Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

靶向糖基化异常提高癌症光疗效率

卷 19, 期 5, 2019

页: [349 - 359] 页: 11

弟呕挨: 10.2174/1568009618666180628101059

价格: $65

conference banner
摘要

光动力疗法在癌症中的使用仍然有限,部分原因是缺乏对癌组织的光敏剂(PS)特异性。 通过靶向癌细胞分子改变,可以使用各种分子工具来提高PS效率。 大多数策略使用蛋白质 - 蛋白质相互作 针对肿瘤抗原的单克隆抗体,例如HER2或EGFR。 一种替代方案可以是靶向肿瘤糖基化畸变,例如, T / Tn抗原是在许多肿瘤中过表达的截短的O-聚糖。 因此,为了实现有效靶向,PS可以与特异性识别癌细胞表面的Oglycosylation畸变的分子缀合。

关键词: PhotoSensitizer(PS),PhotoDynamic Therapy(PDT),凝集素,单克隆抗体(moAbs),适体,O-糖基化,T / Tn抗原,癌细胞,转移。

Next »
图形摘要
[1]
Raab, O. On the effect of fluorescent substances on infusoria. Z. Biol., 1900, 39, 524-526.
[2]
Ackroyd, R.; Kelty, C.; Brown, N.; Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol., 2001, 74(5), 656-669.
[3]
Lipson, R.L.; Baldes, E.J.; Olsen, A.M. Hematoporphyrin derivative: A new aid for endoscopic detection of malignant disease. J. Thorac. Cardiovasc. Surg., 1961, 42, 623-629.
[4]
Dougherty, T.J. Photodynamic therapy (PDT) of malignant tumors. Crit. Rev. Oncol. Hematol., 1984, 2(2), 83-116.
[5]
Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials, 2013, 6, 817-840.
[6]
Moghissi, K.; Dixon, K.; Stringer, M.; Thorpe, J.A. Photofrin PDT for early stage oesophageal cancer: Long term results in 40 patients and literature review. Photodiagn. Photodyn. Ther., 2009, 6(3-4), 159-166.
[7]
Corti, L.; Toniolo, L.; Boso, C.; Colaut, F.; Fiore, D.; Muzzio, P.C.; Koukourakis, M.I.; Mazzarotto, R.; Pignataro, M.; Loreggian, L.; Sotti, G. Long-term survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg. Med., 2007, 39(5), 394-402.
[8]
Park, Y.K.; Park, C.H. Clinical efficacy of photodynamic therapy. Obstet. Gynecol. Sci., 2016, 59(6), 479-488.
[9]
Tan, I.B.; Dolivet, G.; Ceruse, P.; Vander Poorten, V.; Roest, G.; Rauschning, W. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study. Head Neck, 2010, 32(12), 1597-1604.
[10]
Tarstedt, M.; Gillstedt, M.; Wennberg Larkö, A.M.; Paoli, J. Aminolevulinic acid and methyl aminolevulinate equally effective in topical photodynamic therapy for non-melanoma skin cancers. J. Eur. Acad. Dermatol. Venereol., 2016, 30(3), 420-423.
[11]
Azzouzi, A.R.; Barret, E.; Bennet, J.; Moore, C.; Taneja, S.; Muir, G.; Villers, A.; Coleman, J.; Allen, C.; Scherz, A.; Emberton, M. TOOKAD® Soluble focal therapy: Pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J. Urol., 2015, 33(7), 945-953.
[12]
Baron, E.D.; Malbasa, C.L.; Santo-Domingo, D.; Fu, P.; Miller, J.D.; Hanneman, K.K.; Hsia, A.H.; Oleinick, N.L.; Colussi, V.C.; Cooper, K.D. Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial. Lasers Surg. Med., 2010, 42(10), 728-735.
[13]
Kato, H.; Furukawa, K.; Sato, M.; Okunaka, T.; Kusunoki, Y.; Kawahara, M.; Fukuoka, M.; Miyazawa, T.; Yana, T.; Matsui, K.; Shiraishi, T.; Horinouchi, H. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer, 2003, 42(1), 103-111.
[14]
Lee, L.S.; Thong, P.S.; Olivo, M.; Chin, W.W.; Ramaswamy, B.; Kho, K.W.; Lim, P.L.; Lau, W.K. Chlorin e6-polyvinylpyrrolidone mediated photodynamic therapy-A potential bladder sparing option for high risk non-muscle invasive bladder cancer. Photodiagn. Photodyn. Ther., 2010, 7(4), 213-220.
[15]
Sheleg, S.V.; Zhavrid, E.A.; Khodina, T.V.; Kochubeev, G.A.; Istomin, Y.P.; Chalov, V.N.; Zhuravkin, I.N. Photodynamic therapy with chlorin e(6) for skin metastases of melanoma. Photodermatol. Photoimmunol. Photomed., 2004, 20(1), 21-26.
[16]
Busch, T.; Cengel, K.A.; Finlay, J. Pheophorbide A as a photosensitizer in photodynamic therapy: In vivo considerations. Cancer Biol. Ther., 2009, 8(6), 540-542.
[17]
Saw, C.L.; Heng, P.W.; Olivo, M. Potentiation of the photodynamic action of hypericin. J. Environ. Pathol. Toxicol. Oncol., 2008, 27(1), 23-33.
[18]
Mroz, P.; Szokalska, A.; Wu, M.X.; Hamblin, M.R. Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS One, 2010, 5(12), e15194.
[19]
Stamati, I.; Kuimova, M.K.; Lion, M.; Yahioglu, G.; Phillips, D.; Deonarain, M.P. Novel photosensitisers derived from pyropheophorbide-a: Uptake by cells and photodynamic efficiency in vitro. Photochem. Photobiol. Sci., 2010, 9(7), 1033-1041.
[20]
Evangelio, E.; Poiroux, G.; Culerrier, R.; Pratviel, G.; Van Damme, E.J.; Peumans, W.J.; Barre, A.; Rougé, P.; Benoist, H.; Pitié, M. Comparative study of the phototoxicity of long-wavelength photosensitizers targeted by the MornigaG lectin. Bioconjug. Chem., 2011, 22(7), 1337-1344.
[21]
Kessel, D.; Reiners, J.J., Jr Apoptosis and autophagy after mitochondrial or endoplasmic reticulum photodamage. Photochem. Photobiol., 2007, 83(5), 1024-1028.
[22]
Huang, Q.; Ou, Y.S.; Tao, Y.; Yin, H.; Tu, P.H. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells. Apoptosis, 2016, 21(6), 749-760.
[23]
Kim, J.; Santos, O.A.; Park, J.H. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy. J. Control. Release, 2014, 191, 98-104.
[24]
Buytaert, E.; Dewaele, M.; Agostinis, P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta, 2007, 1776(1), 86-107.
[25]
Cunderlíková, B.; Vasovič, V.; Randeberg, L.L.; Christensen, E.; Warloe, T.; Nesland, J.M.; Peng, Q. Modification of extracorporeal photopheresis technology with porphyrin precursors. Comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro. Biochim. Biophys. Acta, 2014, 1840(9), 2702-2708.
[26]
Garg, A.D.; Maes, H.; Romano, E.; Agostinis, P. Autophagy, a major adaptation pathway shaping cancer cell death and anticancer immunity responses following photodynamic therapy. Photochem. Photobiol. Sci., 2015, 14(8), 1410-1424.
[27]
Dolmans, D.E.; Kadambi, A.; Hill, J.S.; Waters, C.A.; Robinson, B.C.; Walker, J.P.; Fukumura, D.; Jain, R.K. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res., 2002, 62(7), 2151-2156.
[28]
Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer, 2006, 6(7), 535-545.
[29]
Galluzzi, L.; Kepp, O.; Kroemer, G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. Embo J., 2012, 31(5), 1055-1057.
[30]
Thong, P.S.; Ong, K.W.; Goh, N.S.; Kho, K.W.; Manivasager, V.; Bhuvaneswari, R.; Olivo, M.; Soo, K.C. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma. Lancet Oncol., 2007, 8(10), 950-952.
[31]
Kabingu, E.; Oseroff, A.R.; Wilding, G.E.; Gollnick, S.O. Enhanced systemic immune reactivity to a Basal cell carcinoma associated antigen following photodynamic therapy. Clin. Cancer Res., 2009, 15(13), 4460-4466.
[32]
Taniguchi, N.; Kizuka, Y. Glycans and cancer: Role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv. Cancer Res., 2015, 126, 11-51.
[33]
Glavey, S.V.; Huynh, D.; Reagan, M.R.; Manier, S.; Moschetta, M.; Kawano, Y.; Roccaro, A.M.; Ghobrial, I.M.; Joshi, L.; O’Dwyer, M.E. The cancer glycome: Carbohydrates as mediators of metastasis. Blood Rev., 2015, 29(4), 269-279.
[34]
Tan, Z.; Lu, W.; Li, X.; Yang, G.; Guo, J.; Yu, H.; Li, Z.; Guan, F. Altered N-Glycan expression profile in epithelial-to-mesenchymal transition of NMuMG cells revealed by an integrated strategy using mass spectrometry and glycogene and lectin microarray analysis. J. Proteome Res., 2014, 13(6), 2783-2795.
[35]
Bubka, M.; Link-Lenczowski, P.; Janik, M.; Pochec, E.; Litynska, A. Overexpression of N-acetylglucosaminyltransferases III and V in human melanoma cells. Implications for MCAM N-glycosylation. Biochimie, 2014, 103, 37-49.
[36]
Matsumoto, Y.; Zhang, Q.; Akita, K.; Nakada, H.; Hamamura, K.; Tsuchida, A.; Okajima, T.; Furukawa, K.; Urano, T. Trimeric Tn antigen on syndecan 1 produced by ppGalNAc-T13 enhances cancer metastasis via a complex formation with integrin alpha5beta1 and matrix metalloproteinase 9. J. Biol. Chem., 2013, 288(33), 24264-24276.
[37]
Bull, C.; Stoel, M.A.; den Brok, M.H.; Adema, G.J. Sialic acids sweeten a tumor’s life. Cancer Res., 2014, 74(12), 3199-3204.
[38]
Bull, C.; Boltje, T.J.; Wassink, M.; de Graaf, A.M.; van Delft, F.L.; den Brok, M.H.; Adema, G.J. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol. Cancer Ther., 2013, 12(10), 1935-1946.
[39]
Ren, D.; Jia, L.; Li, Y.; Gong, Y.; Liu, C.; Zhang, X.; Wang, N.; Zhao, Y. ST6GalNAcII mediates the invasive properties of breast carcinoma through PI3K/Akt/NF-kappaB signaling pathway. IUBMB Life, 2014, 66(4), 300-308.
[40]
Hamilton, W.B.; Helling, F.; Lloyd, K.O.; Livingston, P.O. Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Int. J. Cancer, 1993, 53(4), 566-573.
[41]
Madsen, C.B.; Petersen, C.; Lavrsen, K.; Harndahl, M.; Buus, S.; Clausen, H.; Pedersen, A.E.; Wandall, H.H. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response. PLoS One, 2012, 7(11), e50139.
[42]
Wandall, H.H.; Blixt, O.; Tarp, M.A.; Pedersen, J.W.; Bennett, E.P.; Mandel, U.; Ragupathi, G.; Livingston, P.O.; Hollingsworth, M.A.; Taylor-Papadimitriou, J.; Burchell, J.; Clausen, H. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res., 2010, 70(4), 1306-1313.
[43]
Itzkowitz, S.H.; Yuan, M.; Montgomery, C.K.; Kjeldsen, T.; Takahashi, H.K.; Bigbee, W.L.; Kim, Y.S. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res., 1989, 49(1), 197-204.
[44]
Huang, M.C.; Chen, H.Y.; Huang, H.C.; Huang, J.; Liang, J.T.; Shen, T.L.; Lin, N.Y.; Ho, C.C.; Cho, I.M.; Hsu, S.M. C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene, 2006, 25(23), 3267-3276.
[45]
Sutoh Yoneyama, M.; Tobisawa, Y.; Hatakeyama, S.; Sato, M.; Tone, K.; Tatara, Y.; Kakizaki, I.; Funyu, T.; Fukuda, M.; Hoshi, S.; Ohyama, C.; Tsuboi, S. A mechanism for evasion of CTL immunity by altered O-glycosylation of HLA class I. J. Biochem., 2017, 161(6), 479-492.
[46]
Gao, N.; Bergstrom, K.; Fu, J.; Xie, B.; Chen, W.; Xia, L. Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 311(1), G74-G83.
[47]
An, G.; Wei, B.; Xia, B.; McDaniel, J.M.; Ju, T.; Cummings, R.D.; Braun, J.; Xia, L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med., 2007, 204(6), 1417-1429.
[48]
Gill, D.J.; Tham, K.M.; Chia, J.; Wang, S.C.; Steentoft, C.; Clausen, H.; Bard-Chapeau, E.A.; Bard, F.A. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl. Acad. Sci. USA, 2013, 110(34), E3152-E3161.
[49]
Ju, T.; Lanneau, G.S.; Gautam, T.; Wang, Y.; Xia, B.; Stowell, S.R.; Willard, M.T.; Wang, W.; Xia, J.Y.; Zuna, R.E.; Laszik, Z.; Benbrook, D.M.; Hanigan, M.H.; Cummings, R.D. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res., 2008, 68(6), 1636-1646.
[50]
Silva, Z.S.; Bussadori, S.K.; Fernandes, K.P.; Huang, Y.Y.; Hamblin, M.R. Animal models for photodynamic therapy (PDT). Biosci. Rep., 2015, 35(6), e00265.
[51]
Narsireddy, A.; Vijayashree, K.; Adimoolam, M.G.; Manorama, S.V.; Rao, N.M. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy. Int. J. Nanomedicine, 2015, 10, 6865-6878.
[52]
Yuan, A.; Yang, B.; Wu, J.; Hu, Y.; Ming, X. Dendritic nanoconjugates of photosensitizer for targeted photodynamic therapy. Acta Biomater., 2015, 21, 63-73.
[53]
Kamarulzaman, E.E.; Gazzali, A.M.; Acherar, S.; Frochot, C.; Barberi-Heyob, M.; Boura, C.; Chaimbault, P.; Sibille, E.; Wahab, H.A.; Vanderesse, R. New peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1 for anti-vascular targeted photodynamic therapy. Int. J. Mol. Sci., 2015, 16(10), 24059-24080.
[54]
Zhang, H.; Hou, L.; Jiao, X.; Ji, Y.; Zhu, X.; Zhang, Z. Transferrin-mediated fullerenes nanoparticles as Fe2+-dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials, 2015, 37, 353-366.
[55]
Chen, Z.; Xu, P.; Chen, J.; Chen, H.; Hu, P.; Chen, X.; Lin, L.; Huang, Y.; Zheng, K.; Zhou, S.; Li, R.; Chen, S.; Liu, J.; Xue, J.; Huang, M. Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater., 2014, 10(10), 4257-4268.
[56]
Tanaka, M.; Kataoka, H.; Yano, S.; Ohi, H.; Moriwaki, K.; Akashi, H.; Taguchi, T.; Hayashi, N.; Hamano, S.; Mori, Y.; Kubota, E.; Tanida, S.; Joh, T. Antitumor effects in gastrointestinal stromal tumors using photodynamic therapy with a novel glucose-conjugated chlorin. Mol. Cancer Ther., 2014, 13(4), 767-775.
[57]
Tanaka, M.; Kataoka, H.; Mabuchi, M.; Sakuma, S.; Takahashi, S.; Tujii, R.; Akashi, H.; Ohi, H.; Yano, S.; Morita, A.; Joh, T. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res., 2011, 31(3), 763-769.
[58]
Vaillant, O.; El Cheikh, K.; Warther, D.; Brevet, D.; Maynadier, M.; Bouffard, E.; Salgues, F.; Jeanjean, A.; Puche, P.; Mazerolles, C.; Maillard, P.; Mongin, O.; Blanchard-Desce, M.; Raehm, L.; Rébillard, X.; Durand, J.O.; Gary-Bobo, M.; Morère, A.; Garcia, M. Mannose-6-phosphate receptor: A target for theranostics of prostate cancer. Angew. Chem. Int. Ed. Engl., 2015, 54(20), 5952-5956.
[59]
Hayashi, N.; Kataoka, H.; Yano, S.; Tanaka, M.; Moriwaki, K.; Akashi, H.; Suzuki, S.; Mori, Y.; Kubota, E.; Tanida, S.; Takahashi, S.; Joh, T. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol. Cancer Ther., 2015, 14(2), 452-460.
[60]
Zheng, X.; Morgan, J.; Pandey, S.K.; Chen, Y.; Tracy, E.; Baumann, H.; Missert, J.R.; Batt, C.; Jackson, J.; Bellnier, D.A.; Henderson, B.W.; Pandey, R.K. Conjugation of 2-(1′-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo. J. Med. Chem., 2009, 52(14), 4306-4318.
[61]
Rhee, J.K.; Baksh, M.; Nycholat, C.; Paulson, J.C.; Kitagishi, H.; Finn, M.G. Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules, 2012, 13(8), 2333-2338.
[62]
Nagaya, T.; Sato, K.; Harada, T.; Nakamura, Y.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: Optimizing the conjugate-light regimen. PLoS One, 2015, 10(8), e0136829.
[63]
Sato, K.; Nagaya, T.; Mitsunaga, M.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy for lung metastases. Cancer Lett., 2015, 365(1), 112-121.
[64]
Spring, B.Q.; Abu-Yousif, A.O.; Palanisami, A.; Rizvi, I.; Zheng, X.; Mai, Z.; Anbil, S.; Sears, R.B.; Mensah, L.B.; Goldschmidt, R.; Erdem, S.S.; Oliva, E.; Hasan, T. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(10), E933-E942.
[65]
Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med., 2011, 17(12), 1685-1691.
[66]
Bhatti, M.; Yahioglu, G.; Milgrom, L.R.; Garcia-Maya, M.; Chester, K.A.; Deonarain, M.P. Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int. J. Cancer, 2008, 122(5), 1155-1163.
[67]
Maawy, A.A.; Hiroshima, Y.; Zhang, Y.; Heim, R.; Makings, L.; Garcia-Guzman, M.; Luiken, G.A.; Kobayashi, H.; Hoffman, R.M.; Bouvet, M. Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer. PLoS One, 2015, 10(3), e0121989.
[68]
Shirasu, N.; Yamada, H.; Shibaguchi, H.; Kuroki, M. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int. J. Cancer, 2014, 135(11), 2697-2710.
[69]
Abdelghany, S.M.; Schmid, D.; Deacon, J.; Jaworski, J.; Fay, F.; McLaughlin, K.M.; Gormley, J.A.; Burrows, J.F.; Longley, D.B.; Donnelly, R.F.; Scott, C.J. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules, 2013, 14(2), 302-310.
[70]
Ferreira, C.S.; Cheung, M.C.; Missailidis, S.; Bisland, S.; Gariepy, J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res., 2009, 37(3), 866-876.
[71]
Ding, T.S.; Huang, X.C.; Luo, Y.L.; Hsu, H.Y. In vitro investigation of methylene blue-bearing, electrostatically assembled aptamer-silica nanocomposites as potential photodynamic therapeutics. Colloids Surf. B Biointerfaces, 2015, 135, 217-224.
[72]
Kruspe, S.; Meyer, C.; Hahn, U. Chlorin e6 conjugated interleukin-6 Receptor aptamers selectively kill target cells upon irradiation. Mol. Ther. Nucleic Acids, 2014, 3, e143.
[73]
Obaid, G.; Chambrier, I.; Cook, M.J.; Russell, D.A. Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem. Photobiol. Sci., 2015, 14(4), 737-747.
[74]
Poiroux, G.; Pitie, M.; Culerrier, R.; Segui, B.; Van Damme, E.J.M.; Peumans, W.J.; Bernadou, J.; Levade, T.; Rouge, P.; Barre, A.; Benoist, H.; Morniga, G. A plant lectin as an endocytic ligand for photosensitizer molecule targeting toward tumor-associated T/Tn antigens. Photochem. Photobiol., 2011, 87(2), 370-377.
[75]
Poiroux, G.; Pitie, M.; Culerrier, R.; Lafont, E.; Segui, B.; Van Damme, E.J.M.; Peumans, W.J.; Bernadou, J.; Levade, T.; Rouge, P.; Barre, A.; Benoist, H. Targeting of T/Tn antigens with a plant lectin to kill human leukemia cells by photochemotherapy. PLoS One, 2011, 6(8), e23315.
[76]
Giuntini, F.; Alonso, C.M.; Boyle, R.W. Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins. Photochem. Photobiol. Sci., 2011, 10(5), 759-791.
[77]
Bullous, A.J.; Alonso, C.M.; Boyle, R.W. Photosensitiser-antibody conjugates for photodynamic therapy. Photochem. Photobiol. Sci., 2011, 10(5), 721-750.
[78]
Zhou, J.; Rossi, J. Aptamer as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2016, 16(3), 181-202.
[79]
Almagro, J.C.; Daniels-Wells, T.R.; Perez-Tapia, S.M.; Penichet, M.L. Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front. Immunol., 2017, 8, 1751.
[80]
Soliman, C.; Yuriev, E.; Ramsland, P.A. Antibody recognition of aberrant glycosylation on the surface of cancer cells. Curr. Opin. Struct. Biol., 2017, 44, 1-8.
[81]
Cummings, R.D.; Etzler, M.E. Antibodies and Lectins in Glycan Analysis. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 2009. Chapter 45. ed.; 2009.
[82]
Dang, L.; Van Damme, E.J. Toxic proteins in plants. Phytochemistry, 2015, 117, 51-64.
[83]
Gong, T.; Wang, X.; Yang, Y.; Yan, Y.; Yu, C.; Zhou, R.; Jiang, W. Plant lectins activate the NLRP3 inflammasome to promote inflammatory disorders. J. Immunol., 2017, 198(5), 2082-2092.
[84]
Barton, C.; Kouokam, J.C.; Hurst, H.; Palmer, K.E. Pharmacokinetics of the antiviral lectin griffithsin administered by different routes indicates multiple potential uses. Viruses, 2016, 8(12), 31.
[85]
Smart, J.D.; Nicholls, T.J.; Green, K.L.; Rogers, D.J.; Cook, J.D. Lectins in drug delivery: A study of the acute local irritancy of the lectins from Solanum tuberosum and Helix pomatia. Eur. J. Pharm. Sci., 1999, 9(1), 93-98.
[86]
Itzkowitz, S.H.; Yuan, M.; Ferrell, L.D.; Ratcliffe, R.M.; Chung, Y.S.; Satake, K.; Umeyama, K.; Jones, R.T.; Kim, Y.S. Cancer-associated alterations of blood group antigen expression in the human pancreas. J. Natl. Cancer Inst., 1987, 79(3), 425-434.
[87]
Bird-Lieberman, E.L.; Neves, A.A.; Lao-Sirieix, P.; O’Donovan, M.; Novelli, M.; Lovat, L.B.; Eng, W.S.; Mahal, L.K.; Brindle, K.M.; Fitzgerald, R.C. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Med., 2012, 18(2), 315-321.
[88]
Van Damme, E.J.; Rouge, P.; Peumans, W.J. Plant lectins in comprehensive glycoscience, from chemistry to system biology. JP Karmeling Edition, Elsevier, 2007, 3(26), 563-599.
[89]
Singh, T.; Wu, J.H.; Peumans, W.J.; Rouge, P.; Van Damme, E.J.; Wu, A.M. Recognition profile of Morus nigra agglutinin (Morniga G) expressed by monomeric ligands, simple clusters and mammalian polyvalent glycotopes. Mol. Immunol., 2007, 44(4), 451-462.
[90]
Benoist, H.; Culerrier, R.L.; Poiroux, G.; Segui, B.; Jauneau, A.; Van Damme, E.J.M.; Peumans, W.J.; Barre, A.; Rouge, P. Two structurally identical mannose-specific jacalin-related lectins display different effects on human T lymphocyte activation and cell death. J. Leukoc. Biol., 2009, 86(1), 103-114.
[91]
Baeten, J.; Suresh, A.; Johnson, A.; Patel, K.; Kuriakose, M.; Flynn, A.; Kademani, D. Molecular imaging of oral premalignant and malignant lesions using fluorescently labeled lectins. Transl. Oncol., 2014, 7(2), 213-220.
[92]
Zupancic, D.; Kreft, M.E.; Romih, R. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models. Protoplasma, 2014, 251(1), 49-59.
[93]
Neutsch, L.; Eggenreich, B.; Herwig, E.; Marchetti-Deschmann, M.; Allmaier, G.; Gabor, F.; Wirth, M. Lectin bioconjugates trigger urothelial cytoinvasion--a glycotargeted approach for improved intravesical drug delivery. Eur. J. Pharm. Biopharm., 2012, 82(2), 367-375.
[94]
Neutsch, L.; Plattner, V.E.; Polster-Wildhofen, S.; Zidar, A.; Chott, A.; Borchard, G.; Zechner, O.; Gabor, F.; Wirth, M. Lectin mediated biorecognition as a novel strategy for targeted delivery to bladder cancer. J. Urol., 2011, 186(4), 1481-1488.
[95]
Ju, T.; Wang, Y.; Aryal, R.P.; Lehoux, S.D.; Ding, X.; Kudelka, M.R.; Cutler, C.; Zeng, J.; Wang, J.; Sun, X.; Heimburg-Molinaro, J.; Smith, D.F.; Cummings, R.D. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin. Appl., 2013, 7(9-10), 618-631.
[96]
Welinder, C.; Baldetorp, B.; Borrebaeck, C.; Fredlund, B.M.; Jansson, B. A new murine IgG1 anti-Tn monoclonal antibody with in vivo anti-tumor activity. Glycobiology, 2011, 21(8), 1097-1107.
[97]
Yu, L.G.; Jansson, B.; Fernig, D.G.; Milton, J.D.; Smith, J.A.; Gerasimenko, O.V.; Jones, M.; Rhodes, J.M. Stimulation of proliferation in human colon cancer cells by human monoclonal antibodies against the TF antigen (galactose beta1-3 N-acetyl-galactosamine). Int. J. Cancer, 1997, 73(3), 424-431.
[98]
Brooks, C.L.; Schietinger, A.; Borisova, S.N.; Kufer, P.; Okon, M.; Hirama, T.; Mackenzie, C.R.; Wang, L.X.; Schreiber, H.; Evans, S.V. Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10056-10061.
[99]
Matsumoto-Takasaki, A.; Hanashima, S.; Aoki, A.; Yuasa, N.; Ogawa, H.; Sato, R.; Kawakami, H.; Mizuno, M.; Nakada, H.; Yamaguchi, Y.; Fujita-Yamaguchi, Y. Surface plasmon resonance and NMR analyses of anti Tn-antigen MLS128 monoclonal antibody binding to two or three consecutive Tn-antigen clusters. J. Biochem., 2012, 151(3), 273-282.
[100]
Cheung, N.K.; Cheung, I.Y.; Kramer, K.; Modak, S.; Kuk, D.; Pandit-Taskar, N.; Chamberlain, E.; Ostrovnaya, I.; Kushner, B.H. Key role for myeloid cells: phase II results of anti-G(D2) antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. Int. J. Cancer, 2014, 135(9), 2199-2205.
[101]
Ahmed, M.; Hu, J.; Cheung, N.K. Structure based refinement of a humanized monoclonal antibody that targets tumor antigen disialoganglioside GD2. Front. Immunol., 2014, 5, 372.
[102]
Lahera, T.; Calvo, A.; Torres, G.; Rengifo, C.E.; Quintero, S.; Arango Mdel, C.; Danta, D.; Vazquez, J.M.; Escobar, X.; Carr, A. Prognostic role of 14F7 Mab immunoreactivity against N-Glycolyl GM3 ganglioside in colon cancer. J. Oncol., 2014, 2014, 482301.
[103]
Modak, S.; Gerald, W.; Cheung, N.K. Disialoganglioside GD2 and a novel tumor antigen: potential targets for immunotherapy of desmoplastic small round cell tumor. Med. Pediatr. Oncol., 2002, 39(6), 547-551.
[104]
Huber, R.; Eisenbraun, J.; Miletzki, B.; Adler, M.; Scheer, R.; Klein, R.; Gleiter, C.H. Pharmacokinetics of natural mistletoe lectins after subcutaneous injection. Eur. J. Clin. Pharmacol., 2010, 66(9), 889-897.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy