Review Article

吡啶和嘧啶衍生物作为生物活性剂中的特权支架

卷 26, 期 40, 2019

页: [7166 - 7195] 页: 30

弟呕挨: 10.2174/0929867325666180904125400

价格: $65

conference banner
摘要

吡啶和嘧啶衍生物在最近的药理研究中引起了极大兴趣,可有效治疗各种恶性肿瘤,例如髓样白血病,乳腺癌和特发性肺纤维化。 大多数FDA批准的药物显示带有不同取代基的吡啶或嘧啶核。 这篇综述的目的是参考新近发现的基于吡啶或嘧啶的药物,它们的合成以及最具生物活性的衍生物的评价,来描述该领域的最新报道。 还报道了相应的苯并稠合的杂环化合物,即喹啉和喹唑啉。

关键词: 氮杂环,吡啶,嘧啶,生物活性,合成,分子建模。

[1]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[2]
Kale, S.S.; Pawar, R.R.; Kale, A.S. Imidazole, its derivatives & their importance: A Review. Int. J. Curr. Adv. Res., 2016, 5(5), 906-911.
[3]
Katritzky, A.R. Summary of Katritzky research group scientific results. Heterocycles, 1994, 37(1), 3-80.
[http://dx.doi.org/10.3987/1994-01-0003]
[4]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[5]
Khalifa, N.M.; Abdel-Rahman, A.A.H.; Abd-Elmoez, S.I.; Fathalla, O.A.; Abd El-Gwaad, A.A. A convenient synthesis of some new fused pyridine and pyrimidine derivatives of antimicrobial profiles. Res. Chem. Intermed., 2015, 41, 2295-2305.
[http://dx.doi.org/10.1007/s11164-013-1347-1]
[6]
Zhao, Y.; Zhang, J.; Zhuang, R.; He, R.; Xi, J.; Pan, X.; Shao, Y.; Pan, J.; Sun, J.; Cai, Z.; Liu, S.; Huang, W.; Lv, X. Synthesis and evaluation of a series of pyridine and pyrimidine derivatives as type II c-Met inhibitors. Bioorg. Med. Chem., 2017, 25(12), 3195-3205.
[http://dx.doi.org/10.1016/j.bmc.2017.04.003] [PMID: 28412159]
[7]
Chaubey, A.; Pandeya, S.N. Pyridine” a versatile nucleuse in pharmaceutical field. Asian J. Pharm. Clin. Res., 2011, 4(4), 5-8.
[8]
Sinthupoom, N.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications. Eur. Food Res. Technol., 2015, 240, 1-17.
[http://dx.doi.org/10.1007/s00217-014-2354-1]
[9]
Xue, J.; Diao, J.; Cai, G.; Deng, L.; Zheng, B.; Yao, Y.; Song, Y. Antimalarial and structural studies of pyridine-containing inhibitors of 1-deoxyxylulose-5-phosphate reductoisomerase. ACS Med. Chem. Lett., 2013, 4(2), 278-282.
[http://dx.doi.org/10.1021/ml300419r] [PMID: 23795240]
[10]
Balzarini, J.; Stevens, M.; De Clercq, E.; Schols, D.; Pannecouque, C. Pyridine N-oxide derivatives: unusual anti-HIV compounds with multiple mechanisms of antiviral action. J. Antimicrob. Chemother., 2005, 55(2), 135-138.
[http://dx.doi.org/10.1093/jac/dkh530] [PMID: 15650002]
[11]
Kaur, R.; Kaur, P.; Sharma, S.; Singh, G.; Mehndiratta, S.; Bedi, P.M.; Nepali, K. Anti-cancer pyrimidines in diverse scaffolds: a review of patent literature. Recent Patents Anticancer Drug Discov., 2015, 10(1), 23-71.
[http://dx.doi.org/10.2174/1574892809666140917104502] [PMID: 25230072]
[12]
Kassab, A.E.; Gedawy, E.M. Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2013, 63, 224-230.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.011] [PMID: 23501108]
[13]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605]
[14]
Corsaro, A.; Chiacchio, U.; Pistarà, V.; Borrello, L.; Gomeo, G.; Dalpozzo, R. Synthesis and biological properties of 2-oxabicyclo[4.1.0]heptane nucleosides containing uracil and thymine. Arkivoc, 2006, 6, 74-84.
[http://dx.doi.org/10.3998/ark.5550190.0007.608]
[15]
Chiacchio, U.; Iannazzo, D.; Piperno, A.; Romeo, R.; Romeo, G.; Rescifina, A.; Saglimbeni, M. Synthesis and biological evaluation of phosphonated carbocyclic 2′-oxa-3′-aza-nucleosides. Bioorg. Med. Chem., 2006, 14(4), 955-959.
[http://dx.doi.org/10.1016/j.bmc.2005.09.024] [PMID: 16213735]
[16]
Rani, J.; Kumar, S.; Saini, M.; Mundlia, J.; Verma, P.K. Biological potential of pyrimidine derivatives in a new era. Res. Chem. Intermed., 2016, 42(9), 6777-6804.
[http://dx.doi.org/10.1007/s11164-016-2525-8]
[17]
Satow, J.; Kondo, Y.; Kudo, J.; Mikashima, T.; Nawamaki, T.; Ito, Y.; Sudo, K.; Nakahira, K.; Watanabe, S.; Ishika-wa, K. Pyrimidine derivatives, herbicides and plant growth regulators. Patent 5,773,388, 1998.
[18]
Wang, J-M.; Asami, T.; Yoshida, S.; Murofushi, N. Biological evaluation of 5-substituted pyrimidine derivatives as inhibitors of brassinosteroid biosynthesis. Biosci. Biotechnol. Biochem., 2001, 65(4), 817-822.
[http://dx.doi.org/10.1271/bbb.65.817] [PMID: 11388458]
[19]
Yadav, M.R.; Barmade, M.A.; Tamboli, R.S.; Murumkar, P.R. Developing steroidal aromatase inhibitors-an effective armament to win the battle against breast cancer. Eur. J. Med. Chem., 2015, 105, 1-38.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.038] [PMID: 26469743]
[20]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[21]
Patil, P.; Sethy, S.P.; Sameena, T.; Shailaja, K. Pyridine and its biological activity: a review. Asian J. Res. Chem, 2013, 6, 888-899.
[22]
a)Chiacchio, U.; Genovese, F.; Iannazzo, D.; Piperno, A.; Quadrelli, P.; Corsaro, A.; Romeo, R.; Valveri, V.; Mastino, A. 4′-α-C-Branched N,O-nucleosides: Synthesis and biological properties. Bioorg. Med. Chem., 2004, 12(14), 3903-3909.
[http://dx.doi.org/10.1016/j.bmc.2004.04.041] [PMID: 15210157]
b)Masciocchi, D.; Gelain, A.; Porta, F.; Meneghetti, F.; Pedretti, A.; Celentano, G.; Barlocco, D.; Legnani, L.; Toma, L.; Kwon, B-M.; Asai, A.; Villa, S. Synthesis, structure-activity relationships and stereochemical investigations of new tricyclic pyridazinone derivatives as potential STAT3 inhibitors. MedChemComm, 2013, 4(8), 1181-1188.
[http://dx.doi.org/10.1039/c3md00095h]
c)Romeo, R.; Carnovale, C.; Giofrè, S.V.; Chiacchio, M.A.; Garozzo, A.; Amata, E.; Romeo, G.; Chiacchio, U. C-5′-Triazolyl-2′-oxa-3′-aza-4'a-carbanucleosides: synthesis and biological evaluation. Beilstein J. Org. Chem., 2015, 11, 328-334.
[http://dx.doi.org/10.3762/bjoc.11.38] [PMID: 25815087]
d)Bracci, A.; Colombo, G.; Ronchetti, F.; Compostella, F. 2-O-Alkyl Derivatives and 5 -Analogues of 5-Aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) as Potential Hsp90 Inhibitors. Eur. J. Org. Chem., 2009, 5913-5919.
e)Vetro, M.; Costa, B.; Donvito, G.; Arrighetti, N.; Cipolla, L.; Perego, P.; Compostella, F.; Ronchetti, F.; Colombo, D. Anionic glycolipids related to glucuronosyldiacylglycerol inhibit protein kinase Akt. Org. Biomol. Chem., 2015, 13, 1091-1099.
[http://dx.doi.org/10.1039/C4OB01602E]
[23]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[24]
Momparler, R.L. Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp. Hematol. Oncol., 2013, 2, 20-25.
[http://dx.doi.org/10.1186/2162-3619-2-20] [PMID: 23919448]
[25]
Walko, C.M.; Lindley, C. Capecitabine: a review. Clin. Ther., 2005, 27(1), 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]
[26]
Heinemann, V. Gemcitabine: progress in the treatment of pancreatic cancer. Oncology, 2001, 60(1), 8-18.
[http://dx.doi.org/10.1159/000055290] [PMID: 11150902]
[27]
Ritchie, E.K.; Feldman, E.J.; Christos, P.J.; Rohan, S.D.; Lagassa, C.B.; Ippoliti, C.; Scandura, J.M.; Carlson, K.; Roboz, G.J. Decitabine in patients with newly diagnosed and relapsed acute myeloid leukemia. Leuk. Lymphoma, 2013, 54(9), 2003-2007.
[http://dx.doi.org/10.3109/10428194.2012.762093] [PMID: 23270581]
[28]
Christman, J.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, 21(35), 5483-5495.
[http://dx.doi.org/10.1038/sj.onc.1205699] [PMID: 12154409]
[29]
Ahmad, I. Shagufta. Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur. J. Med. Chem., 2015, 102, 375-386.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.010] [PMID: 26301554]
[30]
Penov Gaši, K.M. Djurendić Brenesel, M. Dj; Djurendić, E. A.; Sakač, M. N.; Čanadi, J. J.; Daljeva, J. J.; Armbrust-er, T.; Andrić, S.; Sladič, D. M.; T. T. Božić; Novaković, I. T.; Juranić, Z. D. Synthesis and biological evaluation of some 17-picolyl and 17-picolinylidene androst-5-ene deriva-tives. Steroids, 2007, 72(1), 31-40.
[http://dx.doi.org/10.1016/j.steroids.2006.10.002] [PMID: 17118415]
[31]
Bansal, R.; Thota, S.; Karkra, N.; Minu, M.; Zimmer, C.; Hartmann, R.W. Synthesis and aromatase inhibitory activity of some new 16E-arylidenosteroids. Bioorg. Chem., 2012, 45, 36-40.
[http://dx.doi.org/10.1016/j.bioorg.2012.08.005] [PMID: 23064126]
[32]
Numazawa, M.; Komatsu, S.; Tominaga, T.; Yamashita, K. Structure-activity relationships of estrogen derivatives as aromatase inhibitors. Effects of heterocyclic substituents. Chem. Pharm. Bull. (Tokyo), 2008, 56(9), 1304-1309.
[http://dx.doi.org/10.1248/cpb.56.1304] [PMID: 18758106]
[33]
Bonfield, K.; Amato, E.; Bankemper, T.; Agard, H.; Steller, J.; Keeler, J.M.; Roy, D.; McCallum, A.; Paula, S.; Ma, L. Development of a new class of aromatase inhibitors: design, synthesis and inhibitory activity of 3-phenylchroman-4-one (isoflavanone) derivatives. Bioorg. Med. Chem., 2012, 20(8), 2603-2613.
[http://dx.doi.org/10.1016/j.bmc.2012.02.042] [PMID: 22444875]
[34]
Amato, E.; Bankemper, T.; Kidney, R.; Do, T.; Onate, A.; Thowfeik, F.S.; Merino, E.J.; Paula, S.; Ma, L. Investigation of fluorinated and bifunctionalized 3-phenylchroman-4-one (isoflavanone) aromatase inhibitors. Bioorg. Med. Chem., 2014, 22(1), 126-134.
[http://dx.doi.org/10.1016/j.bmc.2013.11.045] [PMID: 24345481]
[35]
Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E-J.; Pezzuto, J.M.; Cushman, M. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg. Med. Chem., 2012, 20(1), 510-520.
[http://dx.doi.org/10.1016/j.bmc.2011.09.031] [PMID: 22115839]
[36]
Prachayasittikul, V.; Pingaew, R.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives. Drug Des. Devel. Ther., 2014, 8, 1089-1096.
[http://dx.doi.org/10.2147/DDDT.S67300] [PMID: 25152615]
[37]
Miyazaki, Y.; Maeda, Y.; Sato, H.; Nakano, M.; Mellor, G.W. Rational design of 4-amino-5,6-diaryl-furo[2,3-d]pyrimidines as potent glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(6), 1967-1971.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.113] [PMID: 18280153]
[38]
Sivaprakasam, P.; Han, X.; Civiello, R.L.; Jacutin-Porte, S.; Kish, K.; Pokross, M.; Lewis, H.A.; Ahmed, N.; Szapiel, N.; Newitt, J.A.; Baldwin, E.T.; Xiao, H.; Krause, C.M.; Park, H.; Nophsker, M.; Lippy, J.S.; Burton, C.R.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg. Med. Chem. Lett., 2015, 25(9), 1856-1863.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.046] [PMID: 25845281]
[39]
Coffman, K.; Brodney, M.; Cook, J.; Lanyon, L.; Pandit, J.; Sakya, S.; Schachter, J.; Tseng-Lovering, E.; Wessel, M. 6-amino-4-(pyrimidin-4-yl)pyridones: novel glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(5), 1429-1433.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.017] [PMID: 21295469]
[40]
Karki, R.; Thapa, P.; Kang, M.J.; Jeong, T.C.; Nam, J.M.; Kim, H-L.; Na, Y.; Cho, W-J.; Kwon, Y.; Lee, E-S. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorg. Med. Chem., 2010, 18(9), 3066-3077.
[http://dx.doi.org/10.1016/j.bmc.2010.03.051] [PMID: 20392646]
[41]
Karki, R.; Thapa, P.; Yoo, H.Y.; Kadayat, T.M.; Park, P-H.; Na, Y.; Lee, E.; Jeon, K-H.; Cho, W-J.; Choi, H.; Kwon, Y.; Lee, E-S. Dihydroxylated 2,4,6-triphenyl pyridines: synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study. Eur. J. Med. Chem., 2012, 49, 219-228.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.015] [PMID: 22318164]
[42]
Thapa, P.; Karki, R.; Yun, M.; Kadayat, T.M.; Lee, E.; Kwon, H.B.; Na, Y.; Cho, W-J.; Kim, N.D.; Jeong, B-S.; Kwon, Y.; Lee, E.S. Design, synthesis, and antitumor evaluation of 2,4,6-triaryl pyridines containing chlorophenyl and phenolic moiety. Eur. J. Med. Chem., 2012, 52, 123-136.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.010] [PMID: 22503656]
[43]
Jun, K.Y.; Kwon, Y.; Park, S-E.; Lee, E. Karki, R.; Thapa, P.; Lee, J.-H.; Lee, E.-S.; Kwon, Y. Discovery of dihydrox-ylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor. Eur. J. Med. Chem., 2014, 80, 428-438.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.066] [PMID: 24796883]
[44]
Karki, R.; Park, C.; Jun, K-Y.; Kadayat, T.M.; Lee, E-S.; Kwon, Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur. J. Med. Chem., 2015, 90, 360-378.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.045] [PMID: 25437622]
[45]
Karki, R.; Song, C.; Kadayat, T.M.; Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S.; Lee, E-S. Topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines. Bioorg. Med. Chem., 2015, 23(13), 3638-3654.
[http://dx.doi.org/10.1016/j.bmc.2015.04.002] [PMID: 25936262]
[46]
Tynebor, R.M.; Chen, M-H.; Natarajan, S.R.; O’Neill, E.A.; Thompson, J.E.; Fitzgerald, C.E.; O’Keefe, S.J.; Doherty, J.B. Synthesis and biological activity of pyridopyridazin-6-one p38 MAP kinase inhibitors. Part 1. Bioorg. Med. Chem. Lett., 2011, 21(1), 411-416.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.128] [PMID: 21084192]
[47]
Luparia, M.; Legnani, L.; Porta, A.; Zanoni, G.; Toma, L.; Vidari, G. Enantioselective synthesis and olfactory evaluation of bicyclic α- and γ-ionone derivatives: The 3D arrangement of key molecular features relevant to the violet odor of ionones. J. Org. Chem, 2009, 74(18), 7100-7110.
[http://dx.doi.org/10.1021/jo9014936] [PMID: 19743882]
b)Toma, L.; Legnani, L.; Rencurosi, A.; Poletti, L.; Lay, L.; Russo, G. Modeling of synthetic phosphono and carba analogues of N-acetyl-α-D-mannosamine 1-phosphate, the repeating unit of the capsular polysaccharide from Neisseria meningitidis serovar A. Org. Biomol. Chem., 2009, 7(18), 3734-3740.
[http://dx.doi.org/10.1039/b907000a] [PMID: 19707677]
c)Shin, D.- S.; Masciocchi, D.; Gelain, A.; Villa, S.; Barlocco, D.; Meneghetti, F.; Pedretti, A.; Han, Y.-M.; Han, D.C.; Han, M.Y.; Kwon, B.-M.; Legnani, L.; Toma, L. Synthesis, modeling, and crystallographic study of 3,4-disubstituted- 1,2,5-oxadiazoles and evaluation of their ability to decrease STAT3 activity. Med. Chem. Commun., 2010, 1(2), 156-164.
[http://dx.doi.org/10.1039/c0md00057d]
d)Legnani, L.; Toma, L.; Caramella, P.; Chiacchio, M. A.; Giofrè, S.; Delso, I.; Tejero, T.; Merino, P. Computational mechanistic study of thionation of carbonyl compounds with Lawesson’s reagent. J. Org. Chem., 2016, 81(17), 7733-7740.
[http://dx.doi.org/10.1021/acs.joc.6b01420]
e)Chiacchio, M. A.; Legnani, L.; Caramella, P.; Tejero, T.; Merino, P. Pivotal neighbouring group participation in substitution vs elimination reactions: computational evidence for ion pairs in the thionation of alcohols with Lawesson’s reagent. Eur. J. Org. Chem., 2017, 2017(14), 1952-1960.
[http://dx.doi.org/10.1002/ejoc.201700127]
[48]
Tynebor, R.M.; Chen, M-H.; Natarajan, S.R.; O’Neill, E.A.; Thompson, J.E.; Fitzgerald, C.E.; O’Keefe, S.J.; Doherty, J.B. Synthesis and biological activity of pyridopyridazin-6-one p38α MAP kinase inhibitors. Part 2. Bioorg. Med. Chem. Lett., 2012, 22(18), 5979-5983.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.035] [PMID: 22901390]
[49]
Kadry, H.H. Synthesis, biological evaluation of certain pyra-zolo [3,4-d]pyrimidines as novel anti-inflammatory and analgesic agent. Med. Chem. Res., 2014, 23(12), 5269-5281.
[http://dx.doi.org/10.1007/s00044-014-1079-9]
[50]
Aggarwal, R.; Masan, E.; Kaushik, P.; Kaushik, D.; Sharma, C.; Aneja, K.R. Synthesis and biological evaluation of 7-trifluoromethylpyrazolo [1,5-a]pyrimidines as anti-inflammatory and antimicrobial agents. J. Fluor. Chem., 2014, 168, 16-24.
[http://dx.doi.org/10.1016/j.jfluchem.2014.08.017]
[51]
Mohamed, M.S.; Kamel, R.; El-hameed, R.H.A. Evaluation of the anti-inflammatory activity of some pyrrolo[2,3-d]pyrimidine derivatives. Med. Chem. Res., 2013, 22(5), 2244-2252.
[http://dx.doi.org/10.1007/s00044-012-0217-5]
[52]
Mohamed, M.S.; Hussein, W.M.; McGeary, R.P.; Vella, P.; Schenk, G. Abd El-hameed, R. H. Synthesis and kinetic testing of new inhibitors for a metallo-b-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur. J. Med. Chem., 2011, 46(12), 6075-6082.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.030] [PMID: 22051063]
[53]
Pertusati, F.; Serafini, S.; Albadry, N.; Snoeck, R.; Andrei, G. Phosphonoamidate prodrugs of C5-substituted pyrimidine acyclic nucleosides for antiviral therapy. Antiviral Res., 2017, 143, 262-268.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.013] [PMID: 28454912]
[54]
Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V.K.; Smith, D.B.; Jekle, A.; Kinkade, A.; Symons, J.A.; Jin, Z.; Deval, J.; Zhang, Q.; Tam, Y.; Chan-da, S.; Blatt, L.; Beigelman, L. Synthesis and anti-influenza activity of pyridine, pyridazine, and pyrimidine cnucleosides as favipiravir (T-705) analogues. J. Med. Chem., 2016, 59(10), 4611-4624.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01933] [PMID: 27120583]
[55]
Hessein, S.A.; Fouad, S.A.; Raslan, R.R.; Shemiss, N.A. Synthesis of some novel pyrrolidine, thiomorpholine, pyrim-idine and pyridine derivatives containing benzimidazole moiety of expected antiviral and antimicrobial activity. Pharma Chem., 2016, 8(8), 170-181.
[56]
a)De Clercq, E. Antiviral drug strategies; Wiley-VCH, Vol. 50, 2011, pp. 1-406.
[http://dx.doi.org/10.1002/9783527635955]
b)Hishitsuka, H.; Shimma, N. Modified Nucleosides. In: Biochemistry, Biotechnology and Medicine; Piet Herdewijn. Ed.; Wiley, 2008; p. 587-600.
d)Thottassery, J.V.; Westbrook, L.; Someya, H.; Parker, W. B. c-Abl-independent p73 stabilization during gemcitabine- or 4'-thio-beta-Darabinofuranosylcytosine-induced apoptosis in wild-type and p53-null colorectal cancer cells. Mol. Cancer Therapeut, 2006, 5(2), 400-410.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0409] [PMID: 16505115]
c)Miura, S.; Izuta, S. DNA polymerases as targets of anticancer nucleosides. Curr. Drug Targets, 2004, 5(2), 191-195.
[http://dx.doi.org/10.2174/1389450043490578] [PMID: 15011952]
d)Klopfer, A. Adenine deoxynucleotides fludarabine and cladribine induce apoptosis in a CD95/Fas receptor, FADD and caspase-8-independent manner by activation of the mitochondrial cell death pathway. Oncogene, 2004, 23, 9408-9418.
[http://dx.doi.org/10.1038/sj.onc.1207975]
e)F. De, Clercq E. The history of antiretrovirals: key discoveries over the past 25 years. Rev. Med. Virol., 2009, 19, 287-299.
[http://dx.doi.org/10.1002/rmv.624] [PMID: 19714702]
f)De Clercq, E. Acyclic nucleoside phosphonates: past, present and future. Bridging chemistry to HIV, HBV, HCV, HPV, adeno-, herpes-, and poxvirus infections: the phosphonate bridge. Biochem. Pharmacol., 2007, 73, 911-922.
[http://dx.doi.org/10.1016/j.bcp.2006.09.014] [PMID: 17045247]
g)Cihlar, T.; LaFlamme, G.; Fisher, R.; Carey, A.C.; Vela, J.E.; Mackman, R.; Ray, A.S. Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob. Agents Chemother., 2009, 53(1), 150-156.
[http://dx.doi.org/10.1128/AAC.01183-08] [PMID: 19001108]
h)Choo, H.; Beadle, J.R.; Kern, E.R.; Prichard, M.N.; Keith, K.A.; Hartlina, C.B.; Trahan, J.; Aldern, K.A.; Korba, B.E.; Hostetler, K.Y. Antiviral activities of novel 5-phosphono-pent-2-en-1-yl nucleosides and their alkoxyalkyl phosphonoesters. Antimicrob. Agents Chemother., 2007, 51, 611-615.
[http://dx.doi.org/10.1128/AAC.00444-06] [PMID: 17130297]
i)Krcmerova, M.; Holy, A.; Piskala, A.; Masojidkova, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R. Antiviral activity of triazine analogues of 1- (S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (cidofovir) and related compounds. J. Med.Chem., 2007, 50(5), 1069-1077.
[http://dx.doi.org/10.1021/jm061281+] [PMID: 17298047]
j)Lebeau, I.; Andrei, G.; Krecmerova, M.; De Clercq, E.; Holy, A.; Snoeck, R. Inhibitory activities of three classes of acyclic nucleoside phosphonates against murine polyomavirus and primate simian virus 40 strains. Antimicrob. Agent Chemother., 2007, 51(6), 2268-2273.
[http://dx.doi.org/10.1128/AAC.01422-06] [PMID: 17420214]
k)Vanek,V.; Budesinsky, M.; Rinnova, M.; Rosemberg, I. Prolinol-based nucleoside phosphonic acids: new isosteric conformationally flexible nucleotide analogues. Tetrahedron, 2009, 65(4), 862-876.
[http://dx.doi.org/10.1016/j.tet.2008.11.035]
l)Kumamoto, H.; Topalis, D.; Broggi, J.; Pradere, U.; Roi, V.; Berteina- Raboin, S.; Nolan, S. P.; Deville,-Bonne, D.; Andrei, G.; Snoeck, R.;Garin, D.; Grance, G. M.; Agrofoglio, L. A. Preparation of acyclo nucleoside phosphonate analogues based on cross-metathesis. Tetrahedron, 2008, 64(16), 3517-3526.
[http://dx.doi.org/10.1016/j.tet.2008.01.140]
m)Vrbkova, S.; Dracinsky, M.; Holy, A. Synthesis of phosphonomethoxyethyl or 1,3 bis(phosphonomethoxy)propan-2-yllipophilic esters of acyclic nucleoside phosphonates. Tetrahedron, 2007, 63(46), 11391-11398.
[http://dx.doi.org/10.1016/j.tet.2007.08.081]
[57]
a)Balestrieri, E.; Pizzimenti, F.; Ferlazzo, A.; Giofrè, S.V.; Iannazzo, D.; Piperno, A.; Romeo, R.; Chiacchio, M.A.; Mastino, A.; Macchi, B. Antiviral activity of seed extract from Citrus bergamia towards human retroviruses. Bioorg. Med. Chem., 2011, 19(6), 2084-2089.
[http://dx.doi.org/10.1016/j.bmc.2011.01.024] [PMID: 21334901]
b)Legnani, L.; Colombo, D.; Venuti, A.; Pastori, C.; Lopalco, L.; Toma, L.; Mori, M.; Grazioso, G.; Villa, S. Diazabicyclo analogues of maraviroc: synthesis, modeling, NMR studies and antiviral activity. MedChemComm, 2017, 8(2), 422-433.
[http://dx.doi.org/10.1039/C6MD00575F] [PMID: 30108760]
c)Colombo, D.; Villa, S.; Solano, L.; Legnani, L.; Marinone Albini, F.; Toma, L. An exhaustive conformational evaluation of the HIV-1 inhibitor BMS-378806 through theoretical calculations and nuclear magnetic resonance spectroscopy. Eur. J. Org. Chem., 2009, 19, 3178-3183.
[http://dx.doi.org/10.1002/ejoc.200900178]
[58]
Kappe, C.O. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[59]
Piperno, A.; Cordaro, M.; Scala, A.; Iannazzo, D. Recent highlights in the synthesis of anti-HCV ribonucleosides. Curr. Med. Chem., 2014, 21(16), 1843-1860.
[http://dx.doi.org/10.2174/0929867321666131228205935] [PMID: 24372207]
[60]
Carnovale, C.; Iannazzo, D.; Nicolosi, G.; Piperno, A.; San-filippo, C. Preparation of isoxazolidinyl nucleoside enantio-mers by lipase-catalysed kinetic resolution. Tetrahedron Asymmetry, 2009, 20(4), 425-429.
[http://dx.doi.org/10.1016/j.tetasy.2009.02.026]
[61]
Rescifina, A.; Zagni, C.; Iannazzo, D.; Merino, P. Recent developments on rotaxane-based shuttles. Curr. Org. Chem., 2009, 13, 448-481.
[http://dx.doi.org/10.2174/138527209787582222]
[62]
Chiacchio, U.; Corsaro, A.; Iannazzo, D.; Piperno, A.; Pis-tarà, V.; Procopio, A.; Rescifina, A.; Romeo, G.; Romeo, R.; Siciliano, M.C.R.; Valveri, E. Enantioselective synthesis of isoxazolidinyl nucleosides containinguracil,5-fluorouracil, thymine and cytosine as new potential anti-HIV drugs. ARKIVOC, 2002, 11, 159-167.
[http://dx.doi.org/10.3998/ark.5550190.0003.b15]
[63]
Romeo, G.; Iannazzo, D.; Piperno, A.; Romeo, R.; Saglimbeni, M.; Chiacchio, M.A.; Balestrieri, E.; Macchi, B.; Mastino, A. Synthesis and biological evaluation of phosphonated dihydroisoxazole nucleosides. Bioorg. Med. Chem., 2006, 14(11), 3818-3824.
[http://dx.doi.org/10.1016/j.bmc.2006.01.028] [PMID: 16480883]
[64]
Chiacchio, U.; Corsaro, A.; Iannazzo, D.; Piperno, A.; Ro-meo, G.; Romeo, R.; Saita, M.G.; Rescifina, A. Synthesis of methyleneisoxazolidine nucleoside analogues by microwave-assisted nitrone cycloaddition. Eur. J. Org. Chem., 2007, 28, 4758-4764.
[http://dx.doi.org/10.1002/ejoc.200700171]
[65]
Bzowska, A. Formycins and their analogues: purine nucleoside phosphorylase inhibitors and their potential application in immunosuppression and cancer. In: Modified Nucleosides in Biochemistry, Biotechnology and Medicine; P. Herdewijn (Ed.); Wiley-VCH, Weinheim,, 2008; pp. 473-510.
[http://dx.doi.org/10.1002/9783527623112.ch19]
[66]
Krawczyk, S.H.; Nassiri, M.R.; Kucera, L.S.; Kern, E.R.; Ptak, R.G.; Wotring, L.L.; Drach, J.C.; Townsend, L.B. Synthesis and antiproliferative and antiviral activity of 2′-deoxy-2′-fluoroarabinofuranosyl analogs of the nucleoside antibiotics toyocamycin and sangivamycin. J. Med. Chem., 1995, 38(20), 4106-4114.
[http://dx.doi.org/10.1021/jm00020a026] [PMID: 7562946]
[67]
Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K. Bioac-tive marine metabolites IX. Mycalisines A and B, novel nucleosides which inhibit cell division of fertilized starfish eggs, from the marine sponge mycale sp. Tetrahedron Lett., 1985, 29, 3483-3486.
[http://dx.doi.org/10.1016/S0040-4039(00)98670-2]
[68]
J.G., Buchanan; and R.H., Wightman The chemistry of nucleoside antibiotics. In: Topics in Antibiotic Chemistry; P.G. Sammes, Ed.; J. Wiley and Sons, New York, 1982; Vol. 6, pp. 231-339.
[69]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[70]
Kierzek, E.; Malgowska, M.; Lisowiec, J.; Turner, D.H.; Gdaniec, Z.; Kierzek, R. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res., 2014, 42(5), 3492-3501.
[http://dx.doi.org/10.1093/nar/gkt1330] [PMID: 24369424]
[71]
a)De Clercq, E. 40-year journey in search of selective antiviral chemotherapy. Annu. Rev. Pharmacol. Toxicol., 2011, 51, 1-24.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100228] [PMID: 20809796]
b)De Clercq, E. Ten paths to the discovery of antivirally active nucleoside and nucleotide analogues. Nucleosides Nucleotides Nucleic Acids, 2012, 31(4), 339-352.
[http://dx.doi.org/10.1080/15257770.2012.657383] [PMID: 22444195]
c)Jung, K-H.; Marx, A. Synthesis of 4-C-modified 2- deoxyribonucleoside analogues and oligonucleotides. Curr. Org. Chem., 2008, 12(5), 343-354.
[http://dx.doi.org/10.2174/138527208783743705]
d)Hirota, K.; Monguchi, Y.; Sajiki, H. Synthesis of Purine Acyclonucleosides via Ribofuranose-Ring Cleavage of Purine Nucleosides by Diisobutylaluminum Hydride. In: Recent Advances in Nucleosides: Chemistry and Chemotherapy; Chu, C.K., Ed.; Elsevier: Amsterdam, 2002; pp. 57-70.
e)Ashry, E.S.H.E.; Rashed, N. Carbohydrate hydrazones and osazones as organic raw materials for nucleosides and heterocycles. Curr. Org. Chem., 2000, 4(6), 609-651.
[http://dx.doi.org/10.2174/1385272003376102]
f)Littler, E.; Zhou, X-X. Comprehensive Medicinal Chemistry II, 2nd ed.; Taylor, John B.; Triggle, D. J. Eds.2006, 7, p 295-327.
[72]
Wang, J.; Rwal, R.K.; Chu, C.K. Zhang, Li-He, Xi, Zhen, Chattopadhyaya. Medicinal Chemistry of Nucleic Acids, 2011, pp. 1-100 b) Gundersen, L. Metal-mediated C-C and C-N bond formation in the synthesis of bioactive purines. Targets Heterocycl. Sys., 2008, 12, 85-119.
[http://dx.doi.org/10.1002/chin.201010228]
[73]
a)Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chemical Synthesis of Heterocyclic-Sugar Nucleoside Analogues. Chem. Rev., 2010, 110(6), 3337-3370.
[http://dx.doi.org/10.1021/cr800464r] [PMID: 20232792]
b)Merino, P. Heterocyclic nucleosides: chemical synthesis and biological proper-ties. Curr. Med. Chem., 2006, 13(5), 539-545.
[http://dx.doi.org/10.2174/092986706776055779] [PMID: 16515520]
c)Mathé, C.; Gosselin, G. L-nucleoside enantiomers antivirals drugs: a mini-review. Antiviral Res., 2006, 71(2-3), 276-281.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.017] [PMID: 16797735]
[74]
a)Moggio, Y.; Legnani, L.; Bovio, B.; Memeo, M.G.; Quad-relli, P. Synthesis of novel anthracene derivatives of isoxazo-lino-carbocyclic nucleoside analogues. Tetrahedron, 2012, 68, 1384-1392.
[http://dx.doi.org/10.1016/j.tet.2011.12.047]
b)Savion, M.; Memeo, M.G.; Bovio, B.; Grazioso, G.; Legnani, L.; Quadrelli, P. Synthesis and molecular modeling of novel dihydroxycyclopentane-carbonitrile nor-nucleosides by bromonitrile oxide 1,3-dipolar cycloaddi-tion. Tetrahedron, 2012, 68, 1845-1852.
[http://dx.doi.org/10.1016/j.tet.2011.12.086]
c)Quadrelli, P.; Mella, M.; Legnani, L.; Al-Saad, D. From Cyclopentadiene to Isoxazoline-Carbocyclic Nucleosides; Synthesis of Highly Active Inhibitors of Influenza A Virus H1N1. Eur. J. Org. Chem., 2013, 4655-4665.
[http://dx.doi.org/10.1002/ejoc.201300119]
d)Romeo, R.; Giofrè, S.V.; Garozzo, A.; Bisignano, B.; Corsaro, A.; Chiacchio, M.A. Synthesis and biological evaluation of furopyrimidine N,O-nucleosides. Bioorg. Med. Chem., 2013, 21, 5688-5693.
[http://dx.doi.org/10.1016/j.bmc.2013.07.031] [PMID: 2393244]
[75]
Clumeck, N. Current use of anti-HIV drugs in AIDS. J. Antimicrob. Chemother., 1993, 32(Suppl. A), 133-138.
[http://dx.doi.org/10.1093/jac/32.suppl_A.133] [PMID: 8407695]
[76]
Desai, M.; Iyer, G.; Dikshit, R.K. Antiretroviral drugs: critical issues and recent advances. Indian J. Pharmacol., 2012, 44(3), 288-298.
[http://dx.doi.org/10.4103/0253-7613.96296] [PMID: 22701234]
[77]
Wood, E.; Hogg, R.S.; Lima, V.D.; Kerr, T.; Yip, B.; Marshall, B.D.L.; Montaner, J.S. Highly active antiretroviral therapy and survival in HIV-infected injection drug users. JAMA, 2008, 300(5), 550-554.
[http://dx.doi.org/10.1001/jama.300.5.550] [PMID: 18677027]
[78]
De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discov., 2005, 4(11), 928-940.
[http://dx.doi.org/10.1038/nrd1877] [PMID: 16264436]
[79]
De Clercq, E. Therapeutic potential of Cidofovir (HPMPC, Vistide) for the treatment of DNA virus (i.e. herpes-, papova-, pox- and adenovirus) infections. Verh. K. Acad. Geneeskd. Belg., 1996, 58(1), 19-47.
[PMID: 8701600]
[80]
Holý, A.; Votruba, I.; Masojídková, M.; Andrei, G.; Snoeck, R.; Naesens, L.; De Clercq, E.; Balzarini, J. 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity. J. Med. Chem., 2002, 45(9), 1918-1929.
[http://dx.doi.org/10.1021/jm011095y] [PMID: 11960502]
[81]
Krecmerová, M.; Holý, A.; Pohl, R.; Masojídková, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R. Ester prodrugs of cyclic 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: synthesis and antiviral activity. J. Med. Chem., 2007, 50(23), 5765-5772.
[http://dx.doi.org/10.1021/jm0707166] [PMID: 17948980]
[82]
Krečmerová, M.; Dračínský, M.; Snoeck, R.; Balzarini, J.; Pomeisl, K.; Andrei, G. New prodrugs of two pyrimidine acyclic nucleoside phosphonates: Synthesis and antiviral activity. Bioorg. Med. Chem., 2017, 25(17), 4637-4648.
[http://dx.doi.org/10.1016/j.bmc.2017.06.046] [PMID: 28757102]
[83]
Hurt, A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol., 2014, 8, 22-29.
[http://dx.doi.org/10.1016/j.coviro.2014.04.009] [PMID: 24866471]
[84]
Samson, M.; Pizzorno, A.; Abed, Y.; Boivin, G. Influenza virus resistance to neuraminidase inhibitors. Antiviral Res., 2013, 98(2), 174-185.
[http://dx.doi.org/10.1016/j.antiviral.2013.03.014] [PMID: 23523943]
[85]
Gueiffier, A.; Mavel, S.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.C.; Witvrouw, M.; Balzarini, J.; De Clercq, E.; Chapat, J.P. Synthesis of imidazo[1,2-a]pyridines as antiviral agents. J. Med. Chem., 1998, 41(25), 5108-5112.
[http://dx.doi.org/10.1021/jm981051y] [PMID: 9836626]
[86]
Gudmundsson, K.S.; Williams, J.D.; Drach, J.C.; Townsend, L.B. Synthesis and antiviral activity of novel erythrofuranosyl imidazo[1,2-a]pyridine C-nucleosides constructed via palladium coupling of iodoimidazo[1,2-a]pyridines and dihydrofuran. J. Med. Chem., 2003, 46(8), 1449-1455.
[http://dx.doi.org/10.1021/jm020339r] [PMID: 12672244]
[87]
Paeshuyse, J.; Chezal, J.M.; Froeyen, M.; Leyssen, P.; Dutartre, H.; Vrancken, R.; Canard, B.; Letellier, C.; Li, T.; Mittendorfer, H.; Koenen, F.; Kerkhofs, P.; De Clercq, E.; Herdewijn, P.; Puerstinger, G.; Gueiffier, A.; Chavignon, O.; Teulade, J.C.; Neyts, J. The imidazopyrrolopyridine analogue AG110 is a novel, highly selective inhibitor of pestiviruses that targets the viral RNA-dependent RNA polymerase at a hot spot for inhibition of viral replication. J. Virol., 2007, 81(20), 11046-11053.
[http://dx.doi.org/10.1128/JVI.00388-07] [PMID: 17686854]
[88]
Chezal, J-M.; Paeshuyse, J.; Gaumet, V.; Canitrot, D.; Maisonial, A.; Lartigue, C.; Gueiffier, A.; Moreau, E.; Teulade, J-C.; Chavignon, O.; Neyts, J. Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. Eur. J. Med. Chem., 2010, 45(5), 2044-2047.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.023] [PMID: 20149501]
[89]
Amorim, R.; Ferreira de Meneses, M.D.; Borges, J.C.; Da Silva Pinheiro, L.C.; Caldas, L.A.; Cirne-Santos, C.C.; Palmeira de Mello, M.V.; Teles de Souza, A.M.; Castro, H.C.; Nunes de Palmer Paixão, I.C.; De Mendonça Campos, R.; Bergmann, I.E.; Malirat, V.; Rolim Bernardino, A.M.; Rebello, M.A.; Ferreira, D.F. Thieno[2,3-b]pyridine deriva-tives: a new class of antiviral drugs against Mayaro virus. Arch. Virol., 2017, 162(6), 1577-1587.
[http://dx.doi.org/10.1007/s00705-017-3261-0] [PMID: 28213871]
[90]
Ferreira, D.F.; Santo, M.P.; Rebello, M.A.; Rebello, M.C. Weak bases affect late stages of Mayaro virus replication cycle in vertebrate cells. J. Med. Microbial., 2000, 49(4), 313-318.
[http://dx.doi.org/10.1099/0022-1317-49-4-313] [PMID: 10755624]
[91]
Tesh, R.B.; Watts, D.M.; Russell, K.L.; Damodaran, C.; Calampa, C.; Cabezas, C.; Ramirez, G.; Vasquez, B.; Hayes, C.G.; Rossi, C.A.; Powers, A.M.; Hice, C.L.; Chandler, L.J.; Cropp, B.C.; Karabatsos, N.; Roehrig, J.T.; Gubler, D.J. Mayaro virus disease: an emerging mosquito-borne zoonosis in tropical South America. Clin. Infect. Dis., 1999, 28(1), 67-73.
[http://dx.doi.org/10.1086/515070] [PMID: 10028074]
[92]
Bernardino, A.M.; da Silva Pinheiro, L.C.; Rodrigues, C.R.; Loureiro, N.I.; Castro, H.C.; Lanfredi-Rangel, A.; Sabatini-Lopes, J.; Borges, J.C.; Carvalho, J.M.; Romeiro, G.A.; Ferreira, V.F.; Frugulhetti, I.C.; Vannier-Santos, M.A. Design, synthesis, SAR, and biological evaluation of new 4-(phenylamino)thieno[2,3-b]pyridine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5765-5770.
[http://dx.doi.org/10.1016/j.bmc.2006.03.013] [PMID: 16781157]
[93]
World Health Organization. Available at: http://www.who. int/mediacentre/factsheets/fs094/en/ (Accessed Date: 27 March, 2019)
[95]
a)Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361(5), 455-467.
[http://dx.doi.org/10.1056/NEJMoa0808859] [PMID: 19641202]
b)Dondorp, A.M.; Yeung, S.; White, L.; Nguon, C.; Day, N.P.J.; Socheat, D.; von Seidlein, L. Artemisinin resistance: current status and scenarios for containment. Nat. Rev. Microbiol., 2010, 8(4), 272-280.
[http://dx.doi.org/10.1038/nrmicro2331] [PMID: 20208550]
[96]
a)Grazioso, G.; Legnani, L.; Toma, L.; Ettari, R.; Micale, N.; De Micheli, C. Mechanism of falcipain-2 inhibition by α,β-unsaturated benzo[1,4]diazepin-2-one methyl ester. J. Comput. Aided Mol. Des., 2012, 26(9), 1035-1043.
[http://dx.doi.org/10.1007/s10822-012-9596-4] [PMID: 22965332]
b)Villa, S.; Legnani, L.; Colombo, D.; Gelain, A.; Lammi, C.; Bongiorno, D.; Ilboudo, D.P.; McGee, K.E.; Bosch, J.; Grazioso, G. Structure-based drug design, synthesis and biological assays of P. falciparum Atg3-Atg8 protein-protein interaction inhibitors. J. Comput. Aided Mol. Des., 2018, 32(3), 473-486.
[http://dx.doi.org/10.1007/s10822-018-0102-5] [PMID: 29383466]
[97]
Kasiganesan, H.; Wright, G.L.; Chiacchio, M.A.; Gumina, G. Novel l-adenosine analogs as cardioprotective agents. Bioorg. Med. Chem., 2009, 17(14), 5347-5352.
[http://dx.doi.org/10.1016/j.bmc.2008.12.011] [PMID: 19502065]
[98]
Manohar, S.; Rajesh, U.C.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett., 2012, 3(7), 555-559.
[http://dx.doi.org/10.1021/ml3000808] [PMID: 24900509]
[99]
Singh, K.; Kaur, H.; Smith, P.; de Kock, C.; Chibale, K.; Balzarini, J. Quinoline-pyrimidine hybrids: synthesis, antiplasmodial activity, SAR, and mode of action studies. J. Med. Chem., 2014, 57(2), 435-448.
[http://dx.doi.org/10.1021/jm4014778] [PMID: 24354322]
[100]
Lödige, M.; Lewis, M.D.; Paulsen, E.S.; Esch, H.L.; Pradel, G.; Lehmann, L.; Brun, R.; Bringmann, G.; Mueller, A-K. A primaquine-chloroquine hybrid with dual activity against Plasmodium liver and blood stages. Int. J. Med. Microbiol., 2013, 303(8), 539-547.
[http://dx.doi.org/10.1016/j.ijmm.2013.07.005] [PMID: 23992634]
[101]
Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem., 2010, 53(17), 6477-6489.
[http://dx.doi.org/10.1021/jm1006484] [PMID: 20684562]
[102]
Aguiar, A.C. Santos, Rde.M.; Figueiredo, F.J.; Cortopassi, W.A.; Pimentel, A.S.; França, T.C.; Meneghetti, M.R.; Krettli, A.U. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites. PLoS One, 2012, 7(5)e37259
[http://dx.doi.org/10.1371/journal.pone.0037259] [PMID: 22649514]
[103]
Ettari, R.; Nizi, E.; Di Francesco, M.E.; Dude, M.A.; Pradel, G.; Vicík, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappalà, M. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors. J. Med. Chem., 2008, 51(4), 988-996.
[http://dx.doi.org/10.1021/jm701141u] [PMID: 18232656]
[104]
Ettari, R.; Micale, N.; Schirmeister, T.; Gelhaus, C.; Leippe, M.; Nizi, E.; Di Francesco, M.E.; Grasso, S.; Zappalà, M. Novel peptidomimetics containing a vinyl ester moiety as highly potent and selective falcipain-2 inhibitors. J. Med. Chem., 2009, 52(7), 2157-2160.
[http://dx.doi.org/10.1021/jm900047j] [PMID: 19296600]
[105]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[106]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Design Med. Chem., 2015, 1(1), 1-11.
[http://dx.doi.org/10.11648/j.jddmc.20150101.11]
[107]
Fadda, A.A.; Rabie Hassan, R.; Etman, A.; Fouda, A.A.S. 1-Naphthyl-2-cyanoacetamide in heterocyclic synthesis: synthesis and evaluation of the antimicrobial activity of some new pyridine, pyrimidine, and naphtho[2,1-b] oxazine derivatives. Res. Chem. Intermed., 2015, 41(10), 7883-7897.
[http://dx.doi.org/10.1007/s11164-014-1864-6]
[108]
Patole, J.; Sandbhor, U.; Padhye, S.; Deobagkar, D.N.; Anson, C.E.; Powell, A. Structural chemistry and in vitro antitubercular activity of acetylpyridine benzoyl hydrazone and its copper complex against Mycobacterium smegmatis. Bioorg. Med. Chem. Lett., 2003, 13(1), 51-55.
[http://dx.doi.org/10.1016/S0960-894X(02)00855-7] [PMID: 12467615]
[109]
Deng, J.; Sanchez, T.; Al-Mawsawi, L.Q.; Dayam, R.; Yunes, R.A.; Garofalo, A.; Bolger, M.B.; Neamati, N. Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorg. Med. Chem., 2007, 15(14), 4985-5002.
[http://dx.doi.org/10.1016/j.bmc.2007.04.041] [PMID: 17502148]
[110]
Moussa, H.H.; Chabaka, M.; Zaki, D. Synthesis and evaluation of antifungal properties of a series of the novel 2-amino-5-oxo-4- phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and its analogues. Egypt. J. Chem., 1983, 26, 469-477.
[http://dx.doi.org/10.1016/j.bmc.2007.08.009]
[111]
Kathiriya, P.J.; Purohit, H.D.; Purohit, D.M. Synthesis and antimicrobial activity of 2-4′-[(4”-aryl)-3”-cyano-2”-methoxy-pyridine-6”-yl]-phenylamino-6-[bis(2”'-chloroethyl) amino]-4-methoxy-1,3,5-triazine. Int. Lett. Chem. Phys. Astron., 2015, 49, 137-142.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.49.137]
[112]
Altundas, A.; Ayvaz, S.; Logoglu, E. Synthesis and evaluation of a series of aminocyanopyridines as antimicrobial agents. Med. Chem. Res., 2011, 20(1), 1-8.
[http://dx.doi.org/10.1007/s00044-009-9273-x]
[113]
Jyothi, M.V.; Rajendra Prasad, A.Y.; Venkatesh, P.; Sureshreddy, M. Synthesis and antimicrobial activity of some novel chalcones of 3-acetyl pyridine and their pyrimidine derivatives. Chem. Sci. Trans., 2012, 1(3), 716-722.
[http://dx.doi.org/10.7598/cst2012.223]
[114]
Babulreddy, A.; Hymavathi, R.V.; Narayanaswamy, G. 1-(4-(4-(2-(methylamino)pyrimidin-4-yl)phenyl)-3-substituted urea derivatives by using sequential Suzuki-Miyaura cross coupling reactions: synthesis, characterization and antimicro-bial acivity. Int. Res. J. Pharm., 2012, 3(10), 139-142.
[115]
Prachayasittikul, S.; Worachartcheewan, A.; Nantasenamat, C.; Chinworrungsee, M.; Sornsongkhram, N.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structure-activity relationship of 2-thiopyrimidine-4-one analogs as antimicrobial and anticancer agents. Eur. J. Med. Chem., 2011, 46(2), 738-742.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.009] [PMID: 21216051]
[116]
Odani, A.; Kozlowski, H.; Swiatek-Kozlowska, J.; Brasuń, J.; Operschall, B.P.; Sigel, H. Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. J. Inorg. Biochem., 2007, 101(4), 727-735.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.12.014] [PMID: 17320183]
[117]
Kaplancıklı, Z.A.; Yurttas, L.; Turan-Zitounia, G.; Ozdemir, A.; Goger, G.; Demirci, F.; Abu Mohsen, U. Synthesis and antimicrobial activity of new pyrimidine-hydrazones. Lett. Drug Des. Discov., 2014, 11, 76-81.
[http://dx.doi.org/10.2174/15701808113109990037]
[118]
Khalifa, N.M.; Abdel-Rahman, A.A.H.; Abd-Elmoez, S.I.; Fathalla, O.A.; Abd El-Gwaad, A. A. A convenient synthesis of some new fused pyridine and pyrimidine derivatives of antimicrobial profiles. Res. Chem. Intermed., 2015, 41(4), 2295-2305.
[http://dx.doi.org/10.1007/s11164-013-1347-1]
[119]
Abdel‐Motaal, F.F.; Abd‐Elmonem Raslan, M. Synthesis and antimicrobial evaluation of some 1,2,4‐triazolo[1,5‐a]pyridine, pyrimidine sulfonamides and sulfinyl derivatives. Eur. J. Chem., 2014, 5(3), 481-487.
[http://dx.doi.org/10.5155/eurjchem.5.3.481-487.1054]
[120]
Nagender, P.; Malla Reddy, G.; Naresh Kumar, R.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b]pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2905-2908.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.084] [PMID: 24835633]
[121]
Toche, R.B.; Nika, P. Synthesis and evaluation of antimi-crobial and antitubercular activity of arylidene hydrazines of indenothieno[2,3-d]pyrimidine. Chem. Biol. Interfaces, 2015, 5(4), 246-257.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy