[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2015, 65, 5-29.
[2]
Alteri, R.; Barnes, C. Burke. Breast Cancer Facts & Figures. Am. Canc. Society, 2013, 1, 1-37.
[3]
Pruthi, S.; Brandt, K.R.; Degnim, A.C.; Goetz, M.P.; Perez, E.A.; Reynolds, C.A.; Schomberg, P.J.; Dy, G.K.; Ingle, J.N. A multidisciplinary approach to the management of breast cancer, Part1: Prevention and diagnosis. Mayo Clin. Proc., 2007, 82, 999-1012.
[4]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z. Zhao, J. Breast Cancer: Epidemiology and Etiology. Cell Biochem. Biophys., 2015, 72, 333.
[5]
Fuqua, S.A.W.; Gu, G.; Rechoum, Y. Estrogen receptor (ER) α mutations in breast cancer: hidden in plain sight. Breast Cancer Res. Treat., 2014, 144, 11.
[6]
Jindal, D.P.; Chattopadhaya, R.; Guleria, S.; Gupta, R. Synthesis and antineoplastic activity of 2-alkylaminoethyl derivatives of various steroidal oximes. Eur. J. Med. Chem., 2003, 38, 1025-1034.
[7]
Hall, J.M.; Couse, J.F.; Korach, K.S. The multifaceted mechanisms of estradiol and estrogen receptor signalling. J. Biol. Chem., 2001, 276, 36869-36872.
[8]
Ribi, K.; Luo, W.; Bernhard, J.; Francis, P.A.; Burstein, H.J.; Ciruelos, E.; Fleming, G.F. Adjuvant Tamoxifen Plus Ovarian Function Suppression Versus Tamoxifen Alone in Premenopausal Women with Early Breast Cancer: Patient-Reported Outcomes in the Suppression of Ovarian Function Trial. J. Clin. Oncol., 2016, 34, 1601-1610.
[9]
Ignatov, A.; Ignatov, T.; Roessner, A. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res. Treat., 2010, 123, 87-96.
[10]
Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J. Tamoxifen for prevention of breast cancer: Report of the national surgical adjuvant breast and bowel project P-1 study. J. Natl. Cancer Inst., 1998, 90, 1371-1388.
[11]
Henderson, I.C.; Canellos, G.P. Cancer of the breast, the past decade. N. Engl. J. Med., 1980, 302, 78-90.
[12]
Prossnitz, E.; Barton, M. The G protein-coupled estrogen receptor GPER in health and disease. Nat. Rev. Endocrinol., 2011, 7, 715-726.
[13]
Pandey, D.P.; Lappano, R.; Albanito, L.; Madeo, A.; Maggiolini, M.; Picard, D. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J., 2009, 28, 523-532.
[14]
Thomas, P.; Pan, Y.; Filardo, E.J. Identity of an estrogen membrane receptor coupled to a G-protein in human breast cancer cells. Endocrinology, 2005, 146, 624-632.
[15]
Catalano, S.; Giordano, C.; Panza, S.; Chemi, F.; Bonofiglio, D.; Lanzino, M.; Rizza, P.; Romeo, F.; Fuqua, S.A.; Maggiolini, M.; Andò, S.; Barone, I. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Res. Treat., 2014, 146, 273-285.
[16]
Kim, M.; Ma, E. Synthesis of 2- and 7- Substituted C19 Steroids Having a 1,4,6Triene or 1,4-Diene Structure and Their Cytotoxic Effects on T47D and MDA-MB231 Breast Cancer Cells. Molecules, 2010, 15, 4408-4422.
[17]
Woods, K.E.; Randolph, J.K.; Gewirtz, D.A. Antagonism between tamoxifen and doxorubicin in the MCF-7 human breast tumor cell line. Biochem. Pharmacol., 1994, 47, 1449-1452.
[18]
Giessrigl, B.; Schmidt, W.M.; Kalipciyan, M. Fulvestrant induces resistance by modulating GPER and CDK6 expression: implication of methyltransferases, deacetylases and the hSWI/SNF chromatin remodelling complex. Br. J. Cancer, 2013, 109, 2751-2762.
[19]
Lappano, R.; Santolla, M.F.; Pupo, M.; Sinicropi, M.S.; Caruso, A.; Rosano, C. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells. Breast Cancer Res., 2012, 14, R12.
[20]
Zimmerman, M.A.; Budish, R.A.; Kashyap, S.; Lindsey, S.H. GPER-novel membrane oestrogen receptor. Clin. Sci. (Lond.), 2016, 130(12), 1005-1016.
[21]
Ribeiro, M.P.C.; Santos, A.E.; Custódio, J.B.A. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells. Chem. Biol. Interact., 2017, 277, 176-184.
[22]
Rosano, C.; Lappano, R.; Santolla, M.F.; Ponassi, M.; Donadini, A.; Maggiolini, M. Recent advances in the rationale design of GPER ligands. Curr. Med. Chem., 2012, 19, 6199-6206.
[23]
Rosano, C.; Ponassi, M.; Santolla, M.F.; Pisano, A.; Felli, L.; Vivacqua, A.; Maggiolini, M.; Lappano, R. Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands. AAPS J., 2016, 18, 41-46.
[24]
Dennis, M.K.; Field, A.S.; Burai, R.; Ramesh, C.; Petrie, W.K.; Bologa, C.G. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J. Steroid Biochem. Mol. Biol., 2011, 127, 358-366.
[25]
Burai, R.; Ramesh, C.; Shorty, M.; Curpan, R.; Bologa, C.; Sklar, L.A.; Oprea, T.; Prossnitz, E.R.; Arterburn, J.B. Highly efficient synthesis and characterization of the GPR30-selective agonist G-1 and relatedtetrahydroquinoline analogs. Org. Biomol. Chem., 2010, 8(9), 2252-2259.
[26]
Bologa, C.G.; Revankar, C.M.; Young, S.M. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol., 2006, 2, 207-212.
[27]
Megan, K.D.; Ritwik, B.; Chinnasamy, R. In vivo Effects of a GPR30 Antagonist. Nat. Chem. Biol., 2009, 5, 421-427.
[28]
Ramesh, C.; Nayak, T.K.; Burai, R.; Dennis, M.K.; Hathaway, H.J.; Sklar, L.A. Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30. J. Med. Chem., 2010, 53, 1004-1014.
[29]
Vidad, A.R.; Macaspac, S.; Ng, H.L. Locating the ligand binding sites for the G-protein coupled estrogen receptor (GPER) using combined information from docking and sequence conservation. bioRxiv, 2016, 061051.
[30]
Méndez-Luna, D.; Martínez-Archundia, M.; Maroun, R.C. Deciphering the GPER/GPR30-agonist and antagonist’s interactions using molecular modeling studies, molecular dynamics, and docking simulations. J. Biomol. Struct. Dyn., 2015, 14, 1-12.
[31]
Méndez-Luna, D.; Bello, M.; Correa-Basurto, J. Understanding the molecular basis of agonist/antagonist mechanism of GPER/GPR30 through structural and energetic analyses. J. Steroid Biochem. Mol. Biol., 2016, 158, 104-116.
[32]
Bruno, A.; Aiello, F.; Costantino, G.; Radi, M. Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1). Mol. Inform., 2016, 35, 333-339.
[33]
Martínez-Muñoz, A.; Prestegui-Martel, B.; Méndez-Luna, D.; Fragoso-Vázquez, M.J.; García-Sánchez, J.R.; Bello, M.; Bashir, M.; Martínez-Archundia, M.; Chávez-Blanco, A.; Dueñas-González, A.; Mendoza-Lujambio, I.; Trujillo-Ferrara, J.G.; Correa-Basurto, J. Selection of G1PABA as a GPER1 ligand compared
to phenol red via a ligand-based virtual screening coupled to molecular
dynamics simulations and its anti-proliferative effects on
breast cancer cells. Anti-Canc. Agents Med. Chem.,2018.
[34]
ACD/ChemSketch, version 14.01; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2012.
[35]
GaussView. Version 5, Dennington R, Keith T, Millam J; Semichem Inc.: Shawnee Mission, KS, 2009.
[36]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 16, 2785-2791.
[37]
Lomize, M.A.; Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. OPM: Orientations of Proteins in Membranes database. Bioinformatics, 2006, 22(5), 623-625.
[38]
Jo, S.; Kim, T.; Im, W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One, 2007, 2, e880.
[39]
Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26, 1668-1688.
[40]
Dickson, C.J.; Madej, B.D.; Skjevik, Å.A.; Betz, R.M.; Teigen, K.; Gould, I.R.; Walker, R.C. Lipid14: The amber lipid force field. J. Chem. Theory Comput., 2014, 10, 865-879.
[41]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11, 3696-3713.
[42]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25, 1157-1174.
[43]
Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[44]
Van-Gunsteren, W.F.; Berendsen, H.J.C. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys., 1977, 34, 1311-1327.
[45]
Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8, 3314-3321.
[46]
Gohlke, H.D.A. Case, Converging free energy estimates: MMPB(GB)SA studieson the protein-protein complex Ras-Raf. J. Comput. Chem., 2004, 25, 238-250.
[47]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[48]
Onufriev, D.; Bashford, D.A. Case, Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 2004, 55, 383-394.
[49]
Megan, K.D.; Angela, S.F.; Burai, R. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counter selectivity. J. Steroid Biochem. Mol. Biol., 2011, 127, 358-366.
[50]
Santolla, M.F.; De-Francesco, E.M.; Lappano, R.; Rosano, C.; Abonante, S.; Maggiolini, M. Niacin activates the G protein estrogen receptor (GPER)-mediated signaling. Cell. Signal., 2014, 26(7), 1466-1475.
[51]
Aiello, F.; Carullo, G.; Giordano, F.; Spina, E.; Nigro, A.; Garofalo, A.; Tassini, S.; Costantino, G.; Vincetti, P.; Bruno, A.; Radi, M. Identification of Breast Cancer Inhibitors Specific for G Protein-Coupled Estrogen Receptor (GPER)-Expressing Cells. ChemMedChem, 2017, 12, 1279-1285.
[52]
Sinicropi, M.F.; Lappano, R.; Caruso, A.; Santolla, M.F.; Pisano, A.; Rosano, C.; Capasso, A.; Panno, A.; Lancelot, J.C.; Rault, S.; Saturnino, C.; Maggiolini, M. (6-Bromo-1,4-dimethyl-9H-carbazol-3-yl-methylene)-hydrazine (Carbhydraz) Acts as a GPER Agonist in Breast Cancer Cells. Curr. Top. Med. Chem., 2015, 1035-1042.
[53]
Arnatt, C.K.; Zhang, Y. G protein‐Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses Toward Understanding of Its Activation Mechanism: A Comparative Homology Modeling Approach. Mol. Inform., 2013, 32, 647-658.
[54]
Sela, I.; Golan, G.; Strajbl, M.; Rivenzon-Segal, D.; Bar-Haim, S.; Bloch, I.; Inbal, B.; Shitrit, A.; Ben-Zeev, E.; Fichman, M.; Markus, Y.; Marantz, Y.; Senderowitz, H.; Kalid, O. G Protein Coupled Receptors - in silico Drug Discovery and Design. Curr. Top. Med. Chem., 2010, 10, 638-656.
[55]
Kufareva, I.; Rueda, M.; Katritch, V. Status of GPCR Modeling and Docking as Reflected by Community-wide GPCR Dock. Assess. Struc., 2010, 19, 1108-1126.
[56]
Michino, M.; Abola, E. GPCR Assessment Participants, Community-wide assessment of GPCR structure modeling and docking understanding. R.C. Stevens. Nat. Rev. Drug Discov., 2009, 8, 455-463.
[57]
Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res., 2011, 13(4), 215.
[58]
Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol., 2014, 5(3), 412-424.
[59]
Du, G.Q.; Zhou, L.; Chen, X.Y.; Wan, X.P.; He, Y.Y. The G protein-coupled receptor GPR30 mediates the proliferative and invasive effects induced by hydroxytamoxifen in endometrial cancer cells. Biochem. Biophys. Res. Commun., 2012, 420(2), 343-349.
[60]
Skrzypczak, M.; Schüler, S.; Lattrich, C.; Ignatov, A.; Ortmann, O.; Treeck, O. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines. Steroids, 2013, 78, 1087-1091.
[61]
Wang, C.; Lv, X.; He, C.; Hua, G.; Tsai, M.Y.; Davis, J.S. The G-protein-coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian cancer cells by blocking tubulin polymerization. Cell Death Dis., 2013, 4, e869.
[62]
Wang, C.; Lv, X.; Jiang, C.; Davis, J.S. The putative G-protein coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. Am. J. Transl. Res., 2012, 390-402.
[63]
Holm, A.; Grände, P.O.; Ludueña, R.F.; Olde, B.; Prasad, V.; Leeb-Lundberg, L.M. The G protein-coupled oestrogen receptor 1 agonist G-1 disrupts endothelial cell microtubule structure in a receptor-independent manner. Mol. Cell. Biochem., 2012, 366, 239-249.
[64]
Speth, Z.; Islam, T.; Banerjee, K.; Resat, H. EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells. J. Cell Commun. Signal., 2017, 11, 341-356.
[65]
Ariazi, E.A.; Brailoiu, E.; Yerrum, S.; Shupp, H.A.; Slifker, M.J.; Cunliffe, H.E.; Black, M.A.; Donato, A.L.; Arterburn, J.B.; Oprea, T.I.; Prossnitz, E.R. The G Protein-Coupled Receptor GPR30 Inhibits Proliferation of Estrogen Receptor-Positive Breast Cancer Cells. Cancer Res., 2010, 70, 1184-1194.
[66]
Reynolds, D.S.; Tevis, K.M.; Blessing, W.A.; Colson, Y.L.; Zaman, M.H.; Grinstaf, M.W. Breast Cancer Spheroids Reveal a Diferential Cancer Stem Cell Response to Chemotherapeutic Treatment. Sci. Rep., 2017, 7, 10382.
[67]
Dydensborg, A.B.; Rose, A.A.; Wilson, B.J.; Grote, D.; Paquet, M. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 2009, 28, 2634-2642.
[68]
Harrison, H.; Simoes, B.M.; Rogerson, L.; Howell, S.J.; Landberg, G.; Clarke, R.B. Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Cancer Res., 2013, 15, R21.
[69]
Simoes, B.M.; Piva, M.; Iriondo, O.; Comaills, V.; Lopez-Ruiz, J.A.; Zabalza, I.; Mieza, J.A.; Acinas, O.; Vivanco, M.D. Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Res. Treat., 2011, 129, 23-25.
[70]
Nicolini, A.; Ferrari, P.; Fini, M.; Borsari, V.; Fallahi, P.; Antonelli, A.; Berti, P.; Carpi, A.; Miccoli, P. Stem cells: Their role in breast cancer development and resistance to treatment. Curr. Pharm. Biotechnol., 2011, 12, 196-205.
[71]
Fillmore, C.M.; Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res., 2008, 10, R25.
[72]
Bao, B.; Ahmad, A.; Azmi, A.S.; Ali, S.; Sarkar, F.H. Cancer Stem
Cells (CSCs) and Mechanisms of Their Regulation: Implications
for Cancer Therapy. Curr. Prot. Pharmacol.,2013, 14, Unit-14.25.
[73]
Pozo-Guisado, E.; Álvarez-Barrientos, A.; Mulero-Navarro, S.; Santiago-Josefat, B.; Fernández-Salguero, P.M. The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem. Pharmacol., 2002, 64, 1375-1386.