Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Organodiselenides: Organic Catalysis and Drug Design Learning from Glutathione Peroxidase

Author(s): Marco Dalla Tiezza, Giovanni Ribaudo and Laura Orian*

Volume 23, Issue 13, 2019

Page: [1381 - 1402] Pages: 22

DOI: 10.2174/1385272822666180803123137

Price: $65

conference banner
Abstract

Organodiselenides are an important class of compounds characterized by the presence of two adjacent covalently bonded selenium nuclei. Among them, diaryldiselenides and their parent compound diphenyl diselenide attract continuing interest in chemistry as well as in close disciplines like medicinal chemistry, pharmacology and biochemistry. A search in SCOPUS database has revealed that in the last three years 105 papers have been published on the archetypal diphenyl diselenide and its use in organic catalysis and drug tests. The reactivity of the Se-Se bond and the redox properties of selenium make diselenides efficient catalysts for numerous organic reactions, such as Bayer- Villiger oxidations of aldehydes/ketones, epoxidations of alkenes, oxidations of alcohols and nitrogen containing compounds. In addition, organodiselenides might find application as mimics of glutathione peroxidase (GPx), a family of enzymes, which, besides performing other functions, regulate the peroxide tone in the cells and control the oxidative stress level. In this review, the essential synthetic and reactivity aspects of organoselenides are collected and rationalized using the results of accurate computational studies, which have been carried out mainly in the last two decades. The results obtained in silico provide a clear explanation of the anti-oxidant activity of organodiselenides and more in general of their ability to reduce hydroperoxides. At the same time, they are useful to gain insight into some aspects of the enzymatic activity of the GPx, inspiring novel elements for rational catalyst and drug design.

Keywords: Organodiselenides, diphenyl diselenide, glutathione peroxidase, antioxidants, DFT calculations, reaction mechanism, bioinspired catalysis.

Graphical Abstract
[1]
Flohé, L.; Brigelius-Flohé, R. Basics and News on Glutathione Peroxidases.Selenium; Springer: Cham, Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-41283-2_17]
[2]
Maiorino, M.; Bosello-Travain, V.; Cozza, G.; Miotto, G.; Orian, L.; Roveri, A.; Toppo, S.; Zaccarin, M.; Ursini, F. Glutathione Peroxidase 4.Seleni-um; Springer: Cham, 2016.
[http://dx.doi.org/10.1007/978-3-319-41283-2_18]
[3]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[4]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[5]
Ursini, F.; Maiorino, M.; Gregolin, C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta, 1985, 839(1), 62-70.
[http://dx.doi.org/10.1016/0304-4165(85)90182-5] [PMID: 3978121]
[6]
Maiorino, M.; Aumann, K-D.; Brigelius-Flohé, R.; Doria, D.; van den Heuvel, J.; McCarthy, J.; Roveri, A.; Ursini, F.; Flohé, L. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol. Chem. Hoppe Seyler, 1995, 376(11), 651-660.
[http://dx.doi.org/10.1515/bchm3.1995.376.11.651] [PMID: 8962674]
[7]
Ma, L-H.; Takanishi, C.L.; Wood, M.J. Molecular mechanism of oxidative stress perception by the Orp1 protein. J. Biol. Chem., 2007, 282(43), 31429-31436.
[http://dx.doi.org/10.1074/jbc.M705953200] [PMID: 17720812]
[8]
Tosatto, S.C.E.; Bosello, V.; Fogolari, F.; Mauri, P.; Roveri, A.; Toppo, S.; Flohé, L.; Ursini, F.; Maiorino, M. The catalytic site of glutathione peroxidases. Antioxid. Redox Signal., 2008, 10(9), 1515-1526.
[http://dx.doi.org/10.1089/ars.2008.2055] [PMID: 18500926]
[9]
Mao, S.; Dong, Z.; Liu, J.; Li, X.; Liu, X.; Luo, G.; Shen, J. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc., 2005, 127(33), 11588-11589.
[http://dx.doi.org/10.1021/ja052451v] [PMID: 16104720]
[10]
Liu, X.; Silks, L.A.; Liu, C.; Ollivault-Shiflett, M.; Huang, X.; Li, J.; Luo, G.; Hou, Y-M.; Liu, J.; Shen, J. Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed. Engl., 2009, 48(11), 2020-2023.
[http://dx.doi.org/10.1002/anie.200805365] [PMID: 19199319]
[11]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[12]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[13]
Orian, L.; Toppo, S. Organochalcogen peroxidase mimetics as potential drugs: A long story of a promise still unfulfilled. Free Radic. Biol. Med., 2014, 66, 65-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.006] [PMID: 23499840]
[14]
Tiekink, E.R.T. Therapeutic potential of selenium and tellurium compounds: Opportunities yet unrealised. Dalton Trans., 2012, 41(21), 6390-6395.
[http://dx.doi.org/10.1039/c2dt12225a] [PMID: 22252404]
[15]
Ibrahim, M.; Hassan, W.; Meinerz, D.F.; Dos Santos, M.V.; Klimaczewski, C.M.; Deobald, A.; Costa, M.S.; Nogueira, C.W.; Barbosa, N.B.V.; Rocha, J.B.T. Antioxidant properties of diorganoyl diselenides and ditellurides: Modulation by organic aryl or naphthyl moiety. Mol. Cell. Biochem., 2012, 371(1-2), 97-104.
[http://dx.doi.org/10.1007/s11010-012-1426-4] [PMID: 22983825]
[16]
Meinerz, D.F.; Allebrandt, J.; Mariano, D.O.C.; Waczuk, E.P.; Soares, F.A.; Hassan, W.; Rocha, J.B.T. Differential genotoxicity of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2. PeerJ, 2014, 2, e290.
[http://dx.doi.org/10.7717/peerj.290] [PMID: 24711962]
[17]
Bortoli, M.; Torsello, M.; Bickelhaupt, F.M.; Orian, L. Role of the chalcogen (S, Se, Te) in the oxidation mechanism of the glutathione peroxidase active site. ChemPhysChem, 2017, 18(21), 2990-2998.
[http://dx.doi.org/10.1002/cphc.201700743] [PMID: 28837255]
[18]
Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res., 2010, 43(11), 1408-1419.
[http://dx.doi.org/10.1021/ar100059g] [PMID: 20690615]
[19]
Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.; Tiecco, M. Eco-friendly olefin dihydroxylation catalyzed by diphenyl diselenide. Adv. Synth. Catal., 2008, 350(18), 2881-2884.
[http://dx.doi.org/10.1002/adsc.200800571]
[20]
Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: Development of efficient catalytic reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8409-8411.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863]
[21]
Santi, C.; Santoro, S.; Battistelli, B. Organoselenium compounds as cata-lysts in nature and laboratory. Curr. Org. Chem., 2010, 14(20), 2442-2462.
[http://dx.doi.org/10.2174/138527210793358231]
[22]
Santi, C.; Tomassini, C.; Sancineto, L. Organic diselenides: Versatile rea-gents, precursors, and intriguing biologically active compounds. Chimia (Aarau), 2017, 71(9), 592-595.
[http://dx.doi.org/10.2533/chimia.2017.592] [PMID: 30188290]
[23]
Ribaudo, G.; Bellanda, M.; Menegazzo, I.; Wolters, L.P.; Bortoli, M.; Ferrer-Sueta, G.; Zagotto, G.; Orian, L. Mechanistic insight into the oxidation of organic phenylselenides by H2O2. Chemistry, 2017, 23(10), 2405-2422.
[http://dx.doi.org/10.1002/chem.201604915] [PMID: 27935210]
[24]
Bradt, W.E.; Green, J.F. The interaction of selenium tetrachloride and ben-zene in the presence of anhydrous aluminum chloride. J. Org. Chem., 1937, 1(6), 540-543.
[http://dx.doi.org/10.1021/jo01235a002]
[25]
Back, T.G.; Dyck, B.P. A novel camphor-derived selenenamide that acts as a glutathione peroxidase mimetic. J. Am. Chem. Soc., 1997, 119(9), 2079-2083.
[http://dx.doi.org/10.1021/ja963602k]
[26]
Back, T.G.; Moussa, Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl ω-hydroxyalkyl selenides. J. Am. Chem. Soc., 2003, 125(44), 13455-13460.
[http://dx.doi.org/10.1021/ja0357588] [PMID: 14583041]
[27]
Press, D.J.; Back, T.G. Enhanced glutathione peroxidase activity of conformationally restricted naphthalene peri-dichalcogenides. Org. Lett., 2011, 13(15), 4104-4107.
[http://dx.doi.org/10.1021/ol201617t] [PMID: 21739953]
[28]
Back, T.G.; Muralidharan, K.R. Formation and electrophilic reactions of benzeneselenenyl p-toluenesulfonate. Preparation and properties of addition products with acetylenes. J. Org. Chem., 1991, 56(8), 2781-2787.
[http://dx.doi.org/10.1021/jo00008a039]
[29]
Back, T.G.; Vijaya Krishna, M. Free-radical additions of diselenides to dimethyl acetylenedicarboxylate, methyl propiolate, and dimethyl maleate. J. Org. Chem., 1988, 53(11), 2533-2536.
[http://dx.doi.org/10.1021/jo00246a023]
[30]
Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic use of selenium electrophiles in cyclizations. Org. Lett., 2007, 9(16), 3169-3171.
[http://dx.doi.org/10.1021/ol071223y] [PMID: 17608489]
[31]
Wirth, T. Glutathione peroxidase-like activities of oxygen-containing diselenides. Molecules, 1998, 3(7), 164-166.
[http://dx.doi.org/10.3390/30700164]
[32]
Gabriele, E.; Singh, F.V.; Freudendahl, D.M.; Wirth, T. Selenenylations of alkenes with styrene nucleophiles. Tetrahedron, 2012, 68(51), 10573-10576.
[http://dx.doi.org/10.1016/j.tet.2012.08.034]
[33]
Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org. Lett., 2011, 13(24), 6504-6507.
[http://dx.doi.org/10.1021/ol202800k] [PMID: 22085140]
[34]
Santi, C.; Di Lorenzo, R.; Tidei, C.; Bagnoli, L.; Wirth, T. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron, 2012, 68(51), 10530-10535.
[http://dx.doi.org/10.1016/j.tet.2012.08.078]
[35]
Galant, L.S.; Braga, M.M.; de Souza, D.; de Bem, A.F.; Sancineto, L.; Santi, C.; da Rocha, J.B.T. Induction of reactive oxygen species by diphenyl diselenide is preceded by changes in cell morphology and permeability in Saccharomyces cerevisiae. Free Radic. Res., 2017, 51(7-8), 657-668.
[http://dx.doi.org/10.1080/10715762.2017.1355054] [PMID: 28840761]
[36]
Lopes, E.F.; Gonçalves, L.C.; Vinueza, J.C.G.; Jacob, R.G.; Perin, G.; Santi, C.; Lenardão, E.J. DES as a green solvent to prepare 1,2-bis-organylseleno alkenes. Scope and limitations. Tetrahedron Lett., 2015, 56(49), 6890-6895.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.095]
[37]
Nascimento, V.; Ferreira, N.L.; Canto, R.F.S.; Schott, K.L.; Waczuk, E.P.; Sancineto, L.; Santi, C.; Rocha, J.B.T.; Braga, A.L. Synthesis and biological evaluation of new nitrogen-containing diselenides. Eur. J. Med. Chem., 2014, 87, 131-139.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.022] [PMID: 25244678]
[38]
Sancineto, L.; Piccioni, M.; De Marco, S.; Pagiotti, R.; Nascimento, V.; Braga, A.L.; Santi, C.; Pietrella, D. Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol., 2016, 16(1), 220.
[http://dx.doi.org/10.1186/s12866-016-0837-x] [PMID: 27654924]
[39]
Santi, C.; Tidei, C.; Scalera, C.; Piroddi, M.; Galli, F. Selenium containing compounds from poison to drug candidates: A review on the GPx-like ac-tivity. Curr. Chem. Biol., 2013, 7(1), 25-36.
[http://dx.doi.org/10.2174/2212796811307010003]
[40]
Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.W.S.; Testaferri, L.; Tiecco, M.; Santi, C. Oxidation of alkynes in aqueous media catalyzed by diphenyl diselenide. Synlett, 2010, 2010(9), 1402-1406.
[http://dx.doi.org/10.1055/s-0029-1219817]
[41]
Tidei, C.; Piroddi, M.; Galli, F.; Santi, C. Oxidation of thiols promoted by PhSeZnCl. Tetrahedron Lett., 2012, 53(2), 232-234.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.025]
[42]
Tiecco, M.; Testaferri, L.; Bagnoli, L.; Marini, F.; Santi, C.; Temperini, A. Selenium catalyzed conversion of δ-phenyl- γ-alkenyl oximes into 2-phenylpyridines. Heterocycles, 1996, 43(12), 2679-2686.
[http://dx.doi.org/10.3987/COM-96-7606]
[43]
Tiecco, M.; Testaferri, L.; Marini, F.; Santi, C.; Bagnoli, L.; Temperini, A. Factors controlling, the selenium-induced cyclizations of alkenyl hydra-zines to pyridazine or pyrrolidinamine derivatives. Tetrahedron, 1997, 53(30), 10591-10602.
[http://dx.doi.org/10.1016/S0040-4020(97)00670-4]
[44]
Tiecco, M.; Testaferri, L.; Marini, F.; Temperini, A.; Bagnoli, L.; Santi, C. One-pot conversion of alkenes into oxazolines and oxazolidin-2-ones promoted by diphenyl diselenide. Synth. Commun., 1997, 27(23), 4131-4140.
[http://dx.doi.org/10.1080/00397919708005461]
[45]
Tiecco, M.; Testaferri, L.; Santi, C. Catalytic oxyselenenylation-deselenenylation reactions of alkenes - Stereoselective one-pot conversion of 3-alkenols into 2,5-dihydrofurans. Eur. J. Org. Chem., 1999, (4), 797-803.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199904)1999:4<797:AID-EJOC797>3.0.CO;2-O]
[46]
Tiecco, M.; Testaferri, L.; Temperini, A.; Marini, F.; Bagnoli, L.; Santi, C. Selenium promoted stereospecific one-pot conversion of cinnamyl deriva-tives into oxazolines. A simple synthetic route to racemic taxol side chain. Synth. Commun., 1999, 29(10), 1773-1778.
[http://dx.doi.org/10.1080/00397919908086165]
[47]
Tiecco, M.; Testaferri, L.; Tingoli, M.; Bagnoli, L.; Santi, C. Catalytic con-version of (β,γ-unsaturated esters, amides and nitriles into γ-alkoxy or γ-hydroxy α,β-unsaturated derivatives induced by persulfate anion oxidation of diphenyl diselenide. J. Chem. Soc. Chem. Commun., 1993, (7), 637-639.
[http://dx.doi.org/10.1039/C39930000637]
[48]
Tiecco, M.; Testaferri, L.; Tingoli, M.; Santi, C. New synthesis of isoxazoli-dines from the selenium-induced cyclization of O-allyl hydroxylamines. Tetrahedron Lett., 1995, 36(1), 163-166.
[http://dx.doi.org/10.1016/0040-4039(94)02201-L]
[49]
Tieco, M.; Testaferri, L.; Marini, F.; Bagnoli, L.; Santi, C.; Temperini, A. Phenylselenenyl sulfate induced cyclization of allylhydrazines. Synthesis of pyrazole derivatives. Tetrahedron, 1997, 53(12), 4441-4446.
[http://dx.doi.org/10.1016/S0040-4020(97)00116-6]
[50]
Vieira, A.A.; Azeredo, J.B.; Godoi, M.; Santi, C.; da Silva Júnior, E.N.; Braga, A.L. Catalytic chalcogenylation under greener conditions: A solvent-free sulfur- and seleno-functionalization of olefins via I2/DMSO oxidant system. J. Org. Chem., 2015, 80(4), 2120-2127.
[http://dx.doi.org/10.1021/jo502621a] [PMID: 25607341]
[51]
Baldo, M.; Forchioni, A.; Irgolic, K.J.; Pappalardo, G.C. Carbon-13 spin-lattice relaxation and molecular motion of diphenyl dichalcogenides. J. Am. Chem. Soc., 1978, 100(1), 97-100.
[http://dx.doi.org/10.1021/ja00469a016]
[52]
Zaccaria, F.; Wolters, L.P.; Fonseca Guerra, C.; Orian, L. Insights on seleni-um and tellurium diaryldichalcogenides: A benchmark DFT study: Insights on selenium and tellurium diaryldichalcogenides. J. Comput. Chem., 2016, 37(18), 1672-1680.
[http://dx.doi.org/10.1002/jcc.24383] [PMID: 27093091]
[53]
Nogueira, C.W.; Rocha, J.B.T. Diphenyl diselenide a janus-faced molecule. J. Braz. Chem. Soc., 2010, 21(11), 2055-2071.
[http://dx.doi.org/10.1590/S0103-50532010001100006]
[54]
Hassan, W.; Rocha, J.B.T. Interaction profile of diphenyl diselenide with pharmacologically significant thiols. Molecules, 2012, 17(10), 12287-12296.
[http://dx.doi.org/10.3390/molecules171012287] [PMID: 23085664]
[55]
da Rocha, J.T.; Sperança, A.; Nogueira, C.W.; Zeni, G. Hypolipidaemic activity of orally administered diphenyl diselenide in Triton WR-1339-induced hyperlipidaemia in mice. J. Pharm. Pharmacol., 2009, 61(12), 1673-1679.
[http://dx.doi.org/10.1211/jpp.61.12.0013] [PMID: 19958591]
[56]
Sanmartin, C.; Plano, D.; Font, M.; Palop, J.A. Selenium and clinical trials: New therapeutic evidence for multiple diseases. Curr. Med. Chem., 2011, 18(30), 4635-4650.
[http://dx.doi.org/10.2174/092986711797379249] [PMID: 21864284]
[57]
Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4] [PMID: 6487371]
[58]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[PMID: 6487370]
[59]
Parnham, M.J.; Sies, H. The early research and development of ebselen. Biochem. Pharmacol., 2013, 86(9), 1248-1253.
[http://dx.doi.org/10.1016/j.bcp.2013.08.028] [PMID: 24012716]
[60]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[61]
Acker, C.I.; Luchese, C.; Prigol, M.; Nogueira, C.W. Antidepressant-like effect of diphenyl diselenide on rats exposed to malathion: Involvement of Na+K+ ATPase activity. Neurosci. Lett., 2009, 455(3), 168-172.
[http://dx.doi.org/10.1016/j.neulet.2009.03.069] [PMID: 19429114]
[62]
Alberto, E.E.; Braga, A.L.; Detty, M.R. Imidazolium-containing diselenides for catalytic oxidations with hydrogen peroxide and sodium bromide in aqueous solutions. Tetrahedron, 2012, 68(51), 10476-10481.
[http://dx.doi.org/10.1016/j.tet.2012.08.004]
[63]
Barbosa, F.A.R.; Canto, R.F.S.; Saba, S.; Rafique, J.; Braga, A.L. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(22), 5762-5770.
[http://dx.doi.org/10.1016/j.bmc.2016.09.031] [PMID: 27681239]
[64]
Barbosa, N.B.V.; Rocha, J.B.T.; Soares, J.C.M.; Wondracek, D.C.; Gonçalves, J.F.; Schetinger, M.R.C.; Nogueira, C.W. Dietary diphenyl diselenide reduces the STZ-induced toxicity. Food Chem. Toxicol., 2008, 46(1), 186-194.
[http://dx.doi.org/10.1016/j.fct.2007.07.014] [PMID: 17870224]
[65]
Barbosa, N.B.V.; Rocha, J.B.T.; Wondracek, D.C.; Perottoni, J.; Zeni, G.; Nogueira, C.W. Diphenyl diselenide reduces temporarily hyperglycemia: Possible relationship with oxidative stress. Chem. Biol. Interact., 2006, 163(3), 230-238.
[http://dx.doi.org/10.1016/j.cbi.2006.08.004] [PMID: 16965767]
[66]
Barbosa, N.B.V.; Rocha, J.B.T.; Zeni, G.; Emanuelli, T.; Beque, M.C.; Braga, A.L. Effect of organic forms of selenium on δ-aminolevulinate dehydratase from liver, kidney, and brain of adult rats. Toxicol. Appl. Pharmacol., 1998, 149(2), 243-253.
[http://dx.doi.org/10.1006/taap.1998.8373] [PMID: 9571994]
[67]
Borges, L.P.; Borges, V.C.; Moro, A.V.; Nogueira, C.W.; Rocha, J.B.T.; Zeni, G. Protective effect of diphenyl diselenide on acute liver damage induced by 2-nitropropane in rats. Toxicology, 2005, 210(1), 1-8.
[http://dx.doi.org/10.1016/j.tox.2005.01.002] [PMID: 15804453]
[68]
Borges, L.P.; Nogueira, C.W.; Panatieri, R.B.; Rocha, J.B.T.; Zeni, G. Acute liver damage induced by 2-nitropropane in rats: Effect of diphenyl diselenide on antioxidant defenses. Chem. Biol. Interact., 2006, 160(2), 99-107.
[http://dx.doi.org/10.1016/j.cbi.2005.12.010] [PMID: 16445897]
[69]
Borges, L.P.; Brandão, R.; Godoi, B.; Nogueira, C.W.; Zeni, G. Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats. Chem. Biol. Interact., 2008, 171(1), 15-25.
[http://dx.doi.org/10.1016/j.cbi.2007.09.005] [PMID: 17950719]
[70]
Borges, V.C.; Rocha, J.B.T.; Nogueira, C.W. Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na+, K+-ATPase activity in rats. Toxicology, 2005, 215(3), 191-197.
[http://dx.doi.org/10.1016/j.tox.2005.07.002] [PMID: 16095793]
[71]
Borges, V.C.; Rocha, J.B.T.; Savegnago, L.; Nogueira, C.W. Repeated administration of diphenyl ditelluride induces hematological disorders in rats. Food Chem. Toxicol., 2007, 45(8), 1453-1458.
[http://dx.doi.org/10.1016/j.fct.2007.02.022] [PMID: 17397981]
[72]
Brüning, C.A.; Prigol, M.; Luchese, C.; Jesse, C.R.; Duarte, M.M.M.F.; Roman, S.S.; Nogueira, C.W. Protective effect of diphenyl diselenide on ischemia and reperfusion-induced cerebral injury: Involvement of oxidative stress and pro-inflammatory cytokines. Neurochem. Res., 2012, 37(10), 2249-2258.
[http://dx.doi.org/10.1007/s11064-012-0853-7] [PMID: 22846969]
[73]
Burger, M.E.; Fachinetto, R.; Wagner, C.; Perottoni, J.; Pereira, R.P.; Zeni, G.; Rocha, J.B.T. Effects of diphenyl-diselenide on orofacial dyskinesia model in rats. Brain Res. Bull., 2006, 70(2), 165-170.
[http://dx.doi.org/10.1016/j.brainresbull.2006.05.002] [PMID: 16782505]
[74]
Burger, M.; Fachinetto, R.; Calegari, L.; Paixão, M.W.; Braga, A.L.; Rocha, J.B.T. Effects of age on reserpine-induced orofacial dyskinesia and possible protection of diphenyl diselenide. Brain Res. Bull., 2004, 64(4), 339-345.
[http://dx.doi.org/10.1016/j.brainresbull.2004.09.006] [PMID: 15561469]
[75]
Centurião, F.B.; Corte, C.L.; Paixão, M.W.; Braga, A.L.; Zeni, G.; Emanuelli, T.; Rocha, J.B. Effect of ebselen and organochalcogenides on excitotoxicity induced by glutamate in isolated chick retina. Brain Res., 2005, 1039(1-2), 146-152.
[http://dx.doi.org/10.1016/j.brainres.2005.01.062] [PMID: 15781056]
[76]
de Bem, A.F. Portella, Rde.L.; Colpo, E.; Duarte, M.M.M.F.; Frediane, A.; Taube, P.S.; Nogueira, C.W.; Farina, M.; da Silva, E.L.; Teixeira Rocha, J.B. Diphenyl diselenide decreases serum levels of total cholesterol and tissue oxidative stress in cholesterol-fed rabbits. Basic Clin. Pharmacol. Toxicol., 2009, 105(1), 17-23.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00414.x] [PMID: 19371255]
[77]
de Bem, A.F.; Farina, M. Portella, Rde.L.; Nogueira, C.W.; Dinis, T.C.P.; Laranjinha, J.A.N.; Almeida, L.M.; Rocha, J.B.T. Diphenyl diselenide, a simple glutathione peroxidase mimetic, inhibits human LDL oxidation in vitro. Atherosclerosis, 2008, 201(1), 92-100.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.02.030] [PMID: 18440006]
[78]
de Bem, A.F.; Fiuza, B.; Calcerrada, P.; Brito, P.M.; Peluffo, G.; Dinis, T.C.P.; Trujillo, M.; Rocha, J.B.T.; Radi, R.; Almeida, L.M. Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: A comparison with ebselen. Nitric Oxide, 2013, 31, 20-30.
[http://dx.doi.org/10.1016/j.niox.2013.03.003] [PMID: 23518198]
[79]
de Bem, A.F.; de Lima Portella, R.; Farina, M.; Perottoni, J.; Paixão, M.W.; Nogueira, C.W.; Teixeira Rocha, J.B. Low toxicity of diphenyl diselenide in rabbits: A long-term study. Basic Clin. Pharmacol. Toxicol., 2007, 101(1), 47-55.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00073.x] [PMID: 17577316]
[80]
Sausen de Freitas, A.; de Souza Prestes, A.; Wagner, C.; Haigert Sudati, J.; Alves, D.; Oliveira Porciúncula, L.; Kade, I.J.; Teixeira Rocha, J.B. Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: A possible novel pathway for their antioxidant activity. Molecules, 2010, 15(11), 7699-7714.
[http://dx.doi.org/10.3390/molecules15117699] [PMID: 21030914]
[81]
de Freitas, A.S.; Funck, V.R. Rotta, Mdos.S.; Bohrer, D.; Mörschbächer, V.; Puntel, R.L.; Nogueira, C.W.; Farina, M.; Aschner, M.; Rocha, J.B.T. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res. Bull., 2009, 79(1), 77-84.
[http://dx.doi.org/10.1016/j.brainresbull.2008.11.001] [PMID: 19047014]
[82]
de Freitas, A.S.; Rocha, J.B.T. Diphenyl diselenide and analogs are substrates of cerebral rat thioredoxin reductase: A pathway for their neuroprotective effects. Neurosci. Lett., 2011, 503(1), 1-5.
[http://dx.doi.org/10.1016/j.neulet.2011.07.050] [PMID: 21839146]
[83]
Fachinetto, R.; Villarinho, J.G.; Wagner, C.; Pereira, R.P.; Puntel, R.L.; Paixão, M.W.; Braga, A.L.; Calixto, J.B.; Rocha, J.B.T.; Ferreira, J. Diphenyl diselenide decreases the prevalence of vacuous chewing movements induced by fluphenazine in rats. Psychopharmacology (Berl.), 2007, 194(3), 423-432.
[http://dx.doi.org/10.1007/s00213-007-0831-y] [PMID: 17641876]
[84]
Farina, M.; Barbosa, N.B.V.; Nogueira, C.W.; Folmer, V.; Zeni, G.; Andrade, L.H.; Braga, A.L.; Rocha, J.B.T. Reaction of diphenyl diselenide with hydrogen peroxide and inhibition of delta-aminolevulinate dehydratase from rat liver and cucumber leaves. Braz. J. Med. Biol. Res., 2002, 35(6), 623-631.
[http://dx.doi.org/10.1590/S0100-879X2002000600001] [PMID: 12045826]
[85]
Ghisleni, G.; Kazlauckas, V.; Both, F.L.; Pagnussat, N.; Mioranzza, S.; Rocha, J.B.T.; Souza, D.O.; Porciúncula, L.O. Diphenyl diselenide exerts anxiolytic-like effect in Wistar rats: Putative roles of GABAA and 5HT receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(6), 1508-1515.
[http://dx.doi.org/10.1016/j.pnpbp.2008.05.008] [PMID: 18579279]
[86]
Ghisleni, G.; Porciúncula, L.O.; Cimarosti, H.; Batista, T.; Rocha, J.; Salbego, C.G.; Souza, D.O. Diphenyl diselenide protects rat hippocampal slices submitted to oxygen-glucose deprivation and diminishes inducible nitric oxide synthase immunocontent. Brain Res., 2003, 986(1-2), 196-199.
[http://dx.doi.org/10.1016/S0006-8993(03)03193-7] [PMID: 12965245]
[87]
Godoi, M.; Ricardo, E.W.; Frizon, T.E.; Rocha, M.S.T.; Singh, D.; Paixão, M.W.; Braga, A.L. An efficient synthesis of alkynyl selenides and tellurides from terminal acetylenes and diorganyl diselenides or ditellurides catalyzed by recyclable copper oxide nanopowder. Tetrahedron, 2012, 68(51), 10426-10430.
[http://dx.doi.org/10.1016/j.tet.2012.08.086]
[88]
Hassan, W.; Ibrahim, M.; Nogueira, C.W.; Braga, A.L.; Mohammadzai, I.U.; Taube, P.S.; Rocha, J.B.T. Enhancement of iron-catalyzed lipid peroxidation by acidosis in brain homogenate: Comparative effect of diphenyl diselenide and ebselen. Brain Res., 2009, 1258, 71-77.
[http://dx.doi.org/10.1016/j.brainres.2008.12.046] [PMID: 19135432]
[89]
Hassan, W.; Narayanaperumal, S.; Gul, K.; Rahman, A.U.; Braga, A.L.; Rodrigues, O.E.D.; Rocha, J.B.T. Modulation of diorganoyl dichalcogenides reactivity by non-bonded nitrogen interactions. Chem. Biol. Interact., 2012, 199(2), 96-105.
[http://dx.doi.org/10.1016/j.cbi.2012.05.010] [PMID: 22683714]
[90]
Hassan, W.; Pinton, S.; Rocha, J.T.D.; Deobald, A.M.; Braga, A.L.; Nogueira, C.W.; Latini, A.S.; Rocha, J.B.T. Hydroxyl containing seleno-imine compound exhibits improved anti-oxidant potential and does not inhibit thiol-containing enzymes. Chem. Biol. Interact., 2011, 190(1), 35-44.
[http://dx.doi.org/10.1016/j.cbi.2011.01.012] [PMID: 21256831]
[91]
Hort, M.A.; Straliotto, M.R.; Netto, P.M.; da Rocha, J.B.T.; de Bem, A.F.; Ribeiro-do-Valle, R.M. Diphenyl diselenide effectively reduces atherosclerotic lesions in LDLr -/- mice by attenuation of oxidative stress and inflammation. J. Cardiovasc. Pharmacol., 2011, 58(1), 91-101.
[http://dx.doi.org/10.1097/FJC.0b013e31821d1149] [PMID: 21558882]
[92]
Ibrahim, M.; Hassan, W.; Deobald, A.M.; Braga, A.L.; Rocha, J.B.T. An organoselenium drug with antioxidant activity and free radical scavenging capacity in vitro. Biol. Trace Elem. Res., 2012, 149(3), 399-404.
[http://dx.doi.org/10.1007/s12011-012-9440-7] [PMID: 22562597]
[93]
Ineu, R.P.; Pereira, M.E.; Aschner, M.; Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Diphenyl diselenide reverses gastric lesions in rats: Involvement of oxidative stress. Food Chem. Toxicol., 2008, 46(9), 3023-3029.
[http://dx.doi.org/10.1016/j.fct.2008.06.007] [PMID: 18611424]
[94]
Kade, I.J.; Paixão, M.W.; Rodrigues, O.E.D.; Ibukun, E.O.; Braga, A.L.; Zeni, G.; Nogueira, C.W.; Rocha, J.B.T. Studies on the antioxidant effect and interaction of diphenyl diselenide and dicholesteroyl diselenide with hepatic δ-aminolevulinic acid dehydratase and isoforms of lactate dehydrogenase. Toxicol. In Vitro, 2009, 23(1), 14-20.
[http://dx.doi.org/10.1016/j.tiv.2008.08.008] [PMID: 18804525]
[95]
Kade, I.J.; Paixão, M.W.; Rodrigues, O.E.D.; Barbosa, N.B.V.; Braga, A.L.; Ávila, D.S.; Nogueira, C.W.; Rocha, J.B.T. Comparative studies on dicholesteroyl diselenide and diphenyl diselenide as antioxidant agents and their effect on the activities of Na+/K+ ATPase and δ-aminolevulinic acid dehydratase in the rat brain. Neurochem. Res., 2008, 33(1), 167-178.
[http://dx.doi.org/10.1007/s11064-007-9432-8] [PMID: 17710541]
[96]
Kawasoko, C.Y.; Foletto, P.; Rodrigues, O.E.D.; Dornelles, L.; Schwab, R.S.; Braga, A.L. Straightforward synthesis of non-natural L-chalcogen and L-diselenide N-Boc-protected-γ-amino acid derivatives. Org. Biomol. Chem., 2013, 11(31), 5173-5183.
[http://dx.doi.org/10.1039/c3ob40879e] [PMID: 23820619]
[97]
Luchese, C.; Brandão, R.; de Oliveira, R.; Nogueira, C.W.; Santos, F.W. Efficacy of diphenyl diselenide against cerebral and pulmonary damage induced by cadmium in mice. Toxicol. Lett., 2007, 173(3), 181-190.
[http://dx.doi.org/10.1016/j.toxlet.2007.07.011] [PMID: 17822862]
[98]
Luchese, C.; Pinton, S.; Nogueira, C.W. Brain and lungs of rats are differently affected by cigarette smoke exposure: Antioxidant effect of an organoselenium compound. Pharmacol. Res., 2009, 59(3), 194-201.
[http://dx.doi.org/10.1016/j.phrs.2008.11.006] [PMID: 19095064]
[99]
Luchese, C.; Stangherlin, E.C.; Gay, B.M.; Nogueira, C.W. Antioxidant effect of diphenyl diselenide on oxidative damage induced by smoke in rats: Involvement of glutathione. Ecotoxicol. Environ. Saf., 2009, 72(1), 248-254.
[http://dx.doi.org/10.1016/j.ecoenv.2008.06.003] [PMID: 18678407]
[100]
Luchese, C.; Zeni, G.; Rocha, J.B.T.; Nogueira, C.W.; Santos, F.W. Cadmium inhibits δ-aminolevulinate dehydratase from rat lung in vitro: Interaction with chelating and antioxidant agents. Chem. Biol. Interact., 2007, 165(2), 127-137.
[http://dx.doi.org/10.1016/j.cbi.2006.11.007] [PMID: 17187767]
[101]
Machado, M.S.; Villela, I.V.; Moura, D.J.; Rosa, R.M.; Salvador, M.; Lopes, N.P.; Braga, A.L.; Roesler, R.; Saffi, J.; Henriques, J.A.P. 3′3-ditrifluoromethyldiphenyl diselenide: A new organoselenium compound with interesting antigenotoxic and antimutagenic activities. Mutat. Res. Toxicol. Environ. Mutagen., 2009, 673(2), 133-140.
[http://dx.doi.org/10.1016/j.mrgentox.2009.01.003]
[102]
Maciel, E.N.; Bolzan, R.C.; Braga, A.L.; Rocha, J.B.T. Diphenyl diselenide and diphenyl ditelluride differentially affect δ-aminolevulinate dehydratase from liver, kidney, and brain of mice. J. Biochem. Mol. Toxicol., 2000, 14(6), 310-319.
[http://dx.doi.org/10.1002/1099-0461(2000)14:6<310:AID-JBT3>3.0.CO;2-D] [PMID: 11083084]
[103]
Maciel, E.N.; Flores, E.M.M.; Rocha, J.B.T.; Folmer, V. Comparative deposition of diphenyl diselenide in liver, kidney, and brain of mice. Bull. Environ. Contam. Toxicol., 2003, 70(3), 470-476.
[http://dx.doi.org/10.1007/s00128-003-0010-8] [PMID: 12592520]
[104]
Manarin, F.; Roehrs, J.A.; Gay, R.M.; Brandão, R.; Menezes, P.H.; Nogueira, C.W.; Zeni, G. Electrophilic cyclization of 2-chalcogenealkynylanisoles: Versatile access to 2-chalcogen-benzo[b]furans. J. Org. Chem., 2009, 74(5), 2153-2162.
[http://dx.doi.org/10.1021/jo802736e] [PMID: 19209918]
[105]
Meinerz, D.F.; de Paula, M.T.; Comparsi, B.; Silva, M.U.; Schmitz, A.E.; Braga, H.C.; Taube, P.S.; Braga, A.L.; Rocha, J.B.T.; Dafre, A.L.; Farina, M.; Franco, J.L.; Posser, T. Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions. Braz. J. Med. Biol. Res., 2011, 44(11), 1156-1163.
[http://dx.doi.org/10.1590/S0100-879X2011007500136] [PMID: 22002094]
[106]
Meotti, F.C.; Borges, V.C.; Zeni, G.; Rocha, J.B.T.; Nogueira, C.W. Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice. Toxicol. Lett., 2003, 143(1), 9-16.
[http://dx.doi.org/10.1016/S0378-4274(03)00090-0] [PMID: 12697375]
[107]
Meotti, F.C.; Stangherlin, E.C.; Zeni, G.; Nogueira, C.W.; Rocha, J.B.T. Protective role of aryl and alkyl diselenides on lipid peroxidation. Environ. Res., 2004, 94(3), 276-282.
[http://dx.doi.org/10.1016/S0013-9351(03)00114-2] [PMID: 15016595]
[108]
Moretto, M.B.; Funchal, C.; Santos, A.Q.; Gottfried, C.; Boff, B.; Zeni, G.; Pureur, R.P.; Souza, D.O.; Wofchuk, S.; Rocha, J.B.T. Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicology, 2005, 214(1-2), 57-66.
[http://dx.doi.org/10.1016/j.tox.2005.05.022] [PMID: 16011868]
[109]
Moretto, M.B.; Rossato, J.I.; Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Voltage-dependent ebselen and diorganochalcogenides inhibition of 45Ca2+ influx into brain synaptosomes. J. Biochem. Mol. Toxicol., 2003, 17(3), 154-160.
[http://dx.doi.org/10.1002/jbt.10073] [PMID: 12815611]
[110]
Nogueira, C.W.; Borges, V.C.; Zeni, G.; Rocha, J.B.T. Organochalcogens effects on δ-aminolevulinate dehydratase activity from human erythrocytic cells in vitro. Toxicology, 2003, 191(2-3), 169-178.
[http://dx.doi.org/10.1016/S0300-483X(03)00250-6] [PMID: 12965120]
[111]
Nogueira, C.W.; Meotti, F.C.; Curte, E.; Pilissão, C.; Zeni, G.; Rocha, J.B.T. Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology, 2003, 183(1-3), 29-37.
[http://dx.doi.org/10.1016/S0300-483X(02)00423-7] [PMID: 12504340]
[112]
Nogueira, C.W.; Quinhones, E.B.; Jung, E.A.C.; Zeni, G.; Rocha, J.B.T. Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm. Res., 2003, 52(2), 56-63.
[http://dx.doi.org/10.1007/s000110300001] [PMID: 12665122]
[113]
Nogueira, C.W.; Rotta, L.N.; Zeni, G.; Souza, D.O.; Rocha, J.B.T. Exposure to ebselen changes glutamate uptake and release by rat brain synaptosomes. Neurochem. Res., 2002, 27(4), 283-288.
[http://dx.doi.org/10.1023/A:1014903127672] [PMID: 11958529]
[114]
Nogueira, C.W.; Rotta, L.N.; Perry, M.L.; Souza, D.O.; da Rocha, J.B. Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Res., 2001, 906(1-2), 157-163.
[http://dx.doi.org/10.1016/S0006-8993(01)02165-5] [PMID: 11430873]
[115]
Pinton, S.; Brüning, C.A.; Sartori Oliveira, C.E.; Prigol, M.; Nogueira, C.W. Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer’s type model in rats. J. Nutr. Biochem., 2013, 24(1), 311-317.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.012] [PMID: 22959057]
[116]
Pinton, S.; da Rocha, J.T.; Zeni, G.; Nogueira, C.W. Organoselenium improves memory decline in mice: Involvement of acetylcholinesterase activity. Neurosci. Lett., 2010, 472(1), 56-60.
[http://dx.doi.org/10.1016/j.neulet.2010.01.057] [PMID: 20122991]
[117]
Posser, T.; Franco, J.L.; dos Santos, D.A.; Rigon, A.P.; Farina, M.; Dafré, A.L.; Teixeira Rocha, J.B.; Leal, R.B. Diphenyl diselenide confers neuroprotection against hydrogen peroxide toxicity in hippocampal slices. Brain Res., 2008, 1199, 138-147.
[http://dx.doi.org/10.1016/j.brainres.2008.01.004] [PMID: 18272143]
[118]
Posser, T.; Moretto, M.B.; Dafre, A.L.; Farina, M.; da Rocha, J.B.T.; Nogueira, C.W.; Zeni, G. Ferreira, Jdos.S.; Leal, R.B.; Franco, J.L. Antioxidant effect of diphenyl diselenide against sodium nitroprusside (SNP) induced lipid peroxidation in human platelets and erythrocyte membranes: An in vitro evaluation. Chem. Biol. Interact., 2006, 164(1-2), 126-135.
[http://dx.doi.org/10.1016/j.cbi.2006.09.002] [PMID: 17049506]
[119]
Prigol, M.; Luchese, C.; Nogueira, C.W. Antioxidant effect of diphenyl diselenide on oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Cell Biochem. Funct., 2009, 27(4), 216-222.
[http://dx.doi.org/10.1002/cbf.1559] [PMID: 19382129]
[120]
Prigol, M.; Wilhelm, E.A.; Schneider, C.C.; Rocha, J.B.T.; Nogueira, C.W.; Zeni, G. Involvement of oxidative stress in seizures induced by diphenyl diselenide in rat pups. Brain Res., 2007, 1147(1), 226-232.
[http://dx.doi.org/10.1016/j.brainres.2007.01.126] [PMID: 17320826]
[121]
Puntel, R.L.; Roos, D.H.; Folmer, V.; Nogueira, C.W.; Galina, A.; Aschner, M.; Rocha, J.B.T. Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening. Toxicol. Sci., 2010, 117(1), 133-143.
[http://dx.doi.org/10.1093/toxsci/kfq185] [PMID: 20573786]
[122]
Puntel, R.L.; Roos, D.H.; Paixão, M.W.; Braga, A.L.; Zeni, G.; Nogueira, C.W.; Rocha, J.B.T. Oxalate modulates thiobarbituric acid reactive species (TBARS) production in supernatants of homogenates from rat brain, liver and kidney: Effect of diphenyl diselenide and diphenyl ditelluride. Chem. Biol. Interact., 2007, 165(2), 87-98.
[http://dx.doi.org/10.1016/j.cbi.2006.11.003] [PMID: 17188671]
[123]
Rafique, J.; Saba, S.; Canto, R.F.S.; Frizon, T.E.A.; Hassan, W.; Waczuk, E.P.; Jan, M.; Back, D.F.; Da Rocha, J.B.; Braga, A.L. Synthesis and biological evaluation of 2-picolylamide-based diselenides with non-bonded interactions. Molecules, 2015, 20(6), 10095-10109.
[http://dx.doi.org/10.3390/molecules200610095] [PMID: 26039333]
[124]
Jacques-Silva, M.C.; Nogueira, C.W.; Broch, L.C.; Flores, E.M.; Rocha, J.B. Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol. Toxicol., 2001, 88(3), 119-125.
[http://dx.doi.org/10.1034/j.1600-0773.2001.d01-92.x] [PMID: 11245406]
[125]
Roos, D.H.; Puntel, R.L.; Santos, M.M.; Souza, D.O.G.; Farina, M.; Nogueira, C.W.; Aschner, M.; Burger, M.E.; Barbosa, N.B.V.; Rocha, J.B.T. Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: Involvement of oxidative stress and glutamatergic system. Toxicol. In Vitro, 2009, 23(2), 302-307.
[http://dx.doi.org/10.1016/j.tiv.2008.12.020] [PMID: 19162164]
[126]
Rosa, R.M.; Roesler, R.; Braga, A.L.; Saffi, J.; Henriques, J.A.P. Pharmacology and toxicology of diphenyl diselenide in several biological models. Braz. J. Med. Biol. Res., 2007, 40(10), 1287-1304.
[http://dx.doi.org/10.1590/s0100-879x2006005000171] [PMID: 18572457]
[127]
Rosa, R.M.; Flores, D.G.; Appelt, H.R.; Braga, A.L.; Henriques, J.A.P.; Roesler, R. Facilitation of long-term object recognition memory by pretraining administration of diphenyl diselenide in mice. Neurosci. Lett., 2003, 341(3), 217-220.
[http://dx.doi.org/10.1016/S0304-3940(03)00187-3] [PMID: 12697287]
[128]
Rosa, R.M.; Guecheva, T.N.; De Oliveira, I.M.; Braga, A.L.; Henriques, J.A.P. Genetic toxicity of three symmetrical diselenides in yeast. J. Braz. Chem. Soc., 2010, 21(11), 2119-2124.
[http://dx.doi.org/10.1590/S0103-50532010001100013]
[129]
Moreira Rosa, R.; de Oliveira, R.B.; Saffi, J.; Braga, A.L.; Roesler, R.; Dal-Pizzol, F.; Fonseca Moreira, J.C.; Brendel, M.; Pêgas Henriques, J.A. Pro-oxidant action of diphenyl diselenide in the yeast Saccharomyces cerevisiae exposed to ROS-generating conditions. Life Sci., 2005, 77(19), 2398-2411.
[http://dx.doi.org/10.1016/j.lfs.2005.01.029] [PMID: 15932762]
[130]
Rossato, J.I.; Ketzer, L.A.; Centurião, F.B.; Silva, S.J.N.; Lüdtke, D.S.; Zeni, G.; Braga, A.L.; Rubin, M.A.; Rocha, J.B. Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem. Res., 2002, 27(4), 297-303.
[http://dx.doi.org/10.1023/A:1014907228580] [PMID: 11958531]
[131]
Santos, D.B.; Schiar, V.P.P.; Ribeiro, M.C.P.; Schwab, R.S.; Meinerz, D.F.; Allebrandt, J.; Rocha, J.B.T.; Nogueira, C.W.; Aschner, M.; Barbosa, N.B.V. Genotoxicity of organoselenium compounds in human leukocytes in vitro. Mutat. Res., 2009, 676(1-2), 21-26.
[http://dx.doi.org/10.1016/j.mrgentox.2009.03.006] [PMID: 19486860]
[132]
Santos, F.W.; Oro, T.; Zeni, G.; Rocha, J.B.T.; do Nascimento, P.C.; Nogueira, C.W. Cadmium induced testicular damage and its response to administration of succimer and diphenyl diselenide in mice. Toxicol. Lett., 2004, 152(3), 255-263.
[http://dx.doi.org/10.1016/j.toxlet.2004.05.009] [PMID: 15331134]
[133]
Santos, F.W.; Zeni, G.; Rocha, J.B.T.; Weis, S.N.; Fachinetto, J.M.; Favero, A.M.; Nogueira, C.W. Diphenyl diselenide reverses cadmium-induced oxidative damage on mice tissues. Chem. Biol. Interact., 2005, 151(3), 159-165.
[http://dx.doi.org/10.1016/j.cbi.2005.01.001] [PMID: 15733537]
[134]
Santos, F.W.; Zeni, G.; Rocha, J.B.T.; do Nascimento, P.C.; Marques, M.S.; Nogueira, C.W. Efficacy of 2,3-dimercapto-1-propanesulfonic acid (DMPS) and diphenyl diselenide on cadmium induced testicular damage in mice. Food Chem. Toxicol., 2005, 43(12), 1723-1730.
[http://dx.doi.org/10.1016/j.fct.2005.05.015] [PMID: 16000234]
[135]
Savegnago, L.; Jesse, C.R.; Pinto, L.G.; Rocha, J.B.T.; Nogueira, C.W. Diphenyl diselenide attenuates acute thermal hyperalgesia and persistent inflammatory and neuropathic pain behavior in mice. Brain Res., 2007, 1175(1), 54-59.
[http://dx.doi.org/10.1016/j.brainres.2007.07.086] [PMID: 17888416]
[136]
Savegnago, L.; Jesse, C.R.; Pinto, L.G.; Rocha, J.B.T.; Nogueira, C.W.; Zeni, G. Monoaminergic agents modulate antidepressant-like effect caused by diphenyl diselenide in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(6), 1261-1269.
[http://dx.doi.org/10.1016/j.pnpbp.2007.05.006] [PMID: 17590255]
[137]
Savegnago, L.; Jesse, C.R.; Pinto, L.G.; Rocha, J.B.T.; Barancelli, D.A.; Nogueira, C.W.; Zeni, G. Diphenyl diselenide exerts antidepressant-like and anxiolytic-like effects in mice: involvement of L-arginine-nitric oxide-soluble guanylate cyclase pathway in its antidepressant-like action. Pharmacol. Biochem. Behav., 2008, 88(4), 418-426.
[http://dx.doi.org/10.1016/j.pbb.2007.09.015] [PMID: 17936885]
[138]
Savegnago, L.; Pinto, L.G.; Jesse, C.R.; Alves, D.; Rocha, J.B.T.; Nogueira, C.W.; Zeni, G. Antinociceptive properties of diphenyl diselenide: Evidences for the mechanism of action. Eur. J. Pharmacol., 2007, 555(2-3), 129-138.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.003] [PMID: 17123507]
[139]
Savegnago, L.; Trevisan, M.; Alves, D.; Rocha, J.B.T.; Nogueira, C.W.; Zeni, G. Antisecretory and antiulcer effects of diphenyl diselenide. Environ. Toxicol. Pharmacol., 2006, 21(1), 86-92.
[http://dx.doi.org/10.1016/j.etap.2005.07.017] [PMID: 21783643]
[140]
Schiar, V.P.P.; Dos Santos, D.B.; Paixão, M.W.; Nogueira, C.W.; Rocha, J.B.T.; Zeni, G. Human erythrocyte hemolysis induced by selenium and tellurium compounds increased by GSH or glucose: A possible involvement of reactive oxygen species. Chem. Biol. Interact., 2009, 177(1), 28-33.
[http://dx.doi.org/10.1016/j.cbi.2008.10.007] [PMID: 18983990]
[141]
Stangherlin, E.C.; Luchese, C.; Pinton, S.; Rocha, J.B.T.; Nogueira, C.W. Sub-chronical exposure to diphenyl diselenide enhances acquisition and retention of spatial memory in rats. Brain Res., 2008, 1201, 106-113.
[http://dx.doi.org/10.1016/j.brainres.2008.01.061] [PMID: 18294616]
[142]
Zasso, F.B.; Goncales, C.E.P.; Jung, E.A.C.; Araldi, D.; Zeni, G.; Rocha, J.B.T.; Nogueira, C.W. On the mechanisms involved in antinociception induced by diphenyl diselenide. Environ. Toxicol. Pharmacol., 2005, 19(2), 283-289.
[http://dx.doi.org/10.1016/j.etap.2004.08.003] [PMID: 21783487]
[143]
Bayse, C.A.; Pavlou, A. Tuning the activity of glutathione peroxidase mimics through intramolecular Se···N,O interactions: A DFT study incorporating solvent-assisted proton exchange (SAPE). Org. Biomol. Chem., 2011, 9(23), 8006-8015.
[http://dx.doi.org/10.1039/c1ob05827d] [PMID: 21989570]
[144]
Iwaoka, M.; Tomoda, S. A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J. Am. Chem. Soc., 1994, 116(6), 2557-2561.
[http://dx.doi.org/10.1021/ja00085a040]
[145]
Biosa, A.; Sandrelli, F.; Beltramini, M.; Greggio, E.; Bubacco, L.; Bisaglia, M. Recent findings on the physiological function of DJ-1: Beyond Parkinson’s disease. Neurobiol. Dis., 2017, 108, 65-72.
[http://dx.doi.org/10.1016/j.nbd.2017.08.005] [PMID: 28823929]
[146]
Zilberter, Y.; Zilberter, M. The vicious circle of hypometabolism in neuro-degenerative diseases: Ways and mechanisms of metabolic correction: Hy-pometabolism in neurodegenerative diseases. J. Neurosci. Res., 2017, 95(11), 2217-2235.
[http://dx.doi.org/10.1002/jnr.24064] [PMID: 28463438]
[147]
Andersson, C-M.; Hallberg, A.; Brattsand, R.; Cotgreave, I.A.; Engman, L.; Persson, J. Glutathione peroxidase-like activity of diaryl tellurides. Bioorg. Med. Chem. Lett., 1993, 3(12), 2553-2558.
[http://dx.doi.org/10.1016/S0960-894X(01)80715-0]
[148]
Engman, L.; Stern, D.; Cotgreave, I.A.; Andersson, C.M. Thiol peroxidase activity of diaryl ditellurides as determined by a proton NMR method. J. Am. Chem. Soc., 1992, 114(25), 9737-9743.
[http://dx.doi.org/10.1021/ja00051a002]
[149]
Nogueira, C.W.; Rotta, L.N.; Perry, M.L.; Souza, D.O.; da Rocha, J.B. Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Res., 2001, 906(1-2), 157-163.
[http://dx.doi.org/10.1016/S0006-8993(01)02165-5] [PMID: 11430873]
[150]
Lin, T.; Ding, Z.; Li, N.; Xu, J.; Luo, G.; Liu, J.; Shen, J. 2-Tellurium-bridged β-cyclodextrin, a thioredoxin reductase inhibitor, sensitizes human breast cancer cells to TRAIL-induced apoptosis through DR5 induction and NF-κB suppression. Carcinogenesis, 2011, 32(2), 154-167.
[http://dx.doi.org/10.1093/carcin/bgq234] [PMID: 21081474]
[151]
Vernekar, A.A.; Mugesh, G. Catalytic reduction of graphene oxide nanosheets by glutathione peroxidase mimetics reveals a new structural motif in graphene oxide. Chemistry, 2013, 19(49), 16699-16706.
[http://dx.doi.org/10.1002/chem.201303339] [PMID: 24281813]
[152]
Wang, L.; Qu, X.; Xie, Y.; Lv, S. Study of 8 types of glutathione peroxidase mimics based on β-cyclodextrin. Catalysts, 2017, 7(10), 289.
[http://dx.doi.org/10.3390/catal7100289]
[153]
Wilson, S.R.; Zucker, P.A.; Huang, R.R.C.; Spector, A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc., 1989, 111(15), 5936-5939.
[http://dx.doi.org/10.1021/ja00197a065]
[154]
Fischer, H.; Dereu, N. Mechanism of the catalytic reduction of hydroperox-ides by ebselen: A selenium - 77 NMR study. Bull. Soc. Chim. Belg., 1987, 96(10), 757-768.
[http://dx.doi.org/10.1002/bscb.19870961006]
[155]
Maiorino, M.; Roveri, A.; Coassin, M.; Ursini, F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem. Pharmacol., 1988, 37(11), 2267-2271.
[http://dx.doi.org/10.1016/0006-2952(88)90591-6] [PMID: 3377822]
[156]
Pleasants, J.C.; Guo, W.; Rabenstein, D.L. A comparative study of the kinetics of selenol/diselenide and thiol/disulfide exchange reactions. J. Am. Chem. Soc., 1989, 111(17), 6553-6558.
[http://dx.doi.org/10.1021/ja00199a012]
[157]
Stirling, C.J.M. Leaving groups and nucleofugality in elimination and other organic reactions. Acc. Chem. Res., 1979, 12(6), 198-203.
[http://dx.doi.org/10.1021/ar50138a002]
[158]
Rabenstein, D.L.; Weaver, K.H. Kinetics and equilibria of the thi-ol/disulfide exchange reactions of somatostatin with glutathione. J. Org. Chem., 1996, 61(21), 7391-7397.
[http://dx.doi.org/10.1021/jo960917+] [PMID: 11667665]
[159]
Bachrach, S.M.; Walker, C.J.; Lee, F.; Royce, S. Effect of ring strain on nucleophilic substitution at selenium: A computational study of cyclic diselenides and selenenyl sulfides. J. Org. Chem., 2007, 72(14), 5174-5182.
[http://dx.doi.org/10.1021/jo070578s] [PMID: 17550293]
[160]
Wirth, T. Thomas. Glutathione peroxidase-like activities of oxygen-containing diselenides. Molecules, 1998, 3(7), 164-166.
[http://dx.doi.org/10.3390/30700164]
[161]
Hodage, A.S.; Parashiva Prabhu, C.; Phadnis, P.P.; Wadawale, A.; Priyadar-sini, K.I.; Jain, V.K. Synthesis, characterization, structures and GPx mim-icking activity of pyridyl and pyrimidyl based organoselenium compounds. J. Organomet. Chem., 2012, 720, 19-25.
[http://dx.doi.org/10.1016/j.jorganchem.2012.08.035]
[162]
Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activi-ties. Eur. J. Org. Chem., 2010, 2010(3), 440-445.
[http://dx.doi.org/10.1002/ejoc.200901114]
[163]
Back, T.G.; Dyck, B.P. A novel camphor-derived selenenamide that acts as a glutathione peroxidase mimetic. J. Am. Chem. Soc., 1997, 119(9), 2079-2083.
[http://dx.doi.org/10.1021/ja963602k]
[164]
Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem., 1983, 133(1), 51-69.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07429.x] [PMID: 6852035]
[165]
Mugesh, G.; Panda, A.; Singh, H.B.; Punekar, N.S.; Butcher, R.J. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study. J. Am. Chem. Soc., 2001, 123(5), 839-850.
[http://dx.doi.org/10.1021/ja994467p] [PMID: 11456617]
[166]
Bhabak, K.P.; Mugesh, G. A simple and efficient strategy to enhance the antioxidant activities of amino-substituted glutathione peroxidase mimics. Chemistry, 2008, 14(28), 8640-8651.
[http://dx.doi.org/10.1002/chem.200800963] [PMID: 18668498]
[167]
Bhowmick, D.; Mugesh, G. Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides. Org. Biomol. Chem., 2015, 13(34), 9072-9082.
[http://dx.doi.org/10.1039/C5OB01294E] [PMID: 26220806]
[168]
Bhabak, K.P.; Mugesh, G. Amide-based glutathione peroxidase mimics: effect of secondary and tertiary amide substituents on antioxidant activity. Chem. Asian J., 2009, 4(6), 974-983.
[http://dx.doi.org/10.1002/asia.200800483] [PMID: 19378298]
[169]
Selvakumar, K.; Shah, P.; Singh, H.B.; Butcher, R.J. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides. Chemistry, 2011, 17(45), 12741-12755.
[http://dx.doi.org/10.1002/chem.201100930] [PMID: 21956838]
[170]
Nascimento, V.; Ferreira, N.L.; Canto, R.F.S.; Schott, K.L.; Waczuk, E.P.; Sancineto, L.; Santi, C.; Rocha, J.B.T.; Braga, A.L. Synthesis and biological evaluation of new nitrogen-containing diselenides. Eur. J. Med. Chem., 2014, 87, 131-139.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.022] [PMID: 25244678]
[171]
Rafique, J.; Saba, S.; Canto, R.F.S.; Frizon, T.E.A.; Hassan, W.; Waczuk, E.P.; Jan, M.; Back, D.F.; Da Rocha, J.B.T.; Braga, A.L. Synthesis and biological evaluation of 2-picolylamide-based diselenides with non-bonded interactions. Molecules, 2015, 20(6), 10095-10109.
[http://dx.doi.org/10.3390/molecules200610095] [PMID: 26039333]
[172]
Pacuła, A.J.; Kaczor, K.B.; Wojtowicz, A.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Ścianowski, J. New glutathione peroxidase mimetics-Insights into antioxidant and cytotoxic activity. Bioorg. Med. Chem., 2017, 25(1), 126-131.
[http://dx.doi.org/10.1016/j.bmc.2016.10.018] [PMID: 28029457]
[173]
Iwaoka, M.; Ito, S.; Miyazaki, I.; Michibata, M. Synthesis of l-selenocysteine and α-methyl-l-selenocysteine derivatives using Woollins’ Reagent and their application as chiral selenium catalysts. Proc. Natl. Acad. Sci. India Sect. Phys. Sci., 2016, 86(4), 499-509.
[http://dx.doi.org/10.1007/s40010-016-0307-8]
[174]
Santi, C.; Di Lorenzo, R.; Tidei, C.; Bagnoli, L.; Wirth, T. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron, 2012, 68(51), 10530-10535.
[http://dx.doi.org/10.1016/j.tet.2012.08.078]
[175]
Marinescu, L.G.; Doyagüez, E.G.; Petrillo, M.; Fernández-Mayoralas, A.; Bols, M. Amino-acetone-bridged cyclodextrins- artificial alcohol oxidases. Eur. J. Org. Chem., 2010, 2010(1), 157-167.
[http://dx.doi.org/10.1002/ejoc.200901099]
[176]
Pappas, J.A. Theoretical studies of the reactions of the sulfur-sulfur bond. 1. General heterolytic mechanisms. J. Am. Chem. Soc., 1977, 99(9), 2926-2930.
[http://dx.doi.org/10.1021/ja00451a013]
[177]
Aida, M.; Nagata, C. An ab initio MO study on the thiol-disulphide ex-change reaction. Chem. Phys. Lett., 1984, 112(2), 129-132.
[http://dx.doi.org/10.1016/0009-2614(84)85006-X]
[178]
Heverly-Coulson, G.S.; Boyd, R.J. Systematic study of the performance of density functional theory methods for prediction of energies and geometries of organoselenium compounds. J. Phys. Chem. A, 2011, 115(18), 4827-4831.
[http://dx.doi.org/10.1021/jp201455f] [PMID: 21491893]
[179]
Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The cambridge struc-tural database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2016, 72(Pt 2), 171-179.
[http://dx.doi.org/10.1107/S2052520616003954] [PMID: 27048719]
[180]
Torsello, M.; Pimenta, A.C.; Wolters, L.P.; Moreira, I.S.; Orian, L.; Polimeno, A. General AMBER force field parameters for diphenyl diselenides and diphenyl ditellurides. J. Phys. Chem. A, 2016, 120(25), 4389-4400.
[http://dx.doi.org/10.1021/acs.jpca.6b02250] [PMID: 27267296]
[181]
Chung, L.W.; Sameera, W.M.C.; Ramozzi, R.; Page, A.J.; Hatanaka, M.; Petrova, G.P.; Harris, T.V.; Li, X.; Ke, Z.; Liu, F.; Li, H-B.; Ding, L.; Morokuma, K. The ONIOM method and its applications. Chem. Rev., 2015, 115(12), 5678-5796.
[http://dx.doi.org/10.1021/cr5004419] [PMID: 25853797]
[182]
Kice, J.L.; Chiou, S. Rates of oxidation of o-nitrobenzeneselenenyl com-pounds by m-chloroperoxybenzoic acid and the rate of reaction of o-nitrobenzeneselenol with o-nitrobenzeneselenenic acid. J. Org. Chem., 1986, 51(3), 290-294.
[http://dx.doi.org/10.1021/jo00353a003]
[183]
Bruschi, M. Ossidazione In Silico di Organodicalcogenuri Biomimetici di Glutatione Perossidasi: Un Approccio ASA-EDA; Università degli Studi di Padova: Padova, 2016.
[184]
Wolters, L.P.; Orian, L. Peroxidase activity of organic selenides: Mechanis-tic insights from quantum chemistry. Curr. Org. Chem., 2015, 20(2), 189-197.
[http://dx.doi.org/10.2174/1385272819666150724233655]
[185]
Haenen, G.R.; De Rooij, B.M.; Vermeulen, N.P.; Bast, A. Mechanism of the reaction of ebselen with endogenous thiols: dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen. Mol. Pharmacol., 1990, 37(3), 412-422.
[PMID: 2107391]
[186]
Pearson, J.K.; Boyd, R.J. Modeling the reduction of hydrogen peroxide by glutathione peroxidase mimics. J. Phys. Chem. A, 2006, 110(28), 8979-8985.
[http://dx.doi.org/10.1021/jp0615196] [PMID: 16836462]
[187]
Antony, S.; Bayse, C.A. Modeling the mechanism of the glutathione peroxidase mimic ebselen. Inorg. Chem., 2011, 50(23), 12075-12084.
[http://dx.doi.org/10.1021/ic201603v] [PMID: 22059718]
[188]
Heverly-Coulson, G.S.; Boyd, R.J. Reduction of hydrogen peroxide by glutathione peroxidase mimics: reaction mechanism and energetics. J. Phys. Chem. A, 2010, 114(4), 1996-2000.
[http://dx.doi.org/10.1021/jp910368u] [PMID: 20039711]
[189]
Pearson, J.K.; Boyd, R.J. Density functional theory study of the reaction mechanism and energetics of the reduction of hydrogen peroxide by ebselen, ebselen diselenide, and ebselen selenol. J. Phys. Chem. A, 2007, 111(16), 3152-3160.
[http://dx.doi.org/10.1021/jp071499n] [PMID: 17407273]
[190]
Heverly-Coulson, G.S.; Boyd, R.J. Mechanism of the reduction of an oxi-dized glutathione peroxidase mimic with thiols. J. Chem. Theory Comput., 2012, 8(12), 5052-5057.
[http://dx.doi.org/10.1021/ct300622r] [PMID: 26593195]
[191]
Orian, L.; Mauri, P.; Roveri, A.; Toppo, S.; Benazzi, L.; Bosello-Travain, V.; De Palma, A.; Maiorino, M.; Miotto, G.; Zaccarin, M.; Polimeno, A.; Flohé, L.; Ursini, F. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study. Free Radic. Biol. Med., 2015, 87, 1-14.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.011] [PMID: 26163004]
[192]
Brown, C.; Hogg, D.R. Nucleophilic substitution at bivalent sulphur: The alkaline hydrolysis of esters of arylsulphenic acids. Chem. Commun., 1967, (1), 38-39.
[http://dx.doi.org/10.1039/c19670000038]
[193]
Happer, D.; Mitchell, J.; Wright, G. Nucleophilic cleavage of diaryl disul-phides. Aust. J. Chem., 1973, 26(1), 121-134.
[http://dx.doi.org/10.1071/CH9730121]
[194]
Ciuffarin, E.; Griselli, F. Formation of an intermediate in nucleophilic substitution at dicoordinated sulfur. J. Am. Chem. Soc., 1970, 92(20), 6015-6019.
[http://dx.doi.org/10.1021/ja00723a035]
[195]
Bachrach, S.M.; Demoin, D.W.; Luk, M.; Miller, J.V. Nucleophilic attack at selenium in diselenides and selenosulfides. A computational study. J. Phys. Chem. A, 2004, 108(18), 4040-4046.
[http://dx.doi.org/10.1021/jp037972o]
[196]
Painter, A.A.; Hunter, F.E. Jr Phosphorylation coupled to oxidation of thiol groups (GSH) by cytochrome c with disulfide (GSSG) as an essential catalyst. IV. Stability of intermediates and possible mechanism of reaction. Biochem. Biophys. Res. Commun., 1970, 40(2), 387-395.
[http://dx.doi.org/10.1016/0006-291X(70)91021-1] [PMID: 5474791]
[197]
Bachrach, S.M.; Mulhearn, D.C. Nucleophilic substitution at sulfur: SN2 or addition-elimination? J. Phys. Chem., 1996, 100(9), 3535-3540.
[http://dx.doi.org/10.1021/jp953335p]
[198]
Mulhearn, D.C.; Bachrach, S.M. Selective nucleophilic attack of trisulfides. An Ab Initio study. J. Am. Chem. Soc., 1996, 118(39), 9415-9421.
[http://dx.doi.org/10.1021/ja9620090]
[199]
Dao, T.; Mynar, J.L.; Bachrach, S.M.; Hayes, J.M. Density functional theory gas- and solution-phase study of nucleophilic substitution at di- and trisul-fides. Theor. Chem. Acc., 2002, 107(5), 266-271.
[http://dx.doi.org/10.1007/s00214-002-0323-4]
[200]
Bachrach, S.M.; Woody, J.T.; Mulhearn, D.C. Effect of ring strain on the thiolate-disulfide exchange. A computational study. J. Org. Chem., 2002, 67(25), 8983-8990.
[http://dx.doi.org/10.1021/jo026223k] [PMID: 12467418]
[201]
Bachrach, S.M.; Chamberlin, A.C. Theoretical study of nucleophilic substitution at the disulfide bridge of cyclo-l-cystine. J. Org. Chem., 2003, 68(12), 4743-4747.
[http://dx.doi.org/10.1021/jo034046x] [PMID: 12790577]
[202]
Bortoli, M.; Wolters, L.P.; Orian, L.; Bickelhaupt, F.M. Addition-elimination or nucleophilic substitution? Understanding the energy pro-files for the reaction of chalcogenolates with dichalcogenides. J. Chem. Theory Comput., 2016, 12(6), 2752-2761.
[http://dx.doi.org/10.1021/acs.jctc.6b00253] [PMID: 27096625]
[203]
Bayse, C.A. DFT study of the glutathione peroxidase-like activity of phenylselenol incorporating solvent-assisted proton exchange. J. Phys. Chem. A, 2007, 111(37), 9070-9075.
[http://dx.doi.org/10.1021/jp072297u] [PMID: 17718544]
[204]
Sarma, B.K.; Mugesh, G. Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: unexpected complications with thiol exchange reactions. J. Am. Chem. Soc., 2005, 127(32), 11477-11485.
[http://dx.doi.org/10.1021/ja052794t] [PMID: 16089478]
[205]
Sarma, B.K.; Mugesh, G. Biomimetic studies on selenoenzymes: modeling the role of proximal histidines in thioredoxin reductases. Inorg. Chem., 2006, 45(14), 5307-5314.
[http://dx.doi.org/10.1021/ic052033r] [PMID: 16813393]
[206]
Bachrach, S.M.; Gailbreath, B.D. Theoretical study of nucleophilic substitution at two-coordinate sulfur. J. Org. Chem., 2001, 66(6), 2005-2010.
[http://dx.doi.org/10.1021/jo001463q] [PMID: 11300893]
[207]
Bhabak, K.P.; Mugesh, G. Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry, 2007, 13(16), 4594-4601.
[http://dx.doi.org/10.1002/chem.200601584] [PMID: 17299817]
[208]
Heverly-Coulson, G.S.; Boyd, R.J.; Mó, O.; Yáñez, M. Revealing unexpected mechanisms for nucleophilic attack on S-S and Se-Se bridges. Chemistry, 2013, 19(11), 3629-3638.
[http://dx.doi.org/10.1002/chem.201203328] [PMID: 23361893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy