Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Antimicrobial Effects of Chemical Compounds Isolated from Traditional Chinese Herbal Medicine (TCHM) Against Drug-Resistant Bacteria: A Review Paper

Author(s): Yanling Zhao*, Haotian Li, Shizhang Wei, Xuelin Zhou and Xiaohe Xiao

Volume 19, Issue 2, 2019

Page: [125 - 137] Pages: 13

DOI: 10.2174/1389557518666181017143141

Price: $65

conference banner
Abstract

Infectious diseases caused by pathogenic bacteria seriously threaten human lives. Although antibiotic therapy is effective in the treatment of bacterial infections, the overuse of antibiotics has led to an increased risk of antibiotic resistance, putting forward urgent requirements for novel antibacterial drugs. Traditional Chinese herbal medicine (TCHM) and its constituents are considered to be potential sources of new antimicrobial agents. Currently, a series of chemical compounds purified from TCHM have been reported to fight against infections by drug-resistant bacteria. In this review, we summarized the recent findings on TCHM-derived compounds treating drug-resistant bacterial infections. Further studies are still needed for the discovery of potential antibacterial components from TCHM.

Keywords: Traditional Chinese Herbal Medicine (TCHM), drug-resistant bacteria, TCHM-derived compounds, antibacterial effect, shigellosis, tuberculosis.

Graphical Abstract
[1]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[2]
Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[3]
Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. Biotech, 2017, 7(3), 172.
[4]
O’Shea, S.; Lucey, B.; Cotter, L. In vitro activity of Inula helenium against clinical Staphylococcus aureus strains including MRSA. Brit. J. Biomed. Sci., 2009, 66(4), 186-189.
[5]
Friedman, M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J. Agricult. Food Chem., 2015, 63(15), 3805-3822.
[6]
Ugur, A.; Duru, M.E.; Ceylan, O.; Sarac, N.; Varol, O.; Kivrak, I. Chemical composition, antimicrobial and antioxidant activities of Centaurea ensiformis Hub.-Mor. (Asteraceae), a species endemic to Mugla (Turkey). Nat. Prod. Res., 2009, 23(2), 149-167.
[7]
Ruddock, P.S.; Charland, M.; Ramirez, S.; López, A.; Neil Towers, G.H.; Arnason, J.T.; Liao, M.; Dillon, J.A. Antimicrobial activity of flavonoids from Piper lanceaefolium and other colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae. Sexually . Transm. Dis., 2011, 38(2), 82-88.
[8]
Elisha, I.L.; Botha, F.S.; Mcgaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Alternat. Med., 2017, 17(1), 133.
[9]
Silva, Jr, W.F.; Cecílio, S.G.; Magalhães, C.L.B.; Ferreira, J.M.S.; Tótola, A.H.; de Magalhaes, J.C. Combination of extracts from Aristolochia cymbifera with streptomycin as a potential antibacterial drug. Springerplus, 2013, 2, 430.
[10]
Yaseen, R.; Branitzki-Heinemann, K.; Moubasher, H.; Setzer, W.N.; Naim, H.Y.; von Köckritz-Blickwede, M. In vitro testing of crude natural plant extracts from Costa Rica for their ability to boost innate immune cells against Staphylococcus aureus. Biomedicines, 2017, 5(3), 40.
[11]
You, Y.O.; Choi, N.Y.; Kim, K.J. Ethanol extract of ulmus pumila root bark inhibits clinically isolated antibiotic-resistant bacteria. Evidence-Based Complement. Alternat. Med., 2013, 2013, 269874.
[12]
Neghabi-Hajiagha, M.; Aliahmadi, A.; Taheri, M.R.; Ghassempour, A.; Irajian, G.; Rezadoost, H.; Feizabadi, M.M. A bioassay-guided fractionation scheme for characterization of new antibacterial compounds from Prosopis cineraria aerial parts. Iran. J. Microbiol., 2016, 8(1), 1-7.
[13]
Almariri, A.; Safi, M. In vitro antibacterial activity of several plant extracts and oils against some Gram-negative bacteria. Iran. J. Med. Sci., 2014, 39(1), 36-43.
[14]
Igbeneghu, O.A.; Abdu, A.B. Multiple antibiotic-resistant bacteria on fluted pumpkin leaves, a herb of therapeutic value. J. Health Populat. Nutr., 2014, 32(2), 176-182.
[15]
Al Laham, S.A.; Al Fadel, F.M. Antibacterial activity of various plants extracts against antibiotic-resistant Aeromonas hydrophila. Jundishapur J. Microbiol., 2014, 7(7), e11370.
[16]
Ait Said, L.; Zahlane, K.; Ghalbane, I. El Messouss,i S.; Romane, A.; Cavaleiro, C.; Salgueiro, L. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Nat. Prod. Res., 2015, 29(6), 582-585.
[17]
Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.E.; Pagès, J.M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection-bacteria and their synergistic potential with antibiotics. Phytomedicine, 2012, 19(5), 464-471.
[18]
Ugur, A.; Sarac, N.; Duru, M.E.; Beyatli, Y. In vitro study of antibacterial activity on multi-resistant bacteria and chemical composition of the chloroform extract of endemic Centaurea drabifolia subsp. cappadocica. Nat. Prod. Communic., 2009, 4(9), 1267-1270.
[19]
Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol., 2014, 40(1), 76-94.
[20]
Lima, Z.M.; da Trindade, L.S.; Santana, G.C.; Padilha, F.F.; da Costa Mendonça, M.; da Costa, L.P.; López, J.A.; Macedo, M.L.H. Effect of Tamarindus indica L. and Manihot esculenta extracts on antibiotic-resistant bacteria. Pharmacol. Res., 2017, 9(2), 195-199.
[21]
Shin, S. In vitro effects of essential oils from Ostericum koreanum against antibiotic-resistant Salmonella spp. Arch. Pharmacal. Res., 2005, 28(7), 765-769.
[22]
Birdi, T. D’ souza, D.; Tolani, M.; Daswani, P.; Nair V.; Tetali P.; Toro J.C.; Hoffner S. Assessment of the activity of selected Indian medicinal plants against Mycobacterium tuberculosis: A preliminary screening using the microplate alamar blue assay. Europ J. Med. Plants, 2012, 2(4), 308-323.
[23]
Singh, R.; Hussain, S.; Verma, R.; Sharma, P. Anti-mycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica. Asian Pac. J. Trop. Med., 2013, 6(5), 366-371.
[24]
Yang, J.F.; Yang, C.H.; Chang, H.W.; Yang, C.S.; Wang, S.M.; Hsieh, M.C.; Chuang, L.Y. Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens. J. Med. Food, 2010, 13(5), 1254-1262.
[25]
Lu, J.; Ye, S.; Qin, R.; Deng, Y.; Li, C.P. Effect of Chinese herbal medicine extracts on cell-mediated immunity in a rat model of tuberculosis induced by multiple drug-resistant bacilli. Mol. Med. Reports., 2013, 8(1), 227-232.
[26]
Liu, W.; Liu, Y.; Zhang, X.Z.; Li, N.; Cheng, H. In vitro bactericidal activity of Jinghua Weikang capsule and its individual herb Chenopodium ambrosioides L. against antibiotic-resistant Helicobacter pylori. Chin. J. Integrat. Med., 2013, 19(1), 54-57.
[27]
Kong, L.B.; Ma, Q.; Gao, J.; Qiu, G.S.; Wang, L.X.; Zhao, S.M.; Bao, Y.G.; Liu, Q.Q. Effect of Qiguiyin decoction on multidrug-resistant Pseudomonas aeruginosa infection in rats. Chin. J. Integrat. Med., 2015, 21(12), 916-921.
[28]
Perumal, S.; Mahmud, R. Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta L. against clinical isolates and standard strains. BMC Complement. Alternat. Med., 2013, 13(1), 346.
[29]
Wang, M.; Guan, X.; Chi, Y.; Robinson, N.; Liu, J.P. Chinese herbal medicine as adjuvant treatment to chemotherapy for multidrug-resistant tuberculosis (MDR-TB): A systematic review of randomised clinical trials. Tuberculosis., 2015, 95(4), 364-372.
[30]
Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2005, 49(4), 391-396.
[31]
Chang, P.C.; Li, H.Y.; Tang, H.J.; Liu, J.W.; Wang, J.J.; Chuang, Y.C. In vitro synergy of baicalein and gentamicin against vancomycin-resistant Enterococcus. J. Microbiol. Immunol. Infect., 2007, 40(1), 56-61.
[32]
Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[33]
Peng, Q.; Zhou, S.; Yao, F.; Hou, B.; Huang, Y.; Hua, D.; Zheng, Y.; Qian, Y. Baicalein suppresses the SOS response system of Staphylococcus aureus induced by ciprofloxacin. Cell. Physiol. Biochem. Intl. J. Experiment. Cell. Physiol. Biochem. Pharmacol., 2011, 28(5), 1045-1050.
[34]
Siriwong, S.; Pimchan, T.; Naknarong, W.; Eumkeb, G. Mode of action and synergy of ceftazidime and baicalein against Streptococcus pyogenes. Trop. J. Pharmaceut. Res., 2015, 14(4), 641-648.
[35]
Skariyachan, S.; Jayaprakash, N.; Bharadwaj, N.; Narayanappa, R. Exploring insights for virulent gene inhibition of multidrug resistant Salmonella typhi, Vibrio cholerae and Staphylococcus areus by potential phytoligands via in silico screening. J. Biomol. Struct. Dynam., 2014, 32(9), 1379-1395.
[36]
Tang, Y.J.; Zhou, F.W.; Luo, Z.Q.; Li, X.Z.; Yan, H.M.; Wang, M.J.; Huang, F.R.; Yue, S.J. Multiple therapeutic effects of adjunctive baicalin therapy in experimental bacterial meningitis. Inflammation, 2010, 33(3), 180-188.
[37]
Cushnie, T.P.; Hamilton, V.E.; Lamb, A.J. Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiol. Res., 2003, 158(4), 281-289.
[38]
Xu, H.; Lee, S.F. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother. Res. Ptr., 2001, 15(1), 39-43.
[39]
Qiu, J.; Li, H.; Meng, H.; Hu, C.; Li, J.; Luo, M.; Dong, J.; Wang, X.; Wang, J.; Deng, Y.; Deng, X. Impact of luteolin on the production of alpha-toxin by Staphylococcus aureus. Lett. Appl. Microbiol., 2011, 53(2), 238-243.
[40]
Eumkeb, G.; Siriwong, S.; Thumanu, K. Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J. Photochem. Photobiol. B Biol, 2012, 117(4), 247-253.
[41]
Siriwong, S.; Thumanu, K.; Hengpratom, T.; Eumkeb, G. Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evidence-based Complement. Alternat. Med., 2015, 2015, 759459.
[42]
Su, Y.; Ma, L.; Wen, Y.; Wang, H.; Zhang, S. Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus. Molecules, 2014, 19(8), 12630-12639.
[43]
Gopu, V.; Meena, C.K.; Shetty, P.H. Quercetin influences quorum sensing in food borne bacteria: In-vitro and in-silico evidence. PLoS One, 2015, 10(8), e0134684.
[44]
Wang, S.Y.; Sun, Z.L.; Liu, T.; Gibbons, S.; Zhang, W.J.; Qing, M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother. Res., 2014, 28(7), 1071-1076.
[45]
Miyasaki, Y.; Rabenstein, J.D.; Rhea, J.; Crouch, M.L.; Mocek, U.M.; Kittell, P.E.; Morgan, M.A.; Nichols, W.S.; Van Benschoten, M.M.; Hardy, W.D.; Liu, G.Y. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii. PLoS One, 2013, 8(4), e61594.
[46]
Klančnik, A.; Možina, S.S.; Zhang, Q. Anti-Campylobacter activities and resistance mechanisms of natural phenolic compounds in Campylobacter. PLoS One, 2012, 7(12), e51800.
[47]
Yanagawa, Y.; Yamamoto, Y.; Hara, Y.; Shimamura, T. A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Curr. Microbiol., 2003, 47(3), 244-249.
[48]
Osterburg, A.; Gardner, J.; Hyon, S.H.; Neely, A.; Babcock, G. Highly antibiotic-resistant Acinetobacter baumannii clinical isolates are killed by the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG). Clin. Microbiol. Infect., 2009, 15(4), 341-346.
[49]
Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamiltonmiller, J.M. Modulation of betalactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Agents, 2004, 23(5), 462-467.
[50]
Aldulaimi, O.A. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn. Rev., 2017, 11(22), 123-127.
[51]
Choi, E.J.; Kim, H.I.; Kim, J.A.; Jun, S.Y.; Kang, S.H.; Park, D.J.; Son, S.J.; Kim, Y.; Shin, O.S. The herbal-derived honokiol and magnolol enhances immune response to infection with methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Appl. Microbiol. Biotechnol., 2015, 99(10), 4387-4396.
[52]
Kuok, C.F.; Hoi, S.O.; Hoi, C.F.; Chan, C.H.; Fong, I.H.; Ngok, C.K.; Meng, L.R.; Fong, P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Experiment. Biol. Med., 2017, 242, 731-743.
[53]
Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol., 2010, 140(2), 164-168.
[54]
Wang, W.; Zeng, Y.H.; Osman, K.; Shinde, K.; Rahman, M.; Gibbons, S.; Mu, Q. Norlignans, acylphloroglucinols, and a dimeric xanthone from Hypericum chinense. J. Nat. Prod., 2010, 73(11), 1815-1820.
[55]
Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 2009, 16(11), 997-1005.
[56]
Kim, J.K.; Kim, N.; Lim, Y.H. Evaluation of the antibacterial activity of rhapontigenin produced from rhapontin by biotransformation against Propionibacterium acnes. J. Microbiol. Biotechnol., 2010, 20(1), 82-87.
[57]
Wojtyczka, R.D.; Dziedzic, A.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Mularz, T.; Idzik, D. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules, 2014, 19(5), 6583-6596.
[58]
Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food, 2005, 8(4), 454-461.
[59]
Siriyong, T.; Chusri, S.; Srimanote, P.; Tipmanee, V.; Voravuthikunchai, S.P. Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant Acinetobacter baumannii. Microbial . Drug Resist., 2016, 22(4), 273-282.
[60]
Nagappan, T.; Ramasamy, P.; Wahid, M.E.; Segaran, T.C.; Vairappan, C.S. Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules, 2011, 16(11), 9651-9664.
[61]
Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Develop. Indust. Pharm., 2015, 41(6), 989-994.
[62]
Bandara, H.M.; Herpin, M.J.; Kolacny, D., Jr; Harb, A.; Romanovicz, D.; Smyth, H.D. Incorporation of farnesol significantly increases the efficacy of liposomal ciprofloxacin against Pseudomonas aeruginosa biofilms in vitro. Mol. Pharm., 2016, 13(8), 2760-2770.
[63]
Liu, T.; Osman, K.; Kaatz, G.W.; Gibbons, S.; Mu, Q. Antibacterial sesquiterpenoid derivatives from Ferula ferulaeoides. Planta Medica., 2013, 79(8), 701-706.
[64]
Jeong, S.I.; Han, W.S.; Yun, Y.H.; Kim, K.J. Continentalic acid from Aralia continentalis shows activity against methicillin-resistant Staphylococcus aureus. Phytother. Res. Ptr., 2006, 20(6), 511-514.
[65]
Kuźma, Ł.; Rózalski, M.; Walencka, E.; Rózalska, B.; Wysokińska, H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine, 2007, 14(1), 31-35.
[66]
Jin, H.G.; Jin, Q.; Ryun Kim, A.; Choi, H.; Lee, J.H.; Kim, Y.S.; Lee, D.G.; Woo, E.R. A new triterpenoid from Alisma orientale and their antibacterial effect. Arch. Pharm. Res., 2012, 35(11), 1919-1926.
[67]
Kumar, P.; Singh, A.; Sharma, U.; Singh, D.; Dobhal, M.P.; Singh, S. Anti-mycobacterial activity of plumericin and isoplumericin against MDR Mycobacterium tuberculosis. Pulmon. Pharmacol. Therapeut., 2013, 26(3), 332-335.
[68]
Dey, D.; Ray, R.; Hazra, B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother. Res. Ptr., 2013, 28(7), 1014-1021.
[69]
Uc-Cachón, A.H.; Borges-Argáez, R.; Said-Fernández, S.; Vargas-Villarreal, J.; González-Salazar, F.; Méndez-González, M.; Cáceres-Farfán, M.; Molina-Salinas, G.M. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulmon. Pharmacol. Therapeut., 2014, 27(1), 114-120.
[70]
Cutler, R.R.; Wilson, P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br. J. Biomed. Sci., 2004, 61(2), 71-74.
[71]
Lee, D.G.; Jung, H.J.; Woo, E.R. Antimicrobial property of (+)-lyoniresinol-3alpha-O-beta-D-glucopyranoside isolated from the root bark of Lycium chinense Miller against human pathogenic microorganisms. Arch. Pharmacal. Res., 2005, 28(9), 1031-1036.
[72]
Xiao, Z.Y.; Zeng, Y.H.; Mu, Q.; Shiu, W.K.; Gibbons, S. Prenylated benzophenone peroxide derivatives from Hypericum sampsonii. Chem. Biodivers., 2010, 7(4), 953-958.
[73]
Prabu, A.; Hassan, S. Prabuseenivasan; Shainaba, A.S.; Hanna, L.E.; Kumar, V. Andrographolide: a potent antituberculosis compound that targets Aminoglycoside 2′-N-acetyltransferase in Mycobacterium tuberculosis. J. Mol. Graph. Model., 2015, 61, 133-140.
[74]
Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother., 2002, 46(10), 3133-3141.
[75]
Lin, S.; Koh, J.J.; Aung, T.T.; Sin, W.L.W.; Lim, F.; Wang, L.; Lakshminarayanan, R.; Zhou, L.; Tan, D.T.H.; Cao, D.; Beuerman, R.W.; Ren, L.; Liu, S. Semisynthetic flavone-derived antimicrobials with therapeutic potential against methicillin-resistant Staphylococcus aureus (MRSA). J. Med. Chem., 2017, 60(14), 6152-6165.
[76]
Li, M.K.; Li, J.; Liu, B.H.; Zhou, Y.; Li, X.; Xue, X.Y.; Hou, Z.; Luo, X.X. Synthesis, crystal structures, and anti-drug-resistant Staphylococcus aureus activities of novel 4-hydroxycoumarin derivatives. Europ. J. Pharmacol., 2013, 721(1-3), 151-157.
[77]
Wu, T.; He, M.; Zang, X.; Zhou, Y.; Qiu, T.; Pan, S.; Xu, X. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochimica Et Biophysica. Acta, 2013, 1828(11), 2751-2756.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy