Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Pyridine and Pyrimidine Derivatives as Privileged Scaffolds in Biologically Active Agents

Author(s): Maria Assunta Chiacchio , Daniela Iannazzo , Roberto Romeo, Salvatore V. Giofrè and Laura Legnani*

Volume 26, Issue 40, 2019

Page: [7166 - 7195] Pages: 30

DOI: 10.2174/0929867325666180904125400

Price: $65

conference banner
Abstract

Pyridine and pyrimidine derivatives have received great interest in recent pharmacological research, being effective in the treatment of various malignancies, such as myeloid leukemia, breast cancer and idiopathic pulmonary fibrosis. Most of the FDA approved drugs show a pyridine or pyrimidine core bearing different substituents. The aim of this review is to describe the most recent reports in this field, with reference to the newly discovered pyridineor pyrimidine-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding benzo-fused heterocyclic compounds, i.e. quinolines and quinazolines, are also reported.

Keywords: Nitrogenated heterocycles, pyridine, pyrimidine, biological activities, synthesis, molecular modeling.

[1]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[2]
Kale, S.S.; Pawar, R.R.; Kale, A.S. Imidazole, its derivatives & their importance: A Review. Int. J. Curr. Adv. Res., 2016, 5(5), 906-911.
[3]
Katritzky, A.R. Summary of Katritzky research group scientific results. Heterocycles, 1994, 37(1), 3-80.
[http://dx.doi.org/10.3987/1994-01-0003]
[4]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[5]
Khalifa, N.M.; Abdel-Rahman, A.A.H.; Abd-Elmoez, S.I.; Fathalla, O.A.; Abd El-Gwaad, A.A. A convenient synthesis of some new fused pyridine and pyrimidine derivatives of antimicrobial profiles. Res. Chem. Intermed., 2015, 41, 2295-2305.
[http://dx.doi.org/10.1007/s11164-013-1347-1]
[6]
Zhao, Y.; Zhang, J.; Zhuang, R.; He, R.; Xi, J.; Pan, X.; Shao, Y.; Pan, J.; Sun, J.; Cai, Z.; Liu, S.; Huang, W.; Lv, X. Synthesis and evaluation of a series of pyridine and pyrimidine derivatives as type II c-Met inhibitors. Bioorg. Med. Chem., 2017, 25(12), 3195-3205.
[http://dx.doi.org/10.1016/j.bmc.2017.04.003] [PMID: 28412159]
[7]
Chaubey, A.; Pandeya, S.N. Pyridine” a versatile nucleuse in pharmaceutical field. Asian J. Pharm. Clin. Res., 2011, 4(4), 5-8.
[8]
Sinthupoom, N.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications. Eur. Food Res. Technol., 2015, 240, 1-17.
[http://dx.doi.org/10.1007/s00217-014-2354-1]
[9]
Xue, J.; Diao, J.; Cai, G.; Deng, L.; Zheng, B.; Yao, Y.; Song, Y. Antimalarial and structural studies of pyridine-containing inhibitors of 1-deoxyxylulose-5-phosphate reductoisomerase. ACS Med. Chem. Lett., 2013, 4(2), 278-282.
[http://dx.doi.org/10.1021/ml300419r] [PMID: 23795240]
[10]
Balzarini, J.; Stevens, M.; De Clercq, E.; Schols, D.; Pannecouque, C. Pyridine N-oxide derivatives: unusual anti-HIV compounds with multiple mechanisms of antiviral action. J. Antimicrob. Chemother., 2005, 55(2), 135-138.
[http://dx.doi.org/10.1093/jac/dkh530] [PMID: 15650002]
[11]
Kaur, R.; Kaur, P.; Sharma, S.; Singh, G.; Mehndiratta, S.; Bedi, P.M.; Nepali, K. Anti-cancer pyrimidines in diverse scaffolds: a review of patent literature. Recent Patents Anticancer Drug Discov., 2015, 10(1), 23-71.
[http://dx.doi.org/10.2174/1574892809666140917104502] [PMID: 25230072]
[12]
Kassab, A.E.; Gedawy, E.M. Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2013, 63, 224-230.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.011] [PMID: 23501108]
[13]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605]
[14]
Corsaro, A.; Chiacchio, U.; Pistarà, V.; Borrello, L.; Gomeo, G.; Dalpozzo, R. Synthesis and biological properties of 2-oxabicyclo[4.1.0]heptane nucleosides containing uracil and thymine. Arkivoc, 2006, 6, 74-84.
[http://dx.doi.org/10.3998/ark.5550190.0007.608]
[15]
Chiacchio, U.; Iannazzo, D.; Piperno, A.; Romeo, R.; Romeo, G.; Rescifina, A.; Saglimbeni, M. Synthesis and biological evaluation of phosphonated carbocyclic 2′-oxa-3′-aza-nucleosides. Bioorg. Med. Chem., 2006, 14(4), 955-959.
[http://dx.doi.org/10.1016/j.bmc.2005.09.024] [PMID: 16213735]
[16]
Rani, J.; Kumar, S.; Saini, M.; Mundlia, J.; Verma, P.K. Biological potential of pyrimidine derivatives in a new era. Res. Chem. Intermed., 2016, 42(9), 6777-6804.
[http://dx.doi.org/10.1007/s11164-016-2525-8]
[17]
Satow, J.; Kondo, Y.; Kudo, J.; Mikashima, T.; Nawamaki, T.; Ito, Y.; Sudo, K.; Nakahira, K.; Watanabe, S.; Ishika-wa, K. Pyrimidine derivatives, herbicides and plant growth regulators. Patent 5,773,388, 1998.
[18]
Wang, J-M.; Asami, T.; Yoshida, S.; Murofushi, N. Biological evaluation of 5-substituted pyrimidine derivatives as inhibitors of brassinosteroid biosynthesis. Biosci. Biotechnol. Biochem., 2001, 65(4), 817-822.
[http://dx.doi.org/10.1271/bbb.65.817] [PMID: 11388458]
[19]
Yadav, M.R.; Barmade, M.A.; Tamboli, R.S.; Murumkar, P.R. Developing steroidal aromatase inhibitors-an effective armament to win the battle against breast cancer. Eur. J. Med. Chem., 2015, 105, 1-38.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.038] [PMID: 26469743]
[20]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[21]
Patil, P.; Sethy, S.P.; Sameena, T.; Shailaja, K. Pyridine and its biological activity: a review. Asian J. Res. Chem, 2013, 6, 888-899.
[22]
a)Chiacchio, U.; Genovese, F.; Iannazzo, D.; Piperno, A.; Quadrelli, P.; Corsaro, A.; Romeo, R.; Valveri, V.; Mastino, A. 4′-α-C-Branched N,O-nucleosides: Synthesis and biological properties. Bioorg. Med. Chem., 2004, 12(14), 3903-3909.
[http://dx.doi.org/10.1016/j.bmc.2004.04.041] [PMID: 15210157]
b)Masciocchi, D.; Gelain, A.; Porta, F.; Meneghetti, F.; Pedretti, A.; Celentano, G.; Barlocco, D.; Legnani, L.; Toma, L.; Kwon, B-M.; Asai, A.; Villa, S. Synthesis, structure-activity relationships and stereochemical investigations of new tricyclic pyridazinone derivatives as potential STAT3 inhibitors. MedChemComm, 2013, 4(8), 1181-1188.
[http://dx.doi.org/10.1039/c3md00095h]
c)Romeo, R.; Carnovale, C.; Giofrè, S.V.; Chiacchio, M.A.; Garozzo, A.; Amata, E.; Romeo, G.; Chiacchio, U. C-5′-Triazolyl-2′-oxa-3′-aza-4'a-carbanucleosides: synthesis and biological evaluation. Beilstein J. Org. Chem., 2015, 11, 328-334.
[http://dx.doi.org/10.3762/bjoc.11.38] [PMID: 25815087]
d)Bracci, A.; Colombo, G.; Ronchetti, F.; Compostella, F. 2-O-Alkyl Derivatives and 5 -Analogues of 5-Aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) as Potential Hsp90 Inhibitors. Eur. J. Org. Chem., 2009, 5913-5919.
e)Vetro, M.; Costa, B.; Donvito, G.; Arrighetti, N.; Cipolla, L.; Perego, P.; Compostella, F.; Ronchetti, F.; Colombo, D. Anionic glycolipids related to glucuronosyldiacylglycerol inhibit protein kinase Akt. Org. Biomol. Chem., 2015, 13, 1091-1099.
[http://dx.doi.org/10.1039/C4OB01602E]
[23]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[24]
Momparler, R.L. Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp. Hematol. Oncol., 2013, 2, 20-25.
[http://dx.doi.org/10.1186/2162-3619-2-20] [PMID: 23919448]
[25]
Walko, C.M.; Lindley, C. Capecitabine: a review. Clin. Ther., 2005, 27(1), 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]
[26]
Heinemann, V. Gemcitabine: progress in the treatment of pancreatic cancer. Oncology, 2001, 60(1), 8-18.
[http://dx.doi.org/10.1159/000055290] [PMID: 11150902]
[27]
Ritchie, E.K.; Feldman, E.J.; Christos, P.J.; Rohan, S.D.; Lagassa, C.B.; Ippoliti, C.; Scandura, J.M.; Carlson, K.; Roboz, G.J. Decitabine in patients with newly diagnosed and relapsed acute myeloid leukemia. Leuk. Lymphoma, 2013, 54(9), 2003-2007.
[http://dx.doi.org/10.3109/10428194.2012.762093] [PMID: 23270581]
[28]
Christman, J.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, 21(35), 5483-5495.
[http://dx.doi.org/10.1038/sj.onc.1205699] [PMID: 12154409]
[29]
Ahmad, I. Shagufta. Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur. J. Med. Chem., 2015, 102, 375-386.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.010] [PMID: 26301554]
[30]
Penov Gaši, K.M. Djurendić Brenesel, M. Dj; Djurendić, E. A.; Sakač, M. N.; Čanadi, J. J.; Daljeva, J. J.; Armbrust-er, T.; Andrić, S.; Sladič, D. M.; T. T. Božić; Novaković, I. T.; Juranić, Z. D. Synthesis and biological evaluation of some 17-picolyl and 17-picolinylidene androst-5-ene deriva-tives. Steroids, 2007, 72(1), 31-40.
[http://dx.doi.org/10.1016/j.steroids.2006.10.002] [PMID: 17118415]
[31]
Bansal, R.; Thota, S.; Karkra, N.; Minu, M.; Zimmer, C.; Hartmann, R.W. Synthesis and aromatase inhibitory activity of some new 16E-arylidenosteroids. Bioorg. Chem., 2012, 45, 36-40.
[http://dx.doi.org/10.1016/j.bioorg.2012.08.005] [PMID: 23064126]
[32]
Numazawa, M.; Komatsu, S.; Tominaga, T.; Yamashita, K. Structure-activity relationships of estrogen derivatives as aromatase inhibitors. Effects of heterocyclic substituents. Chem. Pharm. Bull. (Tokyo), 2008, 56(9), 1304-1309.
[http://dx.doi.org/10.1248/cpb.56.1304] [PMID: 18758106]
[33]
Bonfield, K.; Amato, E.; Bankemper, T.; Agard, H.; Steller, J.; Keeler, J.M.; Roy, D.; McCallum, A.; Paula, S.; Ma, L. Development of a new class of aromatase inhibitors: design, synthesis and inhibitory activity of 3-phenylchroman-4-one (isoflavanone) derivatives. Bioorg. Med. Chem., 2012, 20(8), 2603-2613.
[http://dx.doi.org/10.1016/j.bmc.2012.02.042] [PMID: 22444875]
[34]
Amato, E.; Bankemper, T.; Kidney, R.; Do, T.; Onate, A.; Thowfeik, F.S.; Merino, E.J.; Paula, S.; Ma, L. Investigation of fluorinated and bifunctionalized 3-phenylchroman-4-one (isoflavanone) aromatase inhibitors. Bioorg. Med. Chem., 2014, 22(1), 126-134.
[http://dx.doi.org/10.1016/j.bmc.2013.11.045] [PMID: 24345481]
[35]
Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E-J.; Pezzuto, J.M.; Cushman, M. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg. Med. Chem., 2012, 20(1), 510-520.
[http://dx.doi.org/10.1016/j.bmc.2011.09.031] [PMID: 22115839]
[36]
Prachayasittikul, V.; Pingaew, R.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives. Drug Des. Devel. Ther., 2014, 8, 1089-1096.
[http://dx.doi.org/10.2147/DDDT.S67300] [PMID: 25152615]
[37]
Miyazaki, Y.; Maeda, Y.; Sato, H.; Nakano, M.; Mellor, G.W. Rational design of 4-amino-5,6-diaryl-furo[2,3-d]pyrimidines as potent glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(6), 1967-1971.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.113] [PMID: 18280153]
[38]
Sivaprakasam, P.; Han, X.; Civiello, R.L.; Jacutin-Porte, S.; Kish, K.; Pokross, M.; Lewis, H.A.; Ahmed, N.; Szapiel, N.; Newitt, J.A.; Baldwin, E.T.; Xiao, H.; Krause, C.M.; Park, H.; Nophsker, M.; Lippy, J.S.; Burton, C.R.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg. Med. Chem. Lett., 2015, 25(9), 1856-1863.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.046] [PMID: 25845281]
[39]
Coffman, K.; Brodney, M.; Cook, J.; Lanyon, L.; Pandit, J.; Sakya, S.; Schachter, J.; Tseng-Lovering, E.; Wessel, M. 6-amino-4-(pyrimidin-4-yl)pyridones: novel glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(5), 1429-1433.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.017] [PMID: 21295469]
[40]
Karki, R.; Thapa, P.; Kang, M.J.; Jeong, T.C.; Nam, J.M.; Kim, H-L.; Na, Y.; Cho, W-J.; Kwon, Y.; Lee, E-S. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorg. Med. Chem., 2010, 18(9), 3066-3077.
[http://dx.doi.org/10.1016/j.bmc.2010.03.051] [PMID: 20392646]
[41]
Karki, R.; Thapa, P.; Yoo, H.Y.; Kadayat, T.M.; Park, P-H.; Na, Y.; Lee, E.; Jeon, K-H.; Cho, W-J.; Choi, H.; Kwon, Y.; Lee, E-S. Dihydroxylated 2,4,6-triphenyl pyridines: synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study. Eur. J. Med. Chem., 2012, 49, 219-228.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.015] [PMID: 22318164]
[42]
Thapa, P.; Karki, R.; Yun, M.; Kadayat, T.M.; Lee, E.; Kwon, H.B.; Na, Y.; Cho, W-J.; Kim, N.D.; Jeong, B-S.; Kwon, Y.; Lee, E.S. Design, synthesis, and antitumor evaluation of 2,4,6-triaryl pyridines containing chlorophenyl and phenolic moiety. Eur. J. Med. Chem., 2012, 52, 123-136.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.010] [PMID: 22503656]
[43]
Jun, K.Y.; Kwon, Y.; Park, S-E.; Lee, E. Karki, R.; Thapa, P.; Lee, J.-H.; Lee, E.-S.; Kwon, Y. Discovery of dihydrox-ylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor. Eur. J. Med. Chem., 2014, 80, 428-438.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.066] [PMID: 24796883]
[44]
Karki, R.; Park, C.; Jun, K-Y.; Kadayat, T.M.; Lee, E-S.; Kwon, Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur. J. Med. Chem., 2015, 90, 360-378.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.045] [PMID: 25437622]
[45]
Karki, R.; Song, C.; Kadayat, T.M.; Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S.; Lee, E-S. Topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines. Bioorg. Med. Chem., 2015, 23(13), 3638-3654.
[http://dx.doi.org/10.1016/j.bmc.2015.04.002] [PMID: 25936262]
[46]
Tynebor, R.M.; Chen, M-H.; Natarajan, S.R.; O’Neill, E.A.; Thompson, J.E.; Fitzgerald, C.E.; O’Keefe, S.J.; Doherty, J.B. Synthesis and biological activity of pyridopyridazin-6-one p38 MAP kinase inhibitors. Part 1. Bioorg. Med. Chem. Lett., 2011, 21(1), 411-416.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.128] [PMID: 21084192]
[47]
Luparia, M.; Legnani, L.; Porta, A.; Zanoni, G.; Toma, L.; Vidari, G. Enantioselective synthesis and olfactory evaluation of bicyclic α- and γ-ionone derivatives: The 3D arrangement of key molecular features relevant to the violet odor of ionones. J. Org. Chem, 2009, 74(18), 7100-7110.
[http://dx.doi.org/10.1021/jo9014936] [PMID: 19743882]
b)Toma, L.; Legnani, L.; Rencurosi, A.; Poletti, L.; Lay, L.; Russo, G. Modeling of synthetic phosphono and carba analogues of N-acetyl-α-D-mannosamine 1-phosphate, the repeating unit of the capsular polysaccharide from Neisseria meningitidis serovar A. Org. Biomol. Chem., 2009, 7(18), 3734-3740.
[http://dx.doi.org/10.1039/b907000a] [PMID: 19707677]
c)Shin, D.- S.; Masciocchi, D.; Gelain, A.; Villa, S.; Barlocco, D.; Meneghetti, F.; Pedretti, A.; Han, Y.-M.; Han, D.C.; Han, M.Y.; Kwon, B.-M.; Legnani, L.; Toma, L. Synthesis, modeling, and crystallographic study of 3,4-disubstituted- 1,2,5-oxadiazoles and evaluation of their ability to decrease STAT3 activity. Med. Chem. Commun., 2010, 1(2), 156-164.
[http://dx.doi.org/10.1039/c0md00057d]
d)Legnani, L.; Toma, L.; Caramella, P.; Chiacchio, M. A.; Giofrè, S.; Delso, I.; Tejero, T.; Merino, P. Computational mechanistic study of thionation of carbonyl compounds with Lawesson’s reagent. J. Org. Chem., 2016, 81(17), 7733-7740.
[http://dx.doi.org/10.1021/acs.joc.6b01420]
e)Chiacchio, M. A.; Legnani, L.; Caramella, P.; Tejero, T.; Merino, P. Pivotal neighbouring group participation in substitution vs elimination reactions: computational evidence for ion pairs in the thionation of alcohols with Lawesson’s reagent. Eur. J. Org. Chem., 2017, 2017(14), 1952-1960.
[http://dx.doi.org/10.1002/ejoc.201700127]
[48]
Tynebor, R.M.; Chen, M-H.; Natarajan, S.R.; O’Neill, E.A.; Thompson, J.E.; Fitzgerald, C.E.; O’Keefe, S.J.; Doherty, J.B. Synthesis and biological activity of pyridopyridazin-6-one p38α MAP kinase inhibitors. Part 2. Bioorg. Med. Chem. Lett., 2012, 22(18), 5979-5983.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.035] [PMID: 22901390]
[49]
Kadry, H.H. Synthesis, biological evaluation of certain pyra-zolo [3,4-d]pyrimidines as novel anti-inflammatory and analgesic agent. Med. Chem. Res., 2014, 23(12), 5269-5281.
[http://dx.doi.org/10.1007/s00044-014-1079-9]
[50]
Aggarwal, R.; Masan, E.; Kaushik, P.; Kaushik, D.; Sharma, C.; Aneja, K.R. Synthesis and biological evaluation of 7-trifluoromethylpyrazolo [1,5-a]pyrimidines as anti-inflammatory and antimicrobial agents. J. Fluor. Chem., 2014, 168, 16-24.
[http://dx.doi.org/10.1016/j.jfluchem.2014.08.017]
[51]
Mohamed, M.S.; Kamel, R.; El-hameed, R.H.A. Evaluation of the anti-inflammatory activity of some pyrrolo[2,3-d]pyrimidine derivatives. Med. Chem. Res., 2013, 22(5), 2244-2252.
[http://dx.doi.org/10.1007/s00044-012-0217-5]
[52]
Mohamed, M.S.; Hussein, W.M.; McGeary, R.P.; Vella, P.; Schenk, G. Abd El-hameed, R. H. Synthesis and kinetic testing of new inhibitors for a metallo-b-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur. J. Med. Chem., 2011, 46(12), 6075-6082.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.030] [PMID: 22051063]
[53]
Pertusati, F.; Serafini, S.; Albadry, N.; Snoeck, R.; Andrei, G. Phosphonoamidate prodrugs of C5-substituted pyrimidine acyclic nucleosides for antiviral therapy. Antiviral Res., 2017, 143, 262-268.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.013] [PMID: 28454912]
[54]
Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V.K.; Smith, D.B.; Jekle, A.; Kinkade, A.; Symons, J.A.; Jin, Z.; Deval, J.; Zhang, Q.; Tam, Y.; Chan-da, S.; Blatt, L.; Beigelman, L. Synthesis and anti-influenza activity of pyridine, pyridazine, and pyrimidine cnucleosides as favipiravir (T-705) analogues. J. Med. Chem., 2016, 59(10), 4611-4624.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01933] [PMID: 27120583]
[55]
Hessein, S.A.; Fouad, S.A.; Raslan, R.R.; Shemiss, N.A. Synthesis of some novel pyrrolidine, thiomorpholine, pyrim-idine and pyridine derivatives containing benzimidazole moiety of expected antiviral and antimicrobial activity. Pharma Chem., 2016, 8(8), 170-181.
[56]
a)De Clercq, E. Antiviral drug strategies; Wiley-VCH, Vol. 50, 2011, pp. 1-406.
[http://dx.doi.org/10.1002/9783527635955]
b)Hishitsuka, H.; Shimma, N. Modified Nucleosides. In: Biochemistry, Biotechnology and Medicine; Piet Herdewijn. Ed.; Wiley, 2008; p. 587-600.
d)Thottassery, J.V.; Westbrook, L.; Someya, H.; Parker, W. B. c-Abl-independent p73 stabilization during gemcitabine- or 4'-thio-beta-Darabinofuranosylcytosine-induced apoptosis in wild-type and p53-null colorectal cancer cells. Mol. Cancer Therapeut, 2006, 5(2), 400-410.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0409] [PMID: 16505115]
c)Miura, S.; Izuta, S. DNA polymerases as targets of anticancer nucleosides. Curr. Drug Targets, 2004, 5(2), 191-195.
[http://dx.doi.org/10.2174/1389450043490578] [PMID: 15011952]
d)Klopfer, A. Adenine deoxynucleotides fludarabine and cladribine induce apoptosis in a CD95/Fas receptor, FADD and caspase-8-independent manner by activation of the mitochondrial cell death pathway. Oncogene, 2004, 23, 9408-9418.
[http://dx.doi.org/10.1038/sj.onc.1207975]
e)F. De, Clercq E. The history of antiretrovirals: key discoveries over the past 25 years. Rev. Med. Virol., 2009, 19, 287-299.
[http://dx.doi.org/10.1002/rmv.624] [PMID: 19714702]
f)De Clercq, E. Acyclic nucleoside phosphonates: past, present and future. Bridging chemistry to HIV, HBV, HCV, HPV, adeno-, herpes-, and poxvirus infections: the phosphonate bridge. Biochem. Pharmacol., 2007, 73, 911-922.
[http://dx.doi.org/10.1016/j.bcp.2006.09.014] [PMID: 17045247]
g)Cihlar, T.; LaFlamme, G.; Fisher, R.; Carey, A.C.; Vela, J.E.; Mackman, R.; Ray, A.S. Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob. Agents Chemother., 2009, 53(1), 150-156.
[http://dx.doi.org/10.1128/AAC.01183-08] [PMID: 19001108]
h)Choo, H.; Beadle, J.R.; Kern, E.R.; Prichard, M.N.; Keith, K.A.; Hartlina, C.B.; Trahan, J.; Aldern, K.A.; Korba, B.E.; Hostetler, K.Y. Antiviral activities of novel 5-phosphono-pent-2-en-1-yl nucleosides and their alkoxyalkyl phosphonoesters. Antimicrob. Agents Chemother., 2007, 51, 611-615.
[http://dx.doi.org/10.1128/AAC.00444-06] [PMID: 17130297]
i)Krcmerova, M.; Holy, A.; Piskala, A.; Masojidkova, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R. Antiviral activity of triazine analogues of 1- (S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (cidofovir) and related compounds. J. Med.Chem., 2007, 50(5), 1069-1077.
[http://dx.doi.org/10.1021/jm061281+] [PMID: 17298047]
j)Lebeau, I.; Andrei, G.; Krecmerova, M.; De Clercq, E.; Holy, A.; Snoeck, R. Inhibitory activities of three classes of acyclic nucleoside phosphonates against murine polyomavirus and primate simian virus 40 strains. Antimicrob. Agent Chemother., 2007, 51(6), 2268-2273.
[http://dx.doi.org/10.1128/AAC.01422-06] [PMID: 17420214]
k)Vanek,V.; Budesinsky, M.; Rinnova, M.; Rosemberg, I. Prolinol-based nucleoside phosphonic acids: new isosteric conformationally flexible nucleotide analogues. Tetrahedron, 2009, 65(4), 862-876.
[http://dx.doi.org/10.1016/j.tet.2008.11.035]
l)Kumamoto, H.; Topalis, D.; Broggi, J.; Pradere, U.; Roi, V.; Berteina- Raboin, S.; Nolan, S. P.; Deville,-Bonne, D.; Andrei, G.; Snoeck, R.;Garin, D.; Grance, G. M.; Agrofoglio, L. A. Preparation of acyclo nucleoside phosphonate analogues based on cross-metathesis. Tetrahedron, 2008, 64(16), 3517-3526.
[http://dx.doi.org/10.1016/j.tet.2008.01.140]
m)Vrbkova, S.; Dracinsky, M.; Holy, A. Synthesis of phosphonomethoxyethyl or 1,3 bis(phosphonomethoxy)propan-2-yllipophilic esters of acyclic nucleoside phosphonates. Tetrahedron, 2007, 63(46), 11391-11398.
[http://dx.doi.org/10.1016/j.tet.2007.08.081]
[57]
a)Balestrieri, E.; Pizzimenti, F.; Ferlazzo, A.; Giofrè, S.V.; Iannazzo, D.; Piperno, A.; Romeo, R.; Chiacchio, M.A.; Mastino, A.; Macchi, B. Antiviral activity of seed extract from Citrus bergamia towards human retroviruses. Bioorg. Med. Chem., 2011, 19(6), 2084-2089.
[http://dx.doi.org/10.1016/j.bmc.2011.01.024] [PMID: 21334901]
b)Legnani, L.; Colombo, D.; Venuti, A.; Pastori, C.; Lopalco, L.; Toma, L.; Mori, M.; Grazioso, G.; Villa, S. Diazabicyclo analogues of maraviroc: synthesis, modeling, NMR studies and antiviral activity. MedChemComm, 2017, 8(2), 422-433.
[http://dx.doi.org/10.1039/C6MD00575F] [PMID: 30108760]
c)Colombo, D.; Villa, S.; Solano, L.; Legnani, L.; Marinone Albini, F.; Toma, L. An exhaustive conformational evaluation of the HIV-1 inhibitor BMS-378806 through theoretical calculations and nuclear magnetic resonance spectroscopy. Eur. J. Org. Chem., 2009, 19, 3178-3183.
[http://dx.doi.org/10.1002/ejoc.200900178]
[58]
Kappe, C.O. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[59]
Piperno, A.; Cordaro, M.; Scala, A.; Iannazzo, D. Recent highlights in the synthesis of anti-HCV ribonucleosides. Curr. Med. Chem., 2014, 21(16), 1843-1860.
[http://dx.doi.org/10.2174/0929867321666131228205935] [PMID: 24372207]
[60]
Carnovale, C.; Iannazzo, D.; Nicolosi, G.; Piperno, A.; San-filippo, C. Preparation of isoxazolidinyl nucleoside enantio-mers by lipase-catalysed kinetic resolution. Tetrahedron Asymmetry, 2009, 20(4), 425-429.
[http://dx.doi.org/10.1016/j.tetasy.2009.02.026]
[61]
Rescifina, A.; Zagni, C.; Iannazzo, D.; Merino, P. Recent developments on rotaxane-based shuttles. Curr. Org. Chem., 2009, 13, 448-481.
[http://dx.doi.org/10.2174/138527209787582222]
[62]
Chiacchio, U.; Corsaro, A.; Iannazzo, D.; Piperno, A.; Pis-tarà, V.; Procopio, A.; Rescifina, A.; Romeo, G.; Romeo, R.; Siciliano, M.C.R.; Valveri, E. Enantioselective synthesis of isoxazolidinyl nucleosides containinguracil,5-fluorouracil, thymine and cytosine as new potential anti-HIV drugs. ARKIVOC, 2002, 11, 159-167.
[http://dx.doi.org/10.3998/ark.5550190.0003.b15]
[63]
Romeo, G.; Iannazzo, D.; Piperno, A.; Romeo, R.; Saglimbeni, M.; Chiacchio, M.A.; Balestrieri, E.; Macchi, B.; Mastino, A. Synthesis and biological evaluation of phosphonated dihydroisoxazole nucleosides. Bioorg. Med. Chem., 2006, 14(11), 3818-3824.
[http://dx.doi.org/10.1016/j.bmc.2006.01.028] [PMID: 16480883]
[64]
Chiacchio, U.; Corsaro, A.; Iannazzo, D.; Piperno, A.; Ro-meo, G.; Romeo, R.; Saita, M.G.; Rescifina, A. Synthesis of methyleneisoxazolidine nucleoside analogues by microwave-assisted nitrone cycloaddition. Eur. J. Org. Chem., 2007, 28, 4758-4764.
[http://dx.doi.org/10.1002/ejoc.200700171]
[65]
Bzowska, A. Formycins and their analogues: purine nucleoside phosphorylase inhibitors and their potential application in immunosuppression and cancer. In: Modified Nucleosides in Biochemistry, Biotechnology and Medicine; P. Herdewijn (Ed.); Wiley-VCH, Weinheim,, 2008; pp. 473-510.
[http://dx.doi.org/10.1002/9783527623112.ch19]
[66]
Krawczyk, S.H.; Nassiri, M.R.; Kucera, L.S.; Kern, E.R.; Ptak, R.G.; Wotring, L.L.; Drach, J.C.; Townsend, L.B. Synthesis and antiproliferative and antiviral activity of 2′-deoxy-2′-fluoroarabinofuranosyl analogs of the nucleoside antibiotics toyocamycin and sangivamycin. J. Med. Chem., 1995, 38(20), 4106-4114.
[http://dx.doi.org/10.1021/jm00020a026] [PMID: 7562946]
[67]
Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K. Bioac-tive marine metabolites IX. Mycalisines A and B, novel nucleosides which inhibit cell division of fertilized starfish eggs, from the marine sponge mycale sp. Tetrahedron Lett., 1985, 29, 3483-3486.
[http://dx.doi.org/10.1016/S0040-4039(00)98670-2]
[68]
J.G., Buchanan; and R.H., Wightman The chemistry of nucleoside antibiotics. In: Topics in Antibiotic Chemistry; P.G. Sammes, Ed.; J. Wiley and Sons, New York, 1982; Vol. 6, pp. 231-339.
[69]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[70]
Kierzek, E.; Malgowska, M.; Lisowiec, J.; Turner, D.H.; Gdaniec, Z.; Kierzek, R. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res., 2014, 42(5), 3492-3501.
[http://dx.doi.org/10.1093/nar/gkt1330] [PMID: 24369424]
[71]
a)De Clercq, E. 40-year journey in search of selective antiviral chemotherapy. Annu. Rev. Pharmacol. Toxicol., 2011, 51, 1-24.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100228] [PMID: 20809796]
b)De Clercq, E. Ten paths to the discovery of antivirally active nucleoside and nucleotide analogues. Nucleosides Nucleotides Nucleic Acids, 2012, 31(4), 339-352.
[http://dx.doi.org/10.1080/15257770.2012.657383] [PMID: 22444195]
c)Jung, K-H.; Marx, A. Synthesis of 4-C-modified 2- deoxyribonucleoside analogues and oligonucleotides. Curr. Org. Chem., 2008, 12(5), 343-354.
[http://dx.doi.org/10.2174/138527208783743705]
d)Hirota, K.; Monguchi, Y.; Sajiki, H. Synthesis of Purine Acyclonucleosides via Ribofuranose-Ring Cleavage of Purine Nucleosides by Diisobutylaluminum Hydride. In: Recent Advances in Nucleosides: Chemistry and Chemotherapy; Chu, C.K., Ed.; Elsevier: Amsterdam, 2002; pp. 57-70.
e)Ashry, E.S.H.E.; Rashed, N. Carbohydrate hydrazones and osazones as organic raw materials for nucleosides and heterocycles. Curr. Org. Chem., 2000, 4(6), 609-651.
[http://dx.doi.org/10.2174/1385272003376102]
f)Littler, E.; Zhou, X-X. Comprehensive Medicinal Chemistry II, 2nd ed.; Taylor, John B.; Triggle, D. J. Eds.2006, 7, p 295-327.
[72]
Wang, J.; Rwal, R.K.; Chu, C.K. Zhang, Li-He, Xi, Zhen, Chattopadhyaya. Medicinal Chemistry of Nucleic Acids, 2011, pp. 1-100 b) Gundersen, L. Metal-mediated C-C and C-N bond formation in the synthesis of bioactive purines. Targets Heterocycl. Sys., 2008, 12, 85-119.
[http://dx.doi.org/10.1002/chin.201010228]
[73]
a)Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chemical Synthesis of Heterocyclic-Sugar Nucleoside Analogues. Chem. Rev., 2010, 110(6), 3337-3370.
[http://dx.doi.org/10.1021/cr800464r] [PMID: 20232792]
b)Merino, P. Heterocyclic nucleosides: chemical synthesis and biological proper-ties. Curr. Med. Chem., 2006, 13(5), 539-545.
[http://dx.doi.org/10.2174/092986706776055779] [PMID: 16515520]
c)Mathé, C.; Gosselin, G. L-nucleoside enantiomers antivirals drugs: a mini-review. Antiviral Res., 2006, 71(2-3), 276-281.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.017] [PMID: 16797735]
[74]
a)Moggio, Y.; Legnani, L.; Bovio, B.; Memeo, M.G.; Quad-relli, P. Synthesis of novel anthracene derivatives of isoxazo-lino-carbocyclic nucleoside analogues. Tetrahedron, 2012, 68, 1384-1392.
[http://dx.doi.org/10.1016/j.tet.2011.12.047]
b)Savion, M.; Memeo, M.G.; Bovio, B.; Grazioso, G.; Legnani, L.; Quadrelli, P. Synthesis and molecular modeling of novel dihydroxycyclopentane-carbonitrile nor-nucleosides by bromonitrile oxide 1,3-dipolar cycloaddi-tion. Tetrahedron, 2012, 68, 1845-1852.
[http://dx.doi.org/10.1016/j.tet.2011.12.086]
c)Quadrelli, P.; Mella, M.; Legnani, L.; Al-Saad, D. From Cyclopentadiene to Isoxazoline-Carbocyclic Nucleosides; Synthesis of Highly Active Inhibitors of Influenza A Virus H1N1. Eur. J. Org. Chem., 2013, 4655-4665.
[http://dx.doi.org/10.1002/ejoc.201300119]
d)Romeo, R.; Giofrè, S.V.; Garozzo, A.; Bisignano, B.; Corsaro, A.; Chiacchio, M.A. Synthesis and biological evaluation of furopyrimidine N,O-nucleosides. Bioorg. Med. Chem., 2013, 21, 5688-5693.
[http://dx.doi.org/10.1016/j.bmc.2013.07.031] [PMID: 2393244]
[75]
Clumeck, N. Current use of anti-HIV drugs in AIDS. J. Antimicrob. Chemother., 1993, 32(Suppl. A), 133-138.
[http://dx.doi.org/10.1093/jac/32.suppl_A.133] [PMID: 8407695]
[76]
Desai, M.; Iyer, G.; Dikshit, R.K. Antiretroviral drugs: critical issues and recent advances. Indian J. Pharmacol., 2012, 44(3), 288-298.
[http://dx.doi.org/10.4103/0253-7613.96296] [PMID: 22701234]
[77]
Wood, E.; Hogg, R.S.; Lima, V.D.; Kerr, T.; Yip, B.; Marshall, B.D.L.; Montaner, J.S. Highly active antiretroviral therapy and survival in HIV-infected injection drug users. JAMA, 2008, 300(5), 550-554.
[http://dx.doi.org/10.1001/jama.300.5.550] [PMID: 18677027]
[78]
De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discov., 2005, 4(11), 928-940.
[http://dx.doi.org/10.1038/nrd1877] [PMID: 16264436]
[79]
De Clercq, E. Therapeutic potential of Cidofovir (HPMPC, Vistide) for the treatment of DNA virus (i.e. herpes-, papova-, pox- and adenovirus) infections. Verh. K. Acad. Geneeskd. Belg., 1996, 58(1), 19-47.
[PMID: 8701600]
[80]
Holý, A.; Votruba, I.; Masojídková, M.; Andrei, G.; Snoeck, R.; Naesens, L.; De Clercq, E.; Balzarini, J. 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity. J. Med. Chem., 2002, 45(9), 1918-1929.
[http://dx.doi.org/10.1021/jm011095y] [PMID: 11960502]
[81]
Krecmerová, M.; Holý, A.; Pohl, R.; Masojídková, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R. Ester prodrugs of cyclic 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: synthesis and antiviral activity. J. Med. Chem., 2007, 50(23), 5765-5772.
[http://dx.doi.org/10.1021/jm0707166] [PMID: 17948980]
[82]
Krečmerová, M.; Dračínský, M.; Snoeck, R.; Balzarini, J.; Pomeisl, K.; Andrei, G. New prodrugs of two pyrimidine acyclic nucleoside phosphonates: Synthesis and antiviral activity. Bioorg. Med. Chem., 2017, 25(17), 4637-4648.
[http://dx.doi.org/10.1016/j.bmc.2017.06.046] [PMID: 28757102]
[83]
Hurt, A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol., 2014, 8, 22-29.
[http://dx.doi.org/10.1016/j.coviro.2014.04.009] [PMID: 24866471]
[84]
Samson, M.; Pizzorno, A.; Abed, Y.; Boivin, G. Influenza virus resistance to neuraminidase inhibitors. Antiviral Res., 2013, 98(2), 174-185.
[http://dx.doi.org/10.1016/j.antiviral.2013.03.014] [PMID: 23523943]
[85]
Gueiffier, A.; Mavel, S.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.C.; Witvrouw, M.; Balzarini, J.; De Clercq, E.; Chapat, J.P. Synthesis of imidazo[1,2-a]pyridines as antiviral agents. J. Med. Chem., 1998, 41(25), 5108-5112.
[http://dx.doi.org/10.1021/jm981051y] [PMID: 9836626]
[86]
Gudmundsson, K.S.; Williams, J.D.; Drach, J.C.; Townsend, L.B. Synthesis and antiviral activity of novel erythrofuranosyl imidazo[1,2-a]pyridine C-nucleosides constructed via palladium coupling of iodoimidazo[1,2-a]pyridines and dihydrofuran. J. Med. Chem., 2003, 46(8), 1449-1455.
[http://dx.doi.org/10.1021/jm020339r] [PMID: 12672244]
[87]
Paeshuyse, J.; Chezal, J.M.; Froeyen, M.; Leyssen, P.; Dutartre, H.; Vrancken, R.; Canard, B.; Letellier, C.; Li, T.; Mittendorfer, H.; Koenen, F.; Kerkhofs, P.; De Clercq, E.; Herdewijn, P.; Puerstinger, G.; Gueiffier, A.; Chavignon, O.; Teulade, J.C.; Neyts, J. The imidazopyrrolopyridine analogue AG110 is a novel, highly selective inhibitor of pestiviruses that targets the viral RNA-dependent RNA polymerase at a hot spot for inhibition of viral replication. J. Virol., 2007, 81(20), 11046-11053.
[http://dx.doi.org/10.1128/JVI.00388-07] [PMID: 17686854]
[88]
Chezal, J-M.; Paeshuyse, J.; Gaumet, V.; Canitrot, D.; Maisonial, A.; Lartigue, C.; Gueiffier, A.; Moreau, E.; Teulade, J-C.; Chavignon, O.; Neyts, J. Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. Eur. J. Med. Chem., 2010, 45(5), 2044-2047.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.023] [PMID: 20149501]
[89]
Amorim, R.; Ferreira de Meneses, M.D.; Borges, J.C.; Da Silva Pinheiro, L.C.; Caldas, L.A.; Cirne-Santos, C.C.; Palmeira de Mello, M.V.; Teles de Souza, A.M.; Castro, H.C.; Nunes de Palmer Paixão, I.C.; De Mendonça Campos, R.; Bergmann, I.E.; Malirat, V.; Rolim Bernardino, A.M.; Rebello, M.A.; Ferreira, D.F. Thieno[2,3-b]pyridine deriva-tives: a new class of antiviral drugs against Mayaro virus. Arch. Virol., 2017, 162(6), 1577-1587.
[http://dx.doi.org/10.1007/s00705-017-3261-0] [PMID: 28213871]
[90]
Ferreira, D.F.; Santo, M.P.; Rebello, M.A.; Rebello, M.C. Weak bases affect late stages of Mayaro virus replication cycle in vertebrate cells. J. Med. Microbial., 2000, 49(4), 313-318.
[http://dx.doi.org/10.1099/0022-1317-49-4-313] [PMID: 10755624]
[91]
Tesh, R.B.; Watts, D.M.; Russell, K.L.; Damodaran, C.; Calampa, C.; Cabezas, C.; Ramirez, G.; Vasquez, B.; Hayes, C.G.; Rossi, C.A.; Powers, A.M.; Hice, C.L.; Chandler, L.J.; Cropp, B.C.; Karabatsos, N.; Roehrig, J.T.; Gubler, D.J. Mayaro virus disease: an emerging mosquito-borne zoonosis in tropical South America. Clin. Infect. Dis., 1999, 28(1), 67-73.
[http://dx.doi.org/10.1086/515070] [PMID: 10028074]
[92]
Bernardino, A.M.; da Silva Pinheiro, L.C.; Rodrigues, C.R.; Loureiro, N.I.; Castro, H.C.; Lanfredi-Rangel, A.; Sabatini-Lopes, J.; Borges, J.C.; Carvalho, J.M.; Romeiro, G.A.; Ferreira, V.F.; Frugulhetti, I.C.; Vannier-Santos, M.A. Design, synthesis, SAR, and biological evaluation of new 4-(phenylamino)thieno[2,3-b]pyridine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5765-5770.
[http://dx.doi.org/10.1016/j.bmc.2006.03.013] [PMID: 16781157]
[93]
World Health Organization. Available at: http://www.who. int/mediacentre/factsheets/fs094/en/ (Accessed Date: 27 March, 2019)
[95]
a)Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361(5), 455-467.
[http://dx.doi.org/10.1056/NEJMoa0808859] [PMID: 19641202]
b)Dondorp, A.M.; Yeung, S.; White, L.; Nguon, C.; Day, N.P.J.; Socheat, D.; von Seidlein, L. Artemisinin resistance: current status and scenarios for containment. Nat. Rev. Microbiol., 2010, 8(4), 272-280.
[http://dx.doi.org/10.1038/nrmicro2331] [PMID: 20208550]
[96]
a)Grazioso, G.; Legnani, L.; Toma, L.; Ettari, R.; Micale, N.; De Micheli, C. Mechanism of falcipain-2 inhibition by α,β-unsaturated benzo[1,4]diazepin-2-one methyl ester. J. Comput. Aided Mol. Des., 2012, 26(9), 1035-1043.
[http://dx.doi.org/10.1007/s10822-012-9596-4] [PMID: 22965332]
b)Villa, S.; Legnani, L.; Colombo, D.; Gelain, A.; Lammi, C.; Bongiorno, D.; Ilboudo, D.P.; McGee, K.E.; Bosch, J.; Grazioso, G. Structure-based drug design, synthesis and biological assays of P. falciparum Atg3-Atg8 protein-protein interaction inhibitors. J. Comput. Aided Mol. Des., 2018, 32(3), 473-486.
[http://dx.doi.org/10.1007/s10822-018-0102-5] [PMID: 29383466]
[97]
Kasiganesan, H.; Wright, G.L.; Chiacchio, M.A.; Gumina, G. Novel l-adenosine analogs as cardioprotective agents. Bioorg. Med. Chem., 2009, 17(14), 5347-5352.
[http://dx.doi.org/10.1016/j.bmc.2008.12.011] [PMID: 19502065]
[98]
Manohar, S.; Rajesh, U.C.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett., 2012, 3(7), 555-559.
[http://dx.doi.org/10.1021/ml3000808] [PMID: 24900509]
[99]
Singh, K.; Kaur, H.; Smith, P.; de Kock, C.; Chibale, K.; Balzarini, J. Quinoline-pyrimidine hybrids: synthesis, antiplasmodial activity, SAR, and mode of action studies. J. Med. Chem., 2014, 57(2), 435-448.
[http://dx.doi.org/10.1021/jm4014778] [PMID: 24354322]
[100]
Lödige, M.; Lewis, M.D.; Paulsen, E.S.; Esch, H.L.; Pradel, G.; Lehmann, L.; Brun, R.; Bringmann, G.; Mueller, A-K. A primaquine-chloroquine hybrid with dual activity against Plasmodium liver and blood stages. Int. J. Med. Microbiol., 2013, 303(8), 539-547.
[http://dx.doi.org/10.1016/j.ijmm.2013.07.005] [PMID: 23992634]
[101]
Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem., 2010, 53(17), 6477-6489.
[http://dx.doi.org/10.1021/jm1006484] [PMID: 20684562]
[102]
Aguiar, A.C. Santos, Rde.M.; Figueiredo, F.J.; Cortopassi, W.A.; Pimentel, A.S.; França, T.C.; Meneghetti, M.R.; Krettli, A.U. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites. PLoS One, 2012, 7(5)e37259
[http://dx.doi.org/10.1371/journal.pone.0037259] [PMID: 22649514]
[103]
Ettari, R.; Nizi, E.; Di Francesco, M.E.; Dude, M.A.; Pradel, G.; Vicík, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappalà, M. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors. J. Med. Chem., 2008, 51(4), 988-996.
[http://dx.doi.org/10.1021/jm701141u] [PMID: 18232656]
[104]
Ettari, R.; Micale, N.; Schirmeister, T.; Gelhaus, C.; Leippe, M.; Nizi, E.; Di Francesco, M.E.; Grasso, S.; Zappalà, M. Novel peptidomimetics containing a vinyl ester moiety as highly potent and selective falcipain-2 inhibitors. J. Med. Chem., 2009, 52(7), 2157-2160.
[http://dx.doi.org/10.1021/jm900047j] [PMID: 19296600]
[105]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[106]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Design Med. Chem., 2015, 1(1), 1-11.
[http://dx.doi.org/10.11648/j.jddmc.20150101.11]
[107]
Fadda, A.A.; Rabie Hassan, R.; Etman, A.; Fouda, A.A.S. 1-Naphthyl-2-cyanoacetamide in heterocyclic synthesis: synthesis and evaluation of the antimicrobial activity of some new pyridine, pyrimidine, and naphtho[2,1-b] oxazine derivatives. Res. Chem. Intermed., 2015, 41(10), 7883-7897.
[http://dx.doi.org/10.1007/s11164-014-1864-6]
[108]
Patole, J.; Sandbhor, U.; Padhye, S.; Deobagkar, D.N.; Anson, C.E.; Powell, A. Structural chemistry and in vitro antitubercular activity of acetylpyridine benzoyl hydrazone and its copper complex against Mycobacterium smegmatis. Bioorg. Med. Chem. Lett., 2003, 13(1), 51-55.
[http://dx.doi.org/10.1016/S0960-894X(02)00855-7] [PMID: 12467615]
[109]
Deng, J.; Sanchez, T.; Al-Mawsawi, L.Q.; Dayam, R.; Yunes, R.A.; Garofalo, A.; Bolger, M.B.; Neamati, N. Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorg. Med. Chem., 2007, 15(14), 4985-5002.
[http://dx.doi.org/10.1016/j.bmc.2007.04.041] [PMID: 17502148]
[110]
Moussa, H.H.; Chabaka, M.; Zaki, D. Synthesis and evaluation of antifungal properties of a series of the novel 2-amino-5-oxo-4- phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and its analogues. Egypt. J. Chem., 1983, 26, 469-477.
[http://dx.doi.org/10.1016/j.bmc.2007.08.009]
[111]
Kathiriya, P.J.; Purohit, H.D.; Purohit, D.M. Synthesis and antimicrobial activity of 2-4′-[(4”-aryl)-3”-cyano-2”-methoxy-pyridine-6”-yl]-phenylamino-6-[bis(2”'-chloroethyl) amino]-4-methoxy-1,3,5-triazine. Int. Lett. Chem. Phys. Astron., 2015, 49, 137-142.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.49.137]
[112]
Altundas, A.; Ayvaz, S.; Logoglu, E. Synthesis and evaluation of a series of aminocyanopyridines as antimicrobial agents. Med. Chem. Res., 2011, 20(1), 1-8.
[http://dx.doi.org/10.1007/s00044-009-9273-x]
[113]
Jyothi, M.V.; Rajendra Prasad, A.Y.; Venkatesh, P.; Sureshreddy, M. Synthesis and antimicrobial activity of some novel chalcones of 3-acetyl pyridine and their pyrimidine derivatives. Chem. Sci. Trans., 2012, 1(3), 716-722.
[http://dx.doi.org/10.7598/cst2012.223]
[114]
Babulreddy, A.; Hymavathi, R.V.; Narayanaswamy, G. 1-(4-(4-(2-(methylamino)pyrimidin-4-yl)phenyl)-3-substituted urea derivatives by using sequential Suzuki-Miyaura cross coupling reactions: synthesis, characterization and antimicro-bial acivity. Int. Res. J. Pharm., 2012, 3(10), 139-142.
[115]
Prachayasittikul, S.; Worachartcheewan, A.; Nantasenamat, C.; Chinworrungsee, M.; Sornsongkhram, N.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structure-activity relationship of 2-thiopyrimidine-4-one analogs as antimicrobial and anticancer agents. Eur. J. Med. Chem., 2011, 46(2), 738-742.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.009] [PMID: 21216051]
[116]
Odani, A.; Kozlowski, H.; Swiatek-Kozlowska, J.; Brasuń, J.; Operschall, B.P.; Sigel, H. Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. J. Inorg. Biochem., 2007, 101(4), 727-735.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.12.014] [PMID: 17320183]
[117]
Kaplancıklı, Z.A.; Yurttas, L.; Turan-Zitounia, G.; Ozdemir, A.; Goger, G.; Demirci, F.; Abu Mohsen, U. Synthesis and antimicrobial activity of new pyrimidine-hydrazones. Lett. Drug Des. Discov., 2014, 11, 76-81.
[http://dx.doi.org/10.2174/15701808113109990037]
[118]
Khalifa, N.M.; Abdel-Rahman, A.A.H.; Abd-Elmoez, S.I.; Fathalla, O.A.; Abd El-Gwaad, A. A. A convenient synthesis of some new fused pyridine and pyrimidine derivatives of antimicrobial profiles. Res. Chem. Intermed., 2015, 41(4), 2295-2305.
[http://dx.doi.org/10.1007/s11164-013-1347-1]
[119]
Abdel‐Motaal, F.F.; Abd‐Elmonem Raslan, M. Synthesis and antimicrobial evaluation of some 1,2,4‐triazolo[1,5‐a]pyridine, pyrimidine sulfonamides and sulfinyl derivatives. Eur. J. Chem., 2014, 5(3), 481-487.
[http://dx.doi.org/10.5155/eurjchem.5.3.481-487.1054]
[120]
Nagender, P.; Malla Reddy, G.; Naresh Kumar, R.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b]pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2905-2908.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.084] [PMID: 24835633]
[121]
Toche, R.B.; Nika, P. Synthesis and evaluation of antimi-crobial and antitubercular activity of arylidene hydrazines of indenothieno[2,3-d]pyrimidine. Chem. Biol. Interfaces, 2015, 5(4), 246-257.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy