Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

神经元应激与体内背根神经节转录因子3激活的关系及博尔替佐米所致神经病的体外模型

卷 19, 期 1, 2019

页: [50 - 64] 页: 15

弟呕挨: 10.2174/1568009618666181003170027

价格: $65

conference banner
摘要

背景:蛋白酶体抑制剂硼替佐米(BTZ)诱导细胞内氧化应激导致周围神经病变的观点已被普遍接受。米托孔德协会Al功能障碍、细胞凋亡和内质网应激与细胞内氧化应激的关系尚不明确,尚需进一步研究。激活转录FActor 3(ATF 3)是周围神经损伤后在背根神经节(DRG)神经元中表达的一种应激中枢基因。 目的:通过激活ATF 3,探讨BTZ诱导细胞内氧化应激、线粒体功能障碍、细胞凋亡和ER应激的作用机制。 方法:采用原代培养的BTZ诱导神经毒性的DRG神经元和BTZ诱导的痛性周围神经病变大鼠的DRG来探讨这些问题。 结果:BTZ诱导DRG神经元ATF 3的上调与细胞内氧化应激、线粒体功能障碍、细胞凋亡和ER应激平行。在体内。用小干扰RNA(SiRNA)基因沉默技术阻断ATF 3信号转导可降低细胞内氧化应激、线粒体功能障碍、细胞凋亡和ER stres。BTZ处理后DRG神经元的S。 结论:本研究揭示了BTZ通过激活ATF 3导致细胞内氧化应激、线粒体功能紊乱而诱导神经毒性的重要机制。、细胞凋亡、ER应激,并通过阻断ATF 3信号通路提供了新的治疗靶点。

关键词: 氧化应激、线粒体功能障碍、细胞凋亡、内质网应激、激活转录因子3、硼替佐米、神经病、背根神经节。

图形摘要
[1]
Liapis, K.; Kastritis, E.; Bagratouni, T.; Vassiliou, S.; Papachristidis, A.; Charitaki, E.; Alevizopoulos, N.; Harhalakis, N.; Terpos, E.; Delimpasi, S.; Dimopoulos, M.A. Early tumor-cell gene expression changes may predict the response to first-line bortezomib-based therapy in patients with newly diagnosed multiple myeloma. J. BUON, 2015, 20(5), 1314-1321.
[2]
Mohan, M.; Matin, A.; Davies, F.E. Update on the optimal use of bortezomib in the treatment of multiple myeloma. Cancer Manag. Res., 2017, 9, 51-63.
[3]
Dou, Q.P.; Zonder, J.A. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr. Cancer Drug Targets, 2014, 14(6), 517-536.
[4]
Thawani, S.P.; Tanji, K.; De Sousa, E.A.; Weimer, L.H.; Brannagan, T.H. Bortezomib-associated demyelinating neuropathy--clinical and pathologic features. J. Clin. Neuromuscul. Dis., 2015, 16(4), 202-209.
[5]
Luczkowska, K.; Litwinska, Z.; Paczkowska, E.; Machalinski, B. Pathophysiology of drug-induce peripheral neuropathy in patients with multiple myeloma. J. Physiol. Pharmacol., 2018, 69(2)
[http://dx.doi.org/10.26402/jpp.2018.2.02]
[6]
Lakshman, A.; Modi, M.; Prakash, G.; Malhotra, P.; Khadwal, A.; Jain, S.; Kumari, S.; Varma, N.; Varma, S. Evaluation of bortezomib-induced neuropathy using total neuropathy score (reduced and clinical versions) and NCI CTCAE v4.0 in newly diagnosed patients with multiple myeloma receiving bortezomib-based induction. Clin. Lymphoma Myeloma Leuk., 2017, 17(8), 513-519.
[7]
Kaplan, G.S.; Torcun, C.C.; Grune, T.; Ozer, N.K.; Karademir, B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic. Biol. Med., 2017, 103, 1-13.
[8]
Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy:What do we know about mechanisms? Neurosci. Lett., 2015, 596, 90-107.
[9]
Hai, T.; Wolford, C.C.; Chang, Y.S. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: ismodulation of inflammation a unifying component? Gene Expr., 2010, 15(1), 1-11.
[10]
Mallano, T.; Palumbo-Zerr, K.; Zerr, P.; Ramming, A.; Zeller, B.; Beyer, C.; Dees, C.; Huang, J.; Hai, T.; Distler, O.; Schett, G. Distler, J.H. Activating transcription factor 3 regulates canonical TGFβ signalling in systemic sclerosis. Ann. Rheum. Dis., 2016, 75(3), 586-592.
[11]
Rau, K.K.; Hill, C.E.; Harrison, B.J.; Venkat, G.; Koenig, H.M.; Cook, S.B.; Rabchevsky, A.G.; Taylor, B.K.; Hai, T.; Petruska, J.C. Cutaneous tissue damage induces long-lasting nociceptive sensitization and regulation of cellular stress- and nerve injuryassociated genes in sensory neurons. Exp. Neurol 2016. 283(Pt A), 413-427
[12]
Areti, A.; Komirishetty, P.; Akuthota, M.; Malik, R.A.; Kumar, A. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J. Pineal Res., 2017, 62(3)
[http://dx.doi.org/10.1111/jpi.12393]
[13]
Ding, R.; Sun, B.; Liu, Z.; Yao, X.; Wang, H.; Shen, X.; Jiang, H.; Chen, J. Advanced oxidative protein products cause pain hypersensitivity in rats by inducing dorsal root ganglion neurons apoptosis via NADPH oxidase 4/c-Jun N-terminal kinase pathways. Front. Mol. Neurosci., 2017, 10, 195.
[14]
Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol., 2014, 2, 289-295.
[15]
van der Kant, R.; Neefjes, J. Small regulators, major consequences - Ca2+ and cholesterol at the endosome-ER interface. J. Cell Sci., 2014, 127(Pt 5), 929-938.
[16]
Díaz-Villanueva, J.F.; Díaz-Molina, R.; García-González, V. Protein folding and mechanisms of proteostasis. Int. J. Mol. Sci., 2015, 16(8), 17193-17230.
[17]
Schröder, M. Endoplasmic reticulum stress responses. Cell. Mol. Life Sci., 2008, 65(6), 862-894.
[18]
Yin, Y.; Sun, G.; Li, E.; Kiselyov, K.; Sun, D. ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Res. Rev., 2017, 34, 3-14.
[19]
Guo, L.; Hamre, J.; Eldridge, S.; Behrsing, H.P.; Cutuli, F.M.; Mussio, J.; Davis, M. Editor’s highlight: multiparametric image analysis of rat dorsal root ganglion cultures to evaluate peripheral neuropathy-inducing chemotherapeutics. Toxicol. Sci., 2017, 156(1), 275-288.
[20]
Bobylev, I.; Peters, D.; Vyas, M.; Barham, M.; Klein, I.; von Strandmann, E.P.; Neiss, W.F.; Lehmann, H.C. Kinesin-5 blocker monastrol protects against bortezomib-induced peripheral neurotoxicity. Neurotox. Res., 2017, 32(4), 555-562.
[21]
Bai, X.; Chen, T.; Gao, Y.; Li, H.; Li, Z.; Liu, Z. The protective effects of insulin-like growth factor-1 on neurochemical phenotypes of dorsal rootganglion neurons with BDE-209-induced neurotoxicity in vitro. Toxicol. Ind. Health, 2017, 33(3), 250-264.
[22]
Xu, X.; Liu, Z.; Liu, H.; Yang, X.; Li, Z. The effects of galanin on neuropathic pain in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2012, 680(1-3), 28-33.
[23]
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 2001, 29(9), e45.
[24]
Hunt, D.; Raivich, G.; Anderson, P.N. Activating transcription factor 3 and the nervous system. Front. Mol. Neurosci., 2012, 5, 7.
[25]
Galley, H.F.; McCormick, B.; Wilson, K.L.; Lowes, D.A.; Colvin, L.; Torsney, C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J. Pineal Res., 2017, 63(4)
[http://dx.doi.org/10.1111/jpi.12444]
[26]
Karlsson, J.O.G.; Andersson, R.G.; Jynge, P. Mangafodipir a selective cytoprotectant - with special reference to oxaliplatin and its association to chemotherapy-induced peripheral neuropathy (CIPN). Transl. Oncol., 2017, 10(4), 641-649.
[27]
Maj, M.A.; Ma, J.; Krukowski, K.N.; Kavelaars, A.; Heijnen, C.J. Inhibition of mitochondrial p53 accumulation by PFT-μ prevents cisplatin-induced peripheral neuropathy. Front. Mol. Neurosci., 2017, 10, 108.
[28]
Starobova, H.; Vetter, I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci., 2017, 10, 174.
[29]
Andoh, T.; Uta, D.; Kato, M.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic administration of aucubin inhibits paclitaxel-induced mechanical allodynia via the inhibition of endoplasmic reticulum stress in peripheral Schwann cells. Biol. Pharm. Bull., 2017, 40(4), 473-478.
[30]
Kumar, S.K.; Laubach, J.P.; Giove, T.J.; Quick, M.; Neuwirth, R.; Yung, G.; Rajkumar, S.V.; Richardson, P.G. Impact of concomitant dexamethasone dosing schedule on bortezomib-induced peripheralneuropathy in multiple myeloma. Br. J. Haematol., 2017, 178(5), 756-763.
[31]
Kerckhove, N.; Collin, A.; Condé, S.; Chaleteix, C.; Pezet, D.; Balayssac, D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front. Pharmacol., 2017, 8, 86.
[32]
Staff, N.P.; Podratz, J.L.; Grassner, L.; Bader, M.; Paz, J.; Knight, A.M.; Loprinzi, C.L.; Trushina, E.; Windebank, A.J. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology, 2013, 39, 124-131.
[33]
Canta, A.; Pozzi, E.; Carozzi, V.A. Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxic, 2015, 3(2), 198-223.
[34]
Carozzi, V.A.; Chiorazzi, A.; Canta, A.; Lapidus, R.G.; Slusher, B.S.; Wozniak, K.M.; Cavaletti, G. Glutamate carboxypeptidase inhibition reduces the severity of chemotherapy-induced peripheral neurotoxicity in rat. Neurotox. Res., 2010, 17(4), 380-391.
[35]
Quartu, M.; Carozzi, V.A.; Dorsey, S.G.; Serra, M.P.; Poddighe, L.; Picci, C.; Boi, M.; Melis, T.; Del Fiacco, M.; Meregalli, C.; Chiorazzi, A.; Renn, C.L.; Cavaletti, G.; Marmiroli, P. Bortezomib treatment produces nocifensive behavior and changes in the expression of TRPV1, CGRP, and substance P in the rat DRG, spinal cord, and sciatic nerve. BioMed Res. Int., 2014, 2014, 180428.
[36]
Tonello, R.; Fusi, C.; Materazzi, S.; Marone, I.M.; De Logu, F.; Benemei, S.; Gonçalves, M.C.; Coppi, E.; Castro-Junior, C.J.; Gomez, M.V.; Geppetti, P.; Ferreira, J.; Nassini, R. The peptide Phα1β, from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br. J. Pharmacol., 2017, 174(1), 57-69.
[37]
Zhang, J.; Su, Y.M.; Li, D.; Cui, Y.; Huang, Z.Z.; Wei, J.Y.; Xue, Z.; Pang, R.P.; Liu, X.G.; Xin, W.J. TNF-α-mediated JNK activation in the dorsal root ganglion neurons contributes to Bortezomib-induced peripheral neuropathy. Brain Behav. Immun., 2014, 38, 185-191.
[38]
Liu, C.; Luan, S. OuYang, H.; Huang, Z.; Wu, S.; Ma, C.; Wei, J.; Xin, W. Upregulation of CCL2 via ATF3/c-Jun interaction mediated the Bortezomib-induced peripheral neuropathy. Brain Behav. Immun., 2016, 53, 96-104.
[39]
Coelho, A.; Oliveira, R.; Cruz, F.; Cruz, C.D. Impairment of sensory afferents by intrathecal administration of botulinum toxin A improves neurogenic detrusor overactivity in chronic spinal cord injured rats. Exp. Neurol., 2016. 285(Pt B), 159-166.
[40]
Chandran, V.; Coppola, G.; Nawabi, H.; Omura, T.; Versano, R.; Huebner, E.A.; Zhang, A.; Costigan, M.; Yekkirala, A.; Barrett, L.; Blesch, A.; Michaelevski, I.; Davis-Turak, J.; Gao, F.; Langfelder, P.; Horvath, S.; He, Z.; Benowitz, L.; Fainzilber, M.; Tuszynski, M.; Woolf, C.J.; Geschwind, D.H. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron, 2016, 89(5), 956-970.
[41]
Gey, M.; Wanner, R.; Schilling, C.; Pedro, M.T.; Sinske, D.; Knöll, B. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated geneinduction after peripheral nerve injury. Open Biol., 2016, 6(8)
[http://dx.doi.org/10.1098/rsob.160091]
[42]
Seijffers, R.; Allchorne, A.J.; Woolf, C.J. The transcription factor ATF-3 promotes neurite outgrowth. Mol. Cell. Neurosci., 2006, 32(1-2), 143-154.
[43]
Waseem, M.; Kaushik, P.; Tabassum, H.; Parvez, S. Role of mitochondrial mechanism in chemotherapy-induced peripheral neuropathy. Curr. Drug Metab., 2018, 19(1), 47-54.
[44]
Fink, E.E.; Mannava, S.; Bagati, A.; Bianchi-Smiraglia, A.; Nair, J.R.; Moparthy, K.; Lipchick, B.C.; Drokov, M.; Utley, A.; Ross, J.; Mendeleeva, L.P.; Savchenko, V.G.; Lee, K.P.; Nikiforov, M.A. Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia, 2016, 30(1), 104-111.
[45]
Flatters, S.J. The contribution of mitochondria to sensory processing and pain. Prog. Mol. Biol. Transl. Sci., 2015, 131, 119-146.
[46]
McCormick, B.; Lowes, D.A.; Colvin, L.; Torsney, C.; Galley, H.F. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br. J. Anaesth., 2016, 117(5), 659-666.
[47]
Chu, C.; Levine, E.; Gear, R.W.; Bogen, O.; Levine, J.D. Mitochondrial dependence of nerve growth factor-induced mechanical hyperalgesia. Pain, 2011, 152(8), 1832-1837.
[48]
Schönthal, A.H. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica, 2012, 2012, 857516.
[49]
Kim, I.; Xu, W.; Reed, J.C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov., 2008, 7(12), 1013-1030.
[50]
Dong, L.; Krewson, E.A.; Yang, L.V. Acidosis activates endoplasmic reticulum stress pathways through GPR4 in human vascular endothelial cells. Int. J. Mol. Sci., 2017, 18(2), pii E278.
[51]
Rzymski, T.; Milani, M.; Pike, L.; Buffa, F.; Mellor, H.R.; Winchester, L.; Pires, I.; Hammond, E.; Ragoussis, I.; Harris, A.L. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene, 2010, 29(31), 4424-4435.
[52]
Liu, Z.; Shi, Q.; Song, X.; Wang, Y.; Wang, Y.; Song, E.; Song, Y. Activating transcription factor 4 (ATF4)-ATF3-C/EBP homologous protein (CHOP) cascade shows an essential role in the ER stress-induced sensitization of tetrachlorobenzoquinone-challenged PC12 cells to ROS-mediated apoptosis via death receptor 5 (DR5) signaling. Chem. Res. Toxicol., 2016, 29(9), 1510-1518.
[53]
Berta Qadri, Y.; Tan, P.H.; Ji, R.R. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin. Ther. Targets, 2017, 21(7), 695-703.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy