Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Current Challenges in the Development of Vaccines and Drugs Against Emerging Vector-borne Diseases

Author(s): Kwang-sun Kim*

Volume 26, Issue 16, 2019

Page: [2974 - 2986] Pages: 13

DOI: 10.2174/0929867325666181105121146

Price: $65

conference banner
Abstract

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.

Keywords: Biological vector, Vector-Borne Disease (VBD), outbreaks, vaccine, clinical trial, drug.

« Previous
[1]
Mayer, S.V.; Tesh, R.B.; Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop., 2017, 166, 155-163. [http://dx.doi.org/10.1016/j.actatropica.2016.11.020]. [PMID: 27876643].
[2]
A global brief on vector-borne diseases., 2014. http://www.who.int/campaigns/world-health-day/2014/global-brief/en/.
[3]
Medlock, J.M.; Avenell, D.; Barrass, I.; Leach, S. Analysis of the potential for survival and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom. J. Vector Ecol, 2006, 31(2), 292-304. [http://dx.doi.org/10.3376/1081- 1710(2006)31[292:AOTPFS]2.0.CO;2] [PMID: 17249347]
[4]
Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antiviral Res., 2010, 85(2), 328-345. [http://dx.doi.org/10.1016/j.antiviral.2009.10.008]. [PMID: 19857523].
[5]
Medlock, J.M.; Leach, S.A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis., 2015, 15(6), 721-730. [http://dx.doi.org/10.1016/S1473-3099(15)70091-5]. [PMID: 25808458].
[6]
Negev, M.; Paz, S.; Clermont, A.; Pri-Or, N.G.; Shalom, U.; Yeger, T.; Green, M.S. Impacts of climate change on vector borne diseases in the Mediterranean basin-implications for preparedness and adaptation policy. Int. J. Environ. Res. Public Health, 2015, 12(6), 6745-6770. [http://dx.doi.org/10.3390/ijerph120606745]. [PMID: 26084000].
[7]
Brand, S.P.C.; Keeling, M.J. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J. R. Soc. Interface, 2017, 14(128)20160481 [http://dx.doi.org/10.1098/rsif.2016.0481]. [PMID: 28298609].
[8]
Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci., 2019, 1436(1), 157-173. [DOI: 10.1111/nyas.13950. Epub 2018]. [PMID: 30120891].
[9]
Vora, N. Impact of anthropogenic environmental alterations on vector-borne diseases. Medscape J. Med., 2008, 10(10), 238. [PMID: 19099032].
[10]
Reiter, P. Climate change and mosquito-borne disease. Environ. Health Perspect., 2001, 109(Suppl. 1), 141-161. [PMID: 11250812].
[11]
Lindsay, S.W.; Birley, M.H. Climate change and malaria transmission. Ann. Trop. Med. Parasitol., 1996, 90(6), 573-588. [http://dx.doi.org/10.1080/00034983.1996.11813087]. [PMID: 9039269].
[12]
Ogden, N.H.; Lindsay, L.R. Effect of climate and change on vectors and vector-borne diseases: Ticks are different. Trends Parasitol., 2016, 32(8), 646-656. [http://dx.doi.org/10.1016/j.pt.2016.04.015]. [PMID: 27260548].
[13]
Carpenter, S.; Wilson, A.; Barber, J.; Veronesi, E.; Mellor, P.; Venter, G.; Gubbins, S. Temperature dependence of the extrinsic incubation period of orbiviruses in Culicoides biting midges. PLoS One, 2011, 6(11)e27987 [http://dx.doi.org/10.1371/journal.pone.0027987]. [PMID: 22125649].
[14]
Schwan, T.G.; Piesman, J. Vector interactions and molecular adaptations of lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg. Infect. Dis., 2002, 8(2), 115-121. [http://dx.doi.org/10.3201/eid0802.010198]. [PMID: 11897061].
[15]
Githeko, A.K.; Lindsay, S.W.; Confalonieri, U.E.; Patz, J.A. Climate change and vector-borne diseases: a regional analysis. Bull. World Health Organ., 2000, 78(9), 1136-1147. [PMID: 11019462].
[16]
Liu, Z.; Zhang, Z.; Lai, Z.; Zhou, T.; Jia, Z.; Gu, J.; Wu, K.; Chen, X.G. Temperature increase enhances Aedes albopictus competence to transmit dengue virus. Front. Microbiol., 2017, 8, 2337. [http://dx.doi.org/10.3389/fmicb.2017.02337]. [PMID: 29250045].
[17]
Mulwa, F.; Lutomiah, J.; Chepkorir, E.; Okello, S.; Eyase, F.; Tigoi, C.; Kahato, M.; Sang, R. Vector competence of Aedes bromeliae and Aedes vitattus mosquito populations from Kenya for chikungunya virus. PLoS Negl. Trop. Dis., 2018, 12(10)e0006746 [http://dx.doi.org/10.1371/journal.pntd.0006746]. [PMID: 30321181].
[18]
Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res., 2015, 114(8), 2801-2805. [http://dx.doi.org/10.1007/s00436-015-4586-9]. [PMID: 26093499].
[19]
Benelli, G. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol. Res., 2015, 114(9), 3201-3212. [http://dx.doi.org/10.1007/s00436-015-4656-z]. [PMID: 26239801].
[20]
Fusco, D.N.; Chung, R.T. Review of current dengue treatment and therapeutics in development. J. Bioanal. Biomed., 2014, (S8), 002.
[21]
Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Ponsankar, A.; Thanigaivel, A.; Edwin, E.S.; Selin-Rani, S.; Chellappandian, M.; Pradeepa, V.; Lija-Escaline, J.; Kalaivani, K.; Hunter, W.B.; Duraipandiyan, V.; Al-Dhabi, N.A. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicol. Environ. Saf., 2017, 139, 439-446. [http://dx.doi.org/10.1016/j.ecoenv.2017.01.026]. [PMID: 28213320].
[22]
Simmons, C.P.; Farrar, J.J.; Nguyen, V.; Wills, B. Dengue. N. Engl. J. Med., 2012, 366(15), 1423-1432. [http://dx.doi.org/10.1056/NEJMra1110265]. [PMID: 22494122].
[23]
Edwin, E.S.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Thanigaivel, A.; Ponsankar, A.; Pradeepa, V.; Selin-Rani, S.; Kalaivani, K.; Hunter, W.B.; Abdel-Megeed, A.; Duraipandiyan, V.; Al-Dhabi, N.A. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop., 2016, 163, 167-178. [http://dx.doi.org/10.1016/j.actatropica.2016.07.009]. [PMID: 27443607].
[24]
Fitzpatrick, C.; Haines, A.; Bangert, M.; Farlow, A.; Hemingway, J.; Velayudhan, R. An economic evaluation of vector control in the age of a dengue vaccine. PLoS Negl. Trop. Dis., 2017, 11(8)e0005785 [http://dx.doi.org/10.1371/journal.pntd.0005785]. [PMID: 28806786].
[25]
Xiao, J.P.; He, J.F.; Deng, A.P.; Lin, H.L.; Song, T.; Peng, Z.Q.; Wu, X.C.; Liu, T.; Li, Z.H.; Rutherford, S.; Zeng, W.L.; Li, X.; Ma, W.J.; Zhang, Y.H. Characterizing a large outbreak of dengue fever in Guangdong Province, China. Infect. Dis. Poverty, 2016, 5, 44. [http://dx.doi.org/10.1186/s40249-016-0131-z]. [PMID: 27142081].
[26]
Thisyakorn, U.; Thisyakorn, C. Latest developments and future directions in dengue vaccines. Ther. Adv. Vaccines, 2014, 2(1), 3-9. [http://dx.doi.org/10.1177/2051013613507862]. [PMID: 24757522].
[27]
Capeding, M.R.; Tran, N.H.; Hadinegoro, S.R.; Ismail, H.I.; Chotpitayasunondh, T.; Chua, M.N.; Luong, C.Q.; Rusmil, K.; Wirawan, D.N.; Nallusamy, R.; Pitisuttithum, P.; Thisyakorn, U.; Yoon, I.K.; van der Vliet, D.; Langevin, E.; Laot, T.; Hutagalung, Y.; Frago, C.; Boaz, M.; Wartel, T.A.; Tornieporth, N.G.; Saville, M.; Bouckenooghe, A. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial. Lancet, 2014, 384(9951), 1358-1365. [http://dx.doi.org/10.1016/S0140-6736(14)61060-6]. [PMID: 25018116].
[28]
Larsen, C.P.; Whitehead, S.S.; Durbin, A.P. Dengue human infection models to advance dengue vaccine development. Vaccine, 2015, 33(50), 7075-7082. [http://dx.doi.org/10.1016/j.vaccine.2015.09.052]. [PMID: 26424605].
[29]
Guerra, C.A.; Snow, R.W.; Hay, S.I. Mapping the global extent of malaria in 2005. Trends Parasitol., 2006, 22(8), 353-358. [http://dx.doi.org/10.1016/j.pt.2006.06.006]. [PMID: 16798089].
[31]
Dhangadamajhi, G.; Kar, S.K.; Ranjit, M. The survival strategies of malaria parasite in the red blood cell and host cell polymorphisms. Malar. Res. Treat., 2010.2010973094 [http://dx.doi.org/10.4061/2010/973094]. [PMID: 22332025].
[32]
Isah, M.B.; Ibrahim, M.A. The role of antioxidants treatment on the pathogenesis of malarial infections: A review. Parasitol. Res., 2014, 113(3), 801-809. [http://dx.doi.org/10.1007/s00436-014-3804-1]. [PMID: 24525759].
[33]
White, N.J. Antimalarial drug resistance. J. Clin. Invest., 2004, 113(8), 1084-1092. [http://dx.doi.org/10.1172/JCI21682]. [PMID: 15085184].
[34]
Fidock, D.A.; Nomura, T.; Talley, A.K.; Cooper, R.A.; Dzekunov, S.M.; Ferdig, M.T.; Ursos, L.M.; Sidhu, A.B.; Naudé, B.; Deitsch, K.W.; Su, X.Z.; Wootton, J.C.; Roepe, P.D.; Wellems, T.E. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell, 2000, 6(4), 861-871. [http://dx.doi.org/10.1016/S1097-2765(05)00077-8]. [PMID: 11090624].
[35]
Lehane, A.M.; McDevitt, C.A.; Kirk, K.; Fidock, D.A. Degrees of chloroquine resistance in Plasmodium - is the redox system involved? Int. J. Parasitol. Drugs Drug Resist., 2012, 2, 47-57. [http://dx.doi.org/10.1016/j.ijpddr.2011.11.001]. [PMID: 22773965].
[36]
Wells, T.N.; Hooft van Huijsduijnen, R.; Van Voorhis, W.C. Malaria medicines: a glass half full? Nat. Rev. Drug Discov., 2015, 14(6), 424-442. [http://dx.doi.org/10.1038/nrd4573]. [PMID: 26000721].
[37]
Cui, L.; Trongnipatt, N.; Sattabongkot, J.; Udomsangpetch, R. Culture of exoerythrocytic stages of the malaria parasites Plasmodium falciparum and Plasmodium vivax. Methods Mol. Biol., 2009, 470, 263-273. [http://dx.doi.org/10.1007/978-1-59745-204-5_18]. [PMID: 19089388].
[38]
Price, R.N. Artemisinin drugs: Novel antimalarial agents. Expert Opin. Investig. Drugs, 2000, 9(8), 1815-1827. [http://dx.doi.org/10.1517/13543784.9.8.1815]. [PMID: 11060779].
[39]
Shanks, G.D.; Möhrle, J.J. Treating malaria: New drugs for a new era. Lancet Infect. Dis., 2017, 17(12), 1223-1224. [http://dx.doi.org/10.1016/S1473-3099(17)30475-9]. [PMID: 28916444].
[40]
Coelho, C.H.; Doritchamou, J.Y.A.; Zaidi, I.; Duffy, P.E. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccines, 2017, 2, 34. [http://dx.doi.org/10.1038/s41541-017-0035-3]. [PMID: 29522056].
[41]
Ouattara, A.; Laurens, M.B. Vaccines against malaria. Clin. Infect. Dis., 2015, 60(6), 930-936. [http://dx.doi.org/10.1093/cid/ciu954]. [PMID: 25452593].
[42]
Hoffman, S.L.; Vekemans, J.; Richie, T.L.; Duffy, P.E. The march toward malaria vaccines. Vaccine, 2015, 33(Suppl. 4), D13-D23. [http://dx.doi.org/10.1016/j.vaccine.2015.07.091]. [PMID: 26324116].
[43]
Schwameis, M.; Buchtele, N.; Wadowski, P.P.; Schoergenhofer, C.; Jilma, B. Chikungunya vaccines in development. Hum. Vaccin. Immunother., 2016, 12(3), 716-731. [http://dx.doi.org/10.1080/21645515.2015.1101197]. [PMID: 26554522].
[44]
Robin, S.; Ramful, D.; Zettor, J.; Benhamou, L.; Jaffar-Bandjee, M.C.; Rivière, J.P.; Marichy, J.; Ezzedine, K.; Alessandri, J.L. Severe bullous skin lesions associated with Chikungunya virus infection in small infants. Eur. J. Pediatr., 2010, 169(1), 67-72. [http://dx.doi.org/10.1007/s00431-009-0986-0]. [PMID: 19401826].
[45]
Schwartz, O.; Albert, M.L. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol., 2010, 8(7), 491-500. [http://dx.doi.org/10.1038/nrmicro2368]. [PMID: 20551973].
[46]
Bordi, L.; Carletti, F.; Castilletti, C.; Chiappini, R.; Sambri, V.; Cavrini, F.; Ippolito, G.; Di Caro, A.; Capobianchi, M.R. Presence of the A226V mutation in autochthonous and imported Italian chikungunya virus strains. Clin. Infect. Dis., 2008, 47(3), 428-429. [http://dx.doi.org/10.1086/589925]. [PMID: 18605910].
[47]
Paupy, C.; Ollomo, B.; Kamgang, B.; Moutailler, S.; Rousset, D.; Demanou, M.; Hervé, J.P.; Leroy, E.; Simard, F. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis., 2010, 10(3), 259-266. [http://dx.doi.org/10.1089/vbz.2009.0005]. [PMID: 19725769].
[48]
Vazeille, M.; Moutailler, S.; Coudrier, D.; Rousseaux, C.; Khun, H.; Huerre, M.; Thiria, J.; Dehecq, J.S.; Fontenille, D.; Schuffenecker, I.; Despres, P.; Failloux, A.B. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One, 2007, 2(11)e1168 [http://dx.doi.org/10.1371/journal.pone.0001168]. [PMID: 18000540].
[49]
Borgherini, G.; Poubeau, P.; Staikowsky, F.; Lory, M.; Le Moullec, N.; Becquart, J.P.; Wengling, C.; Michault, A.; Paganin, F. Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin. Infect. Dis., 2007, 44(11), 1401-1407. [http://dx.doi.org/10.1086/517537]. [PMID: 17479933].
[50]
Kumar, N.P.; Suresh, A.; Vanamail, P.; Sabesan, S.; Krishnamoorthy, K.G.; Mathew, J.; Jose, V.T.; Jambulingam, P. Chikungunya virus outbreak in Kerala, India, 2007: a seroprevalence study. Mem. Inst. Oswaldo Cruz, 2011, 106(8), 912-916. [http://dx.doi.org/10.1590/S0074-02762011000800003]. [PMID: 22241110].
[51]
Wu, D.; Zhang, Y.; Zhouhui, Q.; Kou, J.; Liang, W.; Zhang, H.; Monagin, C.; Zhang, Q.; Li, W.; Zhong, H.; He, J.; Li, H.; Cai, S.; Ke, C.; Lin, J. Chikungunya virus with E1-A226V mutation causing two outbreaks in 2010, Guangdong, China. Virol. J., 2013, 10, 174. [http://dx.doi.org/10.1186/1743-422X-10-174]. [PMID: 23725047].
[52]
Chretien, J.P.; Fukuda, M.; Noedl, H. Improving surveillance for antimalarial drug resistance. JAMA, 2007, 297(20), 2278-2281. [http://dx.doi.org/10.1001/jama.297.20.2278]. [PMID: 17522014].
[53]
Srikanth, P.; Sarangan, G.; Mallilankaraman, K.; Nayar, S.A.; Barani, R.; Mattew, T.; Selvaraj, G.F.; Sheriff, K.A.; Palani, G.; Muthumani, K. Molecular characterization of Chikungunya virus during an outbreak in South India. Indian J. Med. Microbiol., 2010, 28(4), 299-302. [http://dx.doi.org/10.4103/0255-0857.71812]. [PMID: 20966558].
[54]
Apandi, Y.; Lau, S.K.; Izmawati, N.; Amal, N.M.; Faudzi, Y.; Mansor, W.; Hani, M.H.; Zainah, S. Identification of Chikungunya virus strains circulating in Kelantan, Malaysia in 2009. Southeast Asian J. Trop. Med. Public Health, 2010, 41(6), 1374-1380. [PMID: 21329313].
[55]
Rianthavorn, P.; Prianantathavorn, K.; Wuttirattanakowit, N.; Theamboonlers, A.; Poovorawan, Y. An outbreak of chikungunya in southern Thailand from 2008 to 2009 caused by African strains with A226V mutation. Int. J. Infect. Dis., 2010, 14(Suppl. 3), e161-e165. [http://dx.doi.org/10.1016/j.ijid.2010.01.001]. [PMID: 20417142].
[56]
Lanciotti, R.S.; Valadere, A.M. Transcontinental movement of Asian genotype chikungunya virus. Emerg. Infect. Dis., 2014, 20(8), 1400-1402. [http://dx.doi.org/10.3201/eid2008.140268]. [PMID: 25076384].
[57]
Leparc-Goffart, I.; Nougairede, A.; Cassadou, S.; Prat, C.; de Lamballerie, X. Chikungunya in the Americas. Lancet, 2014, 383(9916), 514. [http://dx.doi.org/10.1016/S0140-6736(14)60185-9]. [PMID: 24506907].
[58]
Staples, J.E.; Breiman, R.F.; Powers, A.M. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis., 2009, 49(6), 942-948. [http://dx.doi.org/10.1086/605496]. [PMID: 19663604].
[59]
Khan, M.; Santhosh, S.R.; Tiwari, M.; Lakshmana Rao, P.V.; Parida, M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. J. Med. Virol., 2010, 82(5), 817-824. [http://dx.doi.org/10.1002/jmv.21663]. [PMID: 20336760].
[60]
Ravichandran, R.; Manian, M. Ribavirin therapy for Chikungunya arthritis. J. Infect. Dev. Ctries., 2008, 2(2), 140-142. [http://dx.doi.org/10.3855/T2.2.140]. [PMID: 19738340].
[61]
Kaur, P.; Chu, J.J.; Chu, H. Chikungunya virus: An update on antiviral development and challenges. Drug Discov. Today, 2013, 18(19-20), 969-983. [http://dx.doi.org/10.1016/j.drudis.2013.05.002]. [PMID: 23684571].
[62]
de Lamballerie, X.; Leroy, E.; Charrel, R.N.; Ttsetsarkin, K.; Higgs, S.; Gould, E.A. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol. J., 2008, 5, 33. [http://dx.doi.org/10.1186/1743-422X-5-33]. [PMID: 18304328].
[63]
Ahola, T.; Karlin, D.G. Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses. Biol. Direct, 2015, 10, 16. [http://dx.doi.org/10.1186/s13062-015-0050-0]. [PMID: 25886938].
[64]
Delang, L.; Li, C.; Tas, A.; Quérat, G.; Albulescu, I.C.; De Burghgraeve, T.; Guerrero, N.A.; Gigante, A.; Piorkowski, G.; Decroly, E.; Jochmans, D.; Canard, B.; Snijder, E.J.; Pérez-Pérez, M.J.; van Hemert, M.J.; Coutard, B.; Leyssen, P.; Neyts, J. The viral capping enzyme nsP1: A novel target for the inhibition of chikungunya virus infection. Sci. Rep., 2016, 6, 31819. [http://dx.doi.org/10.1038/srep31819]. [PMID: 27545976].
[65]
Brandler, S.; Ruffié, C.; Combredet, C.; Brault, J.B.; Najburg, V.; Prevost, M.C.; Habel, A.; Tauber, E.; Desprès, P.; Tangy, F. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine, 2013, 31(36), 3718-3725. [http://dx.doi.org/10.1016/j.vaccine.2013.05.086]. [PMID: 23742993].
[66]
Ramsauer, K.; Schwameis, M.; Firbas, C.; Müllner, M.; Putnak, R.J.; Thomas, S.J.; Desprès, P.; Tauber, E.; Jilma, B.; Tangy, F. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect. Dis., 2015, 15(5), 519-527. [http://dx.doi.org/10.1016/S1473-3099(15)70043-5]. [PMID: 25739878].
[67]
National Institute of Allergy and Infectious Diseases, National Institutes of Health Clinical Center: Chikungunya Virus Vaccine Trial in Healthy Adults. In:ClinicalTrials.gov. ; , 2013.
[68]
Phase II Study to Evaluate Safety and Immunogenicity of a Chikungunya Vaccine (MV-CHIK-202)., https://clinicaltrials.gov/ct2/show/NCT02861586.
[69]
Metz, S.W.; Martina, B.E.; van den Doel, P.; Geertsema, C.; Osterhaus, A.D.; Vlak, J.M.; Pijlman, G.P. Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits. Vaccine, 2013, 31(51), 6092-6096. [http://dx.doi.org/10.1016/j.vaccine.2013.09.045]. [PMID: 24099875].
[70]
Akahata, W.; Yang, Z.Y.; Andersen, H.; Sun, S.; Holdaway, H.A.; Kong, W.P.; Lewis, M.G.; Higgs, S.; Rossmann, M.G.; Rao, S.; Nabel, G.J. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med., 2010, 16(3), 334-338. [http://dx.doi.org/10.1038/nm.2105]. [PMID: 20111039].
[71]
Metz, S.W.; Gardner, J.; Geertsema, C.; Le, T.T.; Goh, L.; Vlak, J.M.; Suhrbier, A.; Pijlman, G.P. Effective chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl. Trop. Dis., 2013, 7(3)e2124 [http://dx.doi.org/10.1371/journal.pntd.0002124]. [PMID: 23516657].
[72]
Trial for Safety and Immunogenicity of a Chikungunya Vaccine, VRC-CHKVLP059-00-VP, in Healthy Adults, https://clinicaltrials.gov/ct2/show/NCT02562482.
[73]
Tripp, R.A.; Ross, T.M. Development of a Zika vaccine. Expert Rev. Vaccines, 2016, 15(9), 1083-1085. [http://dx.doi.org/10.1080/14760584.2016.1192474]. [PMID: 27212079].
[74]
Lagunas-Rangel, F.A.; Viveros-Sandoval, M.E.; Reyes-Sandoval, A. Current trends in Zika vaccine development. J. Virus Erad., 2017, 3(3), 124-127. [PMID: 28758019].
[76]
Fernandez, E.; Diamond, M.S. Vaccination strategies against Zika virus. Curr. Opin. Virol., 2017, 23, 59-67. [http://dx.doi.org/10.1016/j.coviro.2017.03.006]. [PMID: 28432975].
[77]
Wang, L.; Valderramos, S.G.; Wu, A.; Ouyang, S.; Li, C.; Brasil, P.; Bonaldo, M.; Coates, T.; Nielsen-Saines, K.; Jiang, T.; Aliyari, R.; Cheng, G. From mosquitos to humans: Genetic evolution of zika virus. Cell Host Microbe, 2016, 19(5), 561-565. [http://dx.doi.org/10.1016/j.chom.2016.04.006]. [PMID: 27091703].
[78]
Abbink, P.; Stephenson, K.E.; Barouch, D.H. Zika virus vaccines. Nat. Rev. Microbiol., 2018, 16(10), 594-600. [http://dx.doi.org/10.1038/s41579-018-0039-7]. [PMID: 29921914].
[79]
Fernandez, E.; Diamond, M.S. Vaccination strategies against Zika virus. Curr. Opin. Virol., 2017, 23, 59-67. [http://dx.doi.org/10.1016/j.coviro.2017.03.006]. [PMID: 28432975].
[81]
Wilder-Smith, A.; Vannice, K.; Durbin, A.; Hombach, J.; Thomas, S.J.; Thevarjan, I.; Simmons, C.P. Zika vaccines and therapeutics: Landscape analysis and challenges ahead. BMC Med., 2018, 16(1), 84. [http://dx.doi.org/10.1186/s12916-018-1067-x]. [PMID: 29871628].
[83]
Dowd, K.A.; Ko, S.Y.; Morabito, K.M.; Yang, E.S.; Pelc, R.S.; DeMaso, C.R.; Castilho, L.R.; Abbink, P.; Boyd, M.; Nityanandam, R.; Gordon, D.N.; Gallagher, J.R.; Chen, X.; Todd, J.P.; Tsybovsky, Y.; Harris, A.; Huang, Y.S.; Higgs, S.; Vanlandingham, D.L.; Andersen, H.; Lewis, M.G.; De La Barrera, R.; Eckels, K.H.; Jarman, R.G.; Nason, M.C.; Barouch, D.H.; Roederer, M.; Kong, W.P.; Mascola, J.R.; Pierson, T.C.; Graham, B.S. Rapid development of a DNA vaccine for Zika virus. Science, 2016, 354(6309), 237-240. [http://dx.doi.org/10.1126/science.aai9137]. [PMID: 27708058].
[84]
Diehl, M.C.; Lee, J.C.; Daniels, S.E.; Tebas, P.; Khan, A.S.; Giffear, M.; Sardesai, N.Y.; Bagarazzi, M.L. Tolerability of intramuscular and intradermal delivery by CELLECTRA(®) adaptive constant current electroporation device in healthy volunteers. Hum. Vaccin. Immunother., 2013, 9(10), 2246-2252. [http://dx.doi.org/10.4161/hv.24702]. [PMID: 24051434].
[85]
Abbink, P.; Larocca, R.A.; De La Barrera, R.A.; Bricault, C.A.; Moseley, E.T.; Boyd, M.; Kirilova, M.; Li, Z.; Ng’ang’a, D.; Nanayakkara, O.; Nityanandam, R.; Mercado, N.B.; Borducchi, E.N.; Agarwal, A.; Brinkman, A.L.; Cabral, C.; Chandrashekar, A.; Giglio, P.B.; Jetton, D.; Jimenez, J.; Lee, B.C.; Mojta, S.; Molloy, K.; Shetty, M.; Neubauer, G.H.; Stephenson, K.E.; Peron, J.P.S.; Zanotto, P.M.D.; Misamore, J.; Finneyfrock, B.; Lewis, M.G.; Alter, G.; Modjarrad, K.; Jarman, R.G.; Eckels, K.H.; Michael, N.L.; Thomas, S.J.; Barouch, D.H. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016, 353(6304), 1129-1132. [http://dx.doi.org/10.1126/science.aah6157]. [PMID: 27492477].
[86]
Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; Wagner, W.; Granados, A.; Greenhouse, J.; Walker, M.; Willis, E.; Yu, J.S.; McGee, C.E.; Sempowski, G.D.; Mui, B.L.; Tam, Y.K.; Huang, Y.J.; Vanlandingham, D.; Holmes, V.M.; Balachandran, H.; Sahu, S.; Lifton, M.; Higgs, S.; Hensley, S.E.; Madden, T.D.; Hope, M.J.; Karikó, K.; Santra, S.; Graham, B.S.; Lewis, M.G.; Pierson, T.C.; Haynes, B.F.; Weissman, D. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543(7644), 248-251. [http://dx.doi.org/10.1038/nature21428]. [PMID: 28151488].
[88]
Fernandez, E.; Diamond, M.S. Vaccination strategies against Zika virus. Curr. Opin. Virol., 2017, 23, 59-67. [http://dx.doi.org/10.1016/j.coviro.2017.03.006]. [PMID: 28432975].
[89]
Halstead, S.B. Biologic evidence required for Zika disease enhancement by Dengue antibodies. Emerg. Infect. Dis., 2017, 23(4), 569-573. [http://dx.doi.org/10.3201/eid2304.161879]. [PMID: 28322690].
[90]
Domingos, A.; Antunes, S.; Borges, L.; Rosário, V.E. Approaches towards tick and tick-borne diseases control. Rev. Soc. Bras. Med. Trop., 2013, 46(3), 265-269. [http://dx.doi.org/10.1590/0037-8682-0014-2012]. [PMID: 23559344].
[91]
Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol., 2012, 28(10), 437-446. [http://dx.doi.org/10.1016/j.pt.2012.07.003]. [PMID: 22902521].
[92]
Martins, J.R.; Corrêa, B.L.; Ceresér, V.H.; Arteche, C.C.P. 1995.
[93]
Tavassoli, M.; Malekifard, F.; Soleimanzadeh, A.; Pourseyed, S.H.; Bernousi, I.; Mardani, K. Susceptibility of different life stages of Ornithodoros lahorensis to entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasitol. Res., 2012, 111(4), 1779-1783. [http://dx.doi.org/10.1007/s00436-012-3023-6]. [PMID: 22782474].
[94]
Šmit, R.; Postma, M.J. Vaccines for tick-borne diseases and cost-effectiveness of vaccination: A public health challenge to reduce the diseases’ burden. Expert Rev. Vaccines, 2016, 15(1), 5-7. [http://dx.doi.org/10.1586/14760584.2016.1111142]. [PMID: 26559456].
[95]
Zent, O.; Bröker, M. Tick-borne encephalitis vaccines: Past and present. Expert Rev. Vaccines, 2005, 4(5), 747-755. [http://dx.doi.org/10.1586/14760584.4.5.747]. [PMID: 16221075].
[96]
Wressnigg, N.; Pöllabauer, E.M.; Aichinger, G.; Portsmouth, D.; Löw-Baselli, A.; Fritsch, S.; Livey, I.; Crowe, B.A.; Schwendinger, M.; Brühl, P.; Pilz, A.; Dvorak, T.; Singer, J.; Firth, C.; Luft, B.; Schmitt, B.; Zeitlinger, M.; Müller, M.; Kollaritsch, H.; Paulke-Korinek, M.; Esen, M.; Kremsner, P.G.; Ehrlich, H.J.; Barrett, P.N. Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in healthy adults: A double-blind, randomised, dose-escalation phase 1/2 trial. Lancet Infect. Dis., 2013, 13(8), 680-689. [http://dx.doi.org/10.1016/S1473-3099(13)70110-5]. [PMID: 23665341].
[97]
Valbuena, G.; Walker, D.H. Approaches to vaccines against Orientia tsutsugamushi. Front. Cell. Infect. Microbiol., 2013, 2, 170. [http://dx.doi.org/10.3389/fcimb.2012.00170]. [PMID: 23316486].
[98]
Jeong, Y.J.; Kim, S.; Wook, Y.D.; Lee, J.W.; Kim, K.I.; Lee, S.H. Scrub typhus: clinical, pathologic, and imaging findings. Radiographics, 2007, 27(1), 161-172. [http://dx.doi.org/10.1148/rg.271065074]. [PMID: 17235005].
[99]
Peter, J.V.; Sudarsan, T.I.; Prakash, J.A.J.; Varghese, G.M. Severe scrub typhus infection: Clinical features, diagnostic challenges and management. World J. Crit. Care Med., 2015, 4(3), 244-250. [http://dx.doi.org/10.5492/wjccm.v4.i3.244]. [PMID: 26261776].
[100]
Xu, G.; Walker, D.H.; Jupiter, D.; Melby, P.C.; Arcari, C.M. A review of the global epidemiology of scrub typhus. PLoS Negl. Trop. Dis., 2017, 11(11)e0006062
[101]
Chakraborty, S.; Sarma, N. Scrub typhus: An emerging threat. Indian J. Dermatol., 2017, 62(5), 478-485. [PMID: 28979009].
[102]
Bonell, A.; Lubell, Y.; Newton, P.N.; Crump, J.A.; Paris, D.H. Estimating the burden of scrub typhus: A systematic review. PLoS Negl. Trop. Dis., 2017, 11(9)e0005838 [http://dx.doi.org/10.1371/journal.pntd.0005838]. [PMID: 28945755].
[103]
Kelly, D.J.; Fuerst, P.A.; Ching, W.M.; Richards, A.L. Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin. Infect. Dis., 2009, 48(Suppl. 3), S203-S230. [http://dx.doi.org/10.1086/596576]. [PMID: 19220144].
[104]
Ha, N.Y.; Sharma, P.; Kim, G.; Kim, Y.; Min, C.K.; Choi, M.S.; Kim, I.S.; Cho, N.H. Immunization with an autotransporter protein of Orientia tsutsugamushi provides protective immunity against scrub typhus. PLoS Negl. Trop. Dis., 2015, 9(3)e0003585 [http://dx.doi.org/10.1371/journal.pntd.0003585]. [PMID: 25768004].
[105]
Lee, M.J.; Hung, S.H.; Huang, M.C.; Tsai, T.; Chen, C.T. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells. PLoS One, 2017, 12(5)e0178493 [http://dx.doi.org/10.1371/journal.pone.0178493]. [PMID: 28558025].
[106]
Fang, Y.; Huang, Z.; Tu, C.; Zhang, L.; Ye, D.; Zhu, B.P. Meta-analysis of drug treatment for scrub typhus in Asia. Intern. Med., 2012, 51(17), 2313-2320. [http://dx.doi.org/10.2169/internalmedicine.51.7816]. [PMID: 22975540].
[107]
Rajapakse, S.; Rodrigo, C.; Fernando, S.D. Drug treatment of scrub typhus. Trop. Doct., 2011, 41(1), 1-4. [http://dx.doi.org/10.1258/td.2010.100311]. [PMID: 21172901].
[110]
New Vaccines for a Safer World. Our Challenge http://cepi.net/mission#Our-challenge.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy