspheres containing zedoary turmeric oil by the emulsion-solvent-diffusion method and evaluation of the self-emulsification and bioavailability of the oil. Colloids Surf B Biointerfaces 2006; 48(1): 35-41. [http://dx.doi.org/10.1016/j.colsurfb.2005.12.011]. [PMID: 16480856].
[431]
Chao P, Deshmukh M, Kutscher HL, et al. Pulmonary targeting microparticulate camptothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs 2010; 21(1): 65-76. [http://dx.doi.org/10.1097/CAD.0b013e328332a322]. [PMID: 19966540].
[432]
Nesterenko A, Alric I, Silvestre F, Durrieu V. Influence of soy protein’s structural modifications on their microencapsulation properties: α-Tocopherol microparticle preparation. Food Res Int 2012; 48(2): 387-96. [http://dx.doi.org/10.1016/j.foodres.2012.04.023].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy