Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Metal Complexes of Natural Product Like-compounds with Antitumor Activity

Author(s): Beatriz L. Heras*, Ángel Amesty, Ana Estévez-Braun* and Sonsoles Hortelano*

Volume 19, Issue 1, 2019

Page: [48 - 65] Pages: 18

DOI: 10.2174/1871520618666180420165821

Price: $65

conference banner
Abstract

Cancer continues to be one of the major causes of death worldwide. Despite many advances in the understanding of this complex disease, new approaches are needed to improve the efficacy of current therapeutic treatments against aggressive tumors. Natural products are one of the most consistently successful sources of drug leads. In recent decades, research activity into the clinical potential of this class of compounds in cancer has increased. Furthermore, a highly promising field is the use of metals and their complexes in the design and development of metal-based drugs for the treatment of cancer. Metal complexes offer unique opportunities due to their ability to alter pharmacology, improving the efficacy and/or reducing the negative side effects of drug molecules. In addition, transition metals as copper, iron, and manganese, among others, can interact with active sites of enzymes, playing important roles in multiple biological processes. Thus, these complexes not only possess higher activities but also reach their targets more efficiently. This review article highlights recent advances on the emerging and expanding field of metal-based drugs. The emphasis is on new therapeutic strategies consisting of metal complexes with natural product like-compounds as a starting point for the rational design of new antitumor agents.

Keywords: Cancer, natural products, metal-based drugs, naphthoquinones, metal complexes, antitumor activity.

Graphical Abstract
[1]
Newman, D.J.; Cragg, G.M. Natural Products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[2]
Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825.
[3]
Meggers, E. Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol., 2007, 11(3), 287-292.
[4]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[5]
Ho, Y-P.; Au-Yeung, S.C.F.; To, K.K.W. Platinum-based anticancer agents: Innovative design strategies and biological perspectives. Med. Res. Rev., 2003, 23(5), 633-655.
[6]
Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones - a review. RSC Adv., 2015, 5(26), 20309-20338.
[7]
Chen, G.; Yue, Y.; Qin, J.; Xiao, X.; Ren, Q.; Xiao, B. Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro. J. Pharmacol. Sci., 2017, 134(1), 59-67.
[8]
Hisa, T.; Kimura, Y.; Takada, K.; Suzuki, F.; Takigawa, M. Shikonin, an ingredient of lithospermum erythrorhizon, inhibits angiogenesis in vivo and in vitro. Anticancer Res., 1998, 18(2A), 783-790.
[9]
Lee, H.J.; Lee, H-J.; Song, G-Y.; Li, G.; Lee, J-H.; Lü, J.; Kim, S-H. 6-(1-Oxobutyl)-5,8-dimethoxy-1,4-naphthoquinone inhibits lewis lung cancer by antiangiogenesis and apoptosis. Int. J. Cancer, 2007, 120(11), 2481-2490.
[10]
Hamdoun, S.; Fleischer, E.; Klinger, A.; Efferth, T. Lawsone derivatives target the Wnt/β-catenin signaling pathway in multidrug-resistant acute lymphoblastic leukemia cells. Biochem. Pharmacol., 2017, 146, 63-73.
[11]
Wang, S.B.; Tao, Z.; Li, P. Lawsone suppresses azoxymethane mediated colon cancer in rats and reduces proliferation of DLD-1 cells via NF-kappaB pathway. Biomed. Pharmacother., 2017, 89, 152-161.
[12]
Oramas-Royo, S.; Torrejón, C.; Cuadrado, I.; Hernández-Molina, R.; Hortelano, S.; Estévez-Braun, A.; de las Heras, B. Synthesis and cytotoxic activity of metallic complexes of lawsone. Bioorg. Med. Chem., 2013, 21(9), 2471-2477.
[13]
Gokhale, N.; Padhye, S.; Newton, C.; Pritchard, R. Hydroxynaphthoquinone metal complexes as antitumor agents x: synthesis, structure, spectroscopy and in vitro antitumor activity of 3-methyl-phenylazo lawsone derivatives and their metal complexes against human breast cancer cell line MCF-7. Met. Based Drugs, 2000, 7(3), 121-128.
[14]
Appadurai, P.; Rathinasamy, K. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol., 2015, 9(5), 264-272.
[15]
Spoerlein-Guettler, C.; Mahal, K.; Schobert, R.; Biersack, B. Ferrocene and (arene)ruthenium(II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer cells and a genuine mode of action. J. Inorg. Biochem., 2014, 138, 64-72.
[16]
Chen, Z-F.; Tan, M-X.; Liu, Y-C.; Peng, Y.; Wang, H-H.; Liu, H-G.; Liang, H. Synthesis, characterization and preliminary cytotoxicity evaluation of five Lanthanide(III)–Plumbagin complexes. J. Inorg. Biochem., 2011, 105(3), 426-434.
[17]
Gou, Y.; Zhang, Z.; Qi, J.; Liang, S.; Zhou, Z.; Yang, F.; Liang, H. Folate-functionalized human serum albumin carrier for anticancer copper(II) complexes derived from natural plumbagin. J. Inorg. Biochem., 2015, 153, 13-22.
[18]
Kandioller, W.; Balsano, E.; Meier, S.M.; Jungwirth, U.; Goschl, S.; Roller, A.; Jakupec, M.A.; Berger, W.; Keppler, B.K.; Hartinger, C.G. Organometallic anticancer complexes of lapachol: metal centre-dependent formation of reactive oxygen species and correlation with cytotoxicity. Chem. Commun., 2013, 49(32), 3348-3350.
[19]
Afrasiabi, Z.; Sinn, E.; Chen, J.; Ma, Y.; Rheingold, A.L.; Zakharov, L.N.; Rath, N.; Padhye, S. Appended 1,2-naphthoquinones as anticancer agents 1: Synthesis, structural, spectral and antitumor activities of ortho-naphthaquinone thiosemicarbazone and its transition metal complexes. Inorg. Chim. Acta, 2004, 357(1), 271-278.
[20]
Afrasiabi, Z.; Sinn, E.; Lin, W.; Ma, Y.; Campana, C.; Padhye, S. Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: Synthesis, structure, spectroscopy, and biological activity. J. Inorg. Biochem., 2005, 99(7), 1526-1531.
[21]
Neves, A.P.; Pereira, M.X.G.; Peterson, E.J.; Kipping, R.; Vargas, M.D.; Silva-Jr, F.P.; Carneiro, J.W.M.; Farrell, N.P. Exploring the DNA binding/cleavage, cellular accumulation and topoisomerase inhibition of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone mannich bases and their platinum(II) complexes. J. Inorg. Biochem., 2013, 119, 54-64.
[22]
Tabrizi, L.; Fooladivanda, M.; Chiniforoshan, H. Copper(II), cobalt(II) and nickel(II) complexes of juglone: Synthesis, structure, DNA interaction and enhanced cytotoxicity. Biometals, 2016, 29(6), 981-993.
[23]
Malik, E.M.; Müller, C.E. Anthraquinones as pharmacological tools and drugs. Med. Res. Rev., 2016, 36(4), 705-748.
[24]
Shenkenberg, T.D.; Von Hoff, D.D. Mitoxantrone: A new anticancer drug with significant clinical activity. Ann. Intern. Med., 1986, 105(1), 67-81.
[25]
Evison, B.J.; Sleebs, B.E.; Watson, K.G.; Phillips, D.R.; Cutts, S.M. Mitoxantrone, more than just another topoisomerase ii poison. Med. Res. Rev., 2016, 36(2), 248-299.
[26]
Guerriero, E.; Sorice, A.; Capone, F.; Napolitano, V.; Colonna, G.; Storti, G.; Castello, G.; Costantini, S. Vitamin C effect on mitoxantrone-induced cytotoxicity in human breast cancer cell lines. PLoS One, 2014, 9(12), e115287.
[27]
Kolodziejczyk, P.; Garnier-Suillerot, A. Circular dichroism study of the interaction of mitoxantrone, ametantrone and their Pd(II) complexes with deoxyribonucleic acid. Biochim. Biophys. Acta, 1987, 926(3), 249-257.
[28]
Pettit, L.D.; Ueda, J-I.; Morier-Teissier, E.; Helbecque, N.; Bernier, J-L.; Henichart, J-P.; Kozlowski, H. The coordination of copper(II) to 1-hydroxy-4-(glycyl-histidyl-lysine)-anthraquinone; A synthetic model of anthraquinone anti-cancer drugs. J. Inorg. Biochem., 1992, 45(3), 203-210.
[29]
Morier-Teissier, E.; Boitte, N.; Helbecque, N.; Bernier, J.L.; Pommery, N.; Duvalet, J.L.; Fournier, C.; Hecquet, B.; Catteau, J.P.; Henichart, J.P. Synthesis and antitumor properties of an anthraquinone bisubstituted by the copper chelating peptide Gly-Gly-L-His. J. Med. Chem., 1993, 36(15), 2084-2090.
[30]
Du, S.; Feng, J.; Lu, X.; Wang, G. The syntheses and characterizations of vanadium complexes with 1,2-dihydroxyanthraquinone and the structure-effect relationship in their in vitro anticancer activities. Dalton Trans., 2013, 42(26), 9699-9705.
[31]
Kou, J-F.; Qian, C.; Wang, J-Q.; Chen, X.; Wang, L-L.; Chao, H.; Ji, L-N. Chiral ruthenium(II) anthraquinone complexes as dual inhibitors of topoisomerases I and II. J. Biol. Inorg. Chem., 2012, 17(1), 81-96.
[32]
Griffin, M.O.; Fricovsky, E.; Ceballos, G.; Villarreal, F. Tetracyclines: A pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am. J. Physiol. Cell Physiol., 2010, 299(3), C539-C548.
[33]
Sapadin, A.N.; Fleischmajer, R. Tetracyclines: Nonantibiotic properties and their clinical implications. J. Am. Acad. Dermatol., 2006, 54(2), 258-265.
[34]
Hidalgo, M.; Eckhardt, S.G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst., 2001, 93(3), 178-193.
[35]
Rubins, J.B.; Charboneau, D.; Alter, M.D.; Bitterman, P.B.; Kratzke, R.A. Inhibition of mesothelioma cell growth in vitro by doxycycline. J. Lab. Clin. Med., 2001, 138(2), 101-106.
[36]
Silva, P.P.; Guerra, W.; Silveira, J.N.; Ferreira, A.M.D.C.; Bortolotto, T.; Fischer, F.L.; Terenzi, H.; Neves, A.; Pereira-Maia, E.C. Two new ternary complexes of copper(ii) with tetracycline or doxycycline and 1,10-phenanthroline and their potential as antitumoral: Cytotoxicity and DNA cleavage. Inorg. Chem., 2011, 50(14), 6414-6424.
[37]
Khan, M.A.; Musarrat, J. Interactions of tetracycline and its derivatives with DNA in vitro in presence of metal ions. Int. J. Biol. Macromol., 2003, 33(1-3), 49-56.
[38]
Khan, M.A.; Mustafa, J.; Musarrat, J. Mechanism of DNA strand breakage induced by photosensitized tetracycline–Cu(II) complex. Mutat. Res., 2003, 525(1-2), 109-119.
[39]
Silva, P.P.; Paula, F.C.S.D.; Guerra, W.; Silveira, J.N.; Botelho, F.V.; Vieira, L.Q.; Bortolotto, T.; Fischer, F.L.; Bussi, G.; Terenzi, H.; Pereira-Maia, E.C. Platinum(II) compounds of tetracyclines as potential anticancer agents: Cytotoxicity, uptake and interactions with DNA. J. Braz. Chem. Soc., 2010, 21, 1237-1246.
[40]
Yousuf, I.; Arjmand, F.; Tabassum, S.; Toupet, L.; Khan, R.A.; Siddiqui, M.A. Mechanistic insights into a novel chromone-appended Cu(II) anticancer drug entity: In vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells. Dalton Trans., 2015, 44(22), 10330-10342.
[41]
Kavitha, P.; Rama Chary, M.; Singavarapu, B.V.V.A.; Laxma Reddy, K. Synthesis, characterization, biological activity and DNA cleavage studies of tridentate Schiff bases and their Co(II) complexes. J. Saudi Chem. Soc., 2016, 20(1), 69-80.
[42]
Saif, M.; El-Shafiy, H.F.; Mashaly, M.M.; Eid, M.F.; Nabeel, A.I.; Fouad, R. Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II). J. Mol. Struct., 2016, 1118, 75-82.
[43]
Elsayed, S.A.; Butler, I.S.; Claude, B.J.; Mostafa, S.I. Synthesis, characterization and anticancer activity of 3-formylchromone benzoylhydrazone metal complexes. Trans. Met. Chem., 2015, 40(2), 179-187.
[44]
Riveiro, M.E.; Kimpe, N.D.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 2010, 17(13), 1325-1338.
[45]
Klepka, M.T.; Drzewiecka-Antonik, A.; Wolska, A.; Rejmak, P.; Ostrowska, K.; Hejchman, E.; Kruszewska, H.; Czajkowska, A.; Młynarczuk-Biały, I.; Ferenc, W. Synthesis, structural studies and biological activity of new Cu(II) complexes with acetyl derivatives of 7-hydroxy-4-methylcoumarin. J. Inorg. Biochem., 2015, 145, 94-100.
[46]
Zhu, T.; Wang, Y.; Ding, W.; Xu, J.; Chen, R.; Xie, J.; Zhu, W.; Jia, L.; Ma, T. Anticancer activity and DNA-binding investigations of the Cu(II) and Ni(II) complexes with coumarin derivative. Chem. Biol. Drug Des., 2015, 85(3), 385-393.
[47]
Thati, B.; Noble, A.; Creaven, B.S.; Walsh, M.; Kavanagh, K.; Egan, D.A. Apoptotic cell death: A possible key event in mediating the in vitro anti-proliferative effect of a novel copper(II) complex, [Cu(4-Mecdoa) (phen)(2)] (phen=phenanthroline, 4-Mecdoa=4-methylcoumarin-6,7-dioxactetate), in human malignant cancer cells. Eur. J. Pharmacol., 2007, 569(1-2), 16-28.
[48]
Thati, B.; Noble, A.; Creaven, B.S.; Walsh, M.; Kavanagh, K.; Egan, D.A. An in vitro investigation of the induction of apoptosis and modulation of cell cycle events in human cancer cells by bisphenanthroline-coumarin-6,7-dioxacetatocopper(II) complex. Chem. Biol. Interact., 2007, 168(2), 143-158.
[49]
Zhu, T.; Chen, R.; Yu, H.; Feng, Y.; Chen, J.; Lu, Q.; Xie, J.; Ding, W.; Ma, T. Antitumor effect of a copper (II) complex of a coumarin derivative and phenanthroline on lung adenocarcinoma cells and the mechanism of action. Mol. Med. Rep., 2014, 10(5), 2477-2482.
[50]
Bagihalli, G.B.; Avaji, P.G.; Patil, S.A.; Badami, P.S. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur. J. Med. Chem., 2008, 43(12), 2639-2649.
[51]
Jia, L.; Xu, X-M.; Xu, J.; Chen, L-H.; Jiang, P.; Cheng, F-X.; Lu, G-N.; Wang, Q.; Wu, J-C.; Tang, N. Synthesis, characterization, cytotoxic activities, and DNA-binding studies of ternary copper(ii) complexes with new coumarin derivatives. Chem. Pharm. Bull., 2010, 58(8), 1003-1008.
[52]
Kostova, I.; Momekov, G.; Stancheva, P. New samarium(iii), gadolinium(iii), and dysprosium(iii) complexes of coumarin-3-carboxylic acid as antiproliferative agents. Met. Based Drugs, 2007, 2007, 15925.
[53]
Kostova, I.; Manolov, I.; Nicolova, I.; Konstantinov, S.; Karaivanova, M. New lanthanide complexes of 4-methyl-7-hydroxycoumarin and their pharmacological activity. Eur. J. Med. Chem., 2001, 36(4), 339-347.
[54]
Kostova, I.; Manolov, I.; Momekov, G. Cytotoxic activity of new neodymium (III) complexes of bis-coumarins. Eur. J. Med. Chem., 2004, 39(9), 765-775.
[55]
Kostova, I.; Manolov, I.; Momekov, G.; Tzanova, T.; Konstantinov, S.; Karaivanova, M. Cytotoxic activity of new cerium (III) complexes of bis-coumarins. Eur. J. Med. Chem., 2005, 40(12), 1246-1254.
[56]
Kostova, I.; Momekov, G. New cerium(III) complexes of coumarins - synthesis, characterization and cytotoxicity evaluation. Eur. J. Med. Chem., 2008, 43(1), 178-188.
[57]
Kostova, I.; Momekov, G. New zirconium (IV) complexes of coumarins with cytotoxic activity. Eur. J. Med. Chem., 2006, 41(6), 717-726.
[58]
Kostova, I.; Manolov, I.; Karaivanova, M. Synthesis, physicochemical characterization, and cytotoxic screening of new zirconium complexes with coumarin derivatives. Arch. Pharm., 2001, 334(5), 157-162.
[59]
Casas, J.S.; Castellano, E.E.; Couce, M.D.; Crespo, O.; Ellena, J.; Laguna, A.; Sanchez, A.; Sordo, J.; Taboada, C. Novel gold(I) 7-azacoumarin complex: Synthesis, structure, optical properties, and cytotoxic effects. Inorg. Chem., 2007, 46(16), 6236-6238.
[60]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. Biotech, 2013, 3(6), 439-459.
[61]
Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104(2), 466-479.
[62]
Samsonowicz, M.; Regulska, E.; Kalinowska, M. Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects. Chem. Biol. Interact., 2017, 273, 245-256.
[63]
Durgo, K.; Halec, I.; Sola, I.; Franekic, J. Cytotoxic and genotoxic effects of the quercetin/lanthanum complex on human cervical carcinoma cells in vitro. Arhiv za higijenu rada i toksikologiju., 2011, 62(3), 221-227.
[64]
Tan, J.; Wang, B.; Zhu, L. DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex. Bioorg. Med. Chem., 2009, 17(2), 614-620.
[65]
Tan, J.; Zhu, L.; Wang, B. From GC-rich DNA binding to the repression of survivin gene for quercetin nickel (II) complex: Implications for cancer therapy. Biometals, 2010, 23(6), 1075-1084.
[66]
Ikeda, N.E.A.; Novak, E.M.; Maria, D.A.; Velosa, A.S.; Pereira, R.M.S. Synthesis, characterization and biological evaluation of Rutin–zinc(II) flavonoid -metal complex. Chem. Biol. Interact., 2015, 239, 184-191.
[67]
Roy, A.S.; Tripathy, D.R.; Samanta, S.; Ghosh, S.K.; Dasgupta, S. DNA damaging, cell cytotoxicity and serum albumin binding efficacy of the rutin-Cu(ii) complex. Mol. BioSys., 2016, 12(5), 1687-1701.
[68]
Zhang, G.; Guo, J.; Zhao, N.; Wang, J. Study of interaction between kaempferol–Eu3+ complex and DNA with the use of the neutral red dye as a fluorescence probe. Sens. Actuators B Chem., 2010, 144(1), 239-246.
[69]
Wang, Q.; Huang, Y.; Zhang, J-S.; Yang, X-B. Synthesis, characterization, DNA interaction, and antitumor activities of la (iii) complex with schiff base ligand derived from kaempferol and diethylenetriamine. Bioinorg. Chem. Appl., 2014, 2014, 9.
[70]
Tu, L-Y.; Pi, J.; Jin, H.; Cai, J-Y.; Deng, S-P. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex. Bioorg. Med. Chem. Lett., 2016, 26(11), 2730-2734.
[71]
Roy, A.S.; Samanta, S.K.; Ghosh, P.; Tripathy, D.R.; Ghosh, S.K.; Dasgupta, S. Cell cytotoxicity and serum albumin binding capacity of the morin-Cu(ii) complex and its effect on deoxyribonucleic acid. Mol. Biosyst., 2016, 12(9), 2818-2833.
[72]
Naso, L.G.; Lezama, L.; Rojo, T.; Etcheverry, S.B.; Valcarcel, M.; Roura, M.; Salado, C.; Ferrer, E.G.; Williams, P.A. Biological evaluation of morin and its new oxovanadium(IV) complex as antioxidant and specific anti-cancer agents. Chem. Biol. Interact., 2013, 206(2), 289-301.
[73]
Tamayo, L.V.; Gouvea, L.R.; Sousa, A.C.; Albuquerque, R.M.; Teixeira, S.F.; de Azevedo, R.A.; Louro, S.R.W.; Ferreira, A.K.; Beraldo, H. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action. Biometals, 2016, 29(1), 39-52.
[74]
Tan, M.; Zhu, J.; Pan, Y.; Chen, Z.; Liang, H.; Liu, H.; Wang, H. Synthesis, cytotoxic activity, and DNA binding properties of copper (ii) complexes with hesperetin, naringenin, and apigenin. Bioinorg. Chem. Appl., 2009, 2009, 9.
[75]
Wang, B-D.; Yang, Z-Y.; Wang, Q.; Cai, T-K.; Crewdson, P. Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with Naringenin Schiff-base. Bioorg. Med. Chem., 2006, 14(6), 1880-1888.
[76]
Filho, J.C.C.; Sarria, A.L.F.; Becceneri, A.B.; Fuzer, A.M.; Batalhão, J.R.; da Silva, C.M.P.; Carlos, R.M.; Vieira, P.C.; Fernandes, J.B.; Cominetti, M.R. Copper (II) and 2,2′-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One, 2014, 9(9), e107058.
[77]
Islas, M.S.; Naso, L.G.; Lezama, L.; Valcarcel, M.; Salado, C.; Roura-Ferrer, M.; Ferrer, E.G.; Williams, P.A.M. Insights into the mechanisms underlying the antitumor activity of an oxidovanadium(IV) compound with the antioxidant naringenin. Albumin binding studies. J. Inorg. Biochem., 2015, 149, 12-24.
[78]
Pereira, R.M.; Andrades, N.E.; Paulino, N.; Sawaya, A.C.; Eberlin, M.N.; Marcucci, M.C.; Favero, G.M.; Novak, E.M.; Bydlowski, S.P. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules, 2007, 12(7), 1352-1366.
[79]
Spoerlein, C.; Mahal, K.; Schmidt, H.; Schobert, R. Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J. Inorg. Biochem., 2013, 127, 107-115.
[80]
Lin, Y.; Shi, R.; Wang, X.; Shen, H-M. Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[81]
Naso, L.G.; Lezama, L.; Valcarcel, M.; Salado, C.; Villace, P.; Kortazar, D.; Ferrer, E.G.; Williams, P.A. Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin. J. Inorg. Biochem., 2016, 157, 80-93.
[82]
Leon, I.E.; Diez, P.; Etcheverry, S.B.; Fuentes, M. Deciphering the effect of an oxovanadium(iv) complex with the flavonoid chrysin (VOChrys) on intracellular cell signalling pathways in an osteosarcoma cell line. Metallomics, 2016, 8(8), 739-749.
[83]
León, I.E.; Cadavid-Vargas, J.F.; Tiscornia, I.; Porro, V.; Castelli, S.; Katkar, P.; Desideri, A.; Bollati-Fogolin, M.; Etcheverry, S.B. Oxidovanadium(IV) complexes with chrysin and silibinin: Anticancer activity and mechanisms of action in a human colon adenocarcinoma model. J. Biol. Inorg. Chem., 2015, 20(7), 1175-1191.
[84]
Naso, L.; Ferrer, E.G.; Lezama, L.; Rojo, T.; Etcheverry, S.B.; Williams, P. Role of oxidative stress in the antitumoral action of a new vanadyl(IV) complex with the flavonoid chrysin in two osteoblast cell lines: Relationship with the radical scavenger activity. J. Biol. Inorg. Chem., 2010, 15(6), 889-902.
[85]
Yang, F.; Jin, H.; Pi, J.; Jiang, J-H.; Liu, L.; Bai, H-H.; Yang, P-H.; Cai, J-Y. Anti-tumor activity evaluation of novel chrysin-organogermanium(IV) complex in MCF-7 cells. Bioorg. Med. Chem. Lett., 2013, 23(20), 5544-5551.
[86]
Draut, H.; Rehm, T.; Begemann, G.; Schobert, R. Antiangiogenic and toxic effects of genistein, usnic acid, and their copper complexes in zebrafish embryos at different developmental stages. Chem. Biodiver., 2017, 14(3)
[87]
Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem., 2005, 12(4), 481-499.
[88]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[89]
Mirossay, L.; Varinska, L.; Mojzis, J. Antiangiogenic effect of flavonoids and chalcones: An update. Int. J. Mol. Sci., 2017, 19(1)
[90]
El-Sayed, A.M.R.; Fodah, A.R.H.H.; Saleh, S.Y. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur. J. Med. Chem., 2014, 76, 517-530.
[91]
Da-Silva, J.G.; Despaigne, R.A.A.; Louro, S.R.; Bandeira, C.C.; Souza-Fagundes, E.M.; Beraldo, H. Cytotoxic activity, albumin and DNA binding of new copper(II) complexes with chalcone-derived thiosemicarbazones. Eur. J. Med. Chem., 2013, 65, 415-426.
[92]
Schobert, R.; Biersack, B.; Dietrich, A.; Knauer, S.; Zoldakova, M.; Fruehauf, A.; Mueller, T. Pt(II) complexes of a combretastatin A-4 analogous chalcone: Effects of conjugation on cytotoxicity, tumor specificity, and long-term tumor growth suppression. J. Med. Chem., 2009, 52(2), 241-246.
[93]
Leon, I.E.; Porro, V.; Di Virgilio, A.L.; Naso, L.G.; Williams, P.A.M.; Bollati-Fogolín, M.; Etcheverry, S.B. Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells. J. Biol. Inorg. Chem., 2014, 19(1), 59-74.
[94]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[95]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[96]
Mirzaei, H.; Masoudifar, A.; Sahebkar, A.; Zare, N.; Nahand, S.J.; Rashidi, B.; Mehrabian, E.; Mohammadi, M.; Mirzaei, H.R.; Jaafari, M.R. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol., 2018, 233(4), 3004-3015.
[97]
Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a MicroRNA regulator in cancer: A review. Rev. Physiol. Biochem. Pharmacol., 2016, 171, 1-38.
[98]
Aggarwal, B.B.; Surh, Y-J.; Shishodia, S. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, Eds.; Springer US: Boston, MA, 2007, pp 1-75.
[99]
Banerjee, S.; Chakravarty, A.R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res., 2015, 48(7), 2075-2083.
[100]
Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F.T. Metal complexes of curcumin - synthetic strategies, structures and medicinal applications. Chem. Soc. Rev., 2015, 44(15), 4986-5002.
[101]
Priyadarsini, K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091.
[102]
Mandy, H.M.L.; Takaaki, H.; Tak, W.K. Delivery of curcumin and medicinal effects of the copper(ii)-curcumin complexes. Curr. Pharm. Des., 2013, 19(11), 2070-2083.
[103]
Wang, J.; Wei, D.; Jiang, B.; Liu, T.; Ni, J.; Zhou, S. Two copper(II) complexes of curcumin derivatives: Synthesis, crystal structure and in vitro antitumor activity. Trans. Met. Chem., 2014, 39(5), 553-558.
[104]
Padhye, S.; Yang, H.; Jamadar, A.; Cui, Q.C.; Chavan, D.; Dominiak, K.; McKinney, J.; Banerjee, S.; Dou, Q.P.; Sarkar, F.H. New difluoro knoevenagel condensates of curcumin, their schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm. Res., 2009, 26(8), 1874-1880.
[105]
John, V.D.; Kuttan, G.; Krishnankutty, K. Anti-tumour studies of metal chelates of synthetic curcuminoids. J. Exp. Clin. Cancer Res., 2002, 21(2), 219-224.
[106]
John, V.D.; Krishnankutty, K. Antitumour activity of synthetic curcuminoid analogues (1,7-diaryl-1,6-heptadiene-3,5-diones) and their copper complexes. Appl. Organomet. Chem., 2006, 20(8), 477-482.
[107]
Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[108]
Goswami, T.K.; Gadadhar, S.; Gole, B.; Karande, A.A.; Chakravarty, A.R. Photocytotoxicity of copper(II) complexes of curcumin and N-ferrocenylmethyl-l-amino acids. Eur. J. Med. Chem., 2013, 63, 800-810.
[109]
Thompson, K.H.; Böhmerle, K.; Polishchuk, E.; Martins, C.; Toleikis, P.; Tse, J.; Yuen, V.; McNeill, J.H.; Orvig, C. Complementary inhibition of synoviocyte, smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone. J. Inorg. Biochem., 2004, 98(12), 2063-2070.
[110]
Mohammadi, K.; Thompson, K.H.; Patrick, B.O.; Storr, T.; Martins, C.; Polishchuk, E.; Yuen, V.G.; McNeill, J.H.; Orvig, C. Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medicinal applications. J. Inorg. Biochem., 2005, 99(11), 2217-2225.
[111]
Hamidi, A.; Hassani, L.; Mohammadi, F.; Jahangoshayi, P.; Mohammadi, K. The biological effects of vanadyl curcumin and vanadyl diacetylcurcumin complexes: The effect on structure, function and oxidative stability of the peroxidase enzyme, antibacterial activity and cytotoxic effect. J. Enzyme Inhib. Med. Chem., 2015, 1-8.
[112]
Balaji, B.; Balakrishnan, B.; Perumalla, S.; Karande, A.A.; Chakravarty, A.R. Photoactivated cytotoxicity of ferrocenyl-terpyridine oxovanadium(IV) complexes of curcuminoids. Eur. J. Med. Chem., 2014, 85, 458-467.
[113]
Banik, B.; Somyajit, K.; Nagaraju, G.; Chakravarty, A.R. Oxovanadium(iv) complexes of curcumin for cellular imaging and mitochondria targeted photocytotoxicity. Dalton Trans., 2014, 43(35), 13358-13369.
[114]
Pucci, D.; Bellini, T.; Crispini, A.; D’Agnano, I.; Liguori, P.F.; Garcia-Orduna, P.; Pirillo, S.; Valentini, A.; Zanchetta, G. DNA binding and cytotoxicity of fluorescent curcumin-based Zn(ii) complexes. MedChemComm, 2012, 3(4), 462-468.
[115]
Garufi, A.; Pucci, D.; D’Orazi, V.; Cirone, M.; Bossi, G.; Avantaggiati, M.L.; D’Orazi, G. Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis., 2014, 5(5), e1271.
[116]
Garufi, A.; Trisciuoglio, D.; Porru, M.; Leonetti, C.; Stoppacciaro, A.; D’Orazi, V.; Avantaggiati, M.L.; Crispini, A.; Pucci, D.; D’Orazi, G. A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J. Exp. Clin. Cancer Res., 2013, 32(1), 72.
[117]
Botchkina, G.I.; Zuniga, E.S.; Rowehl, R.H.; Park, R.; Bhalla, R.; Bialkowska, A.B.; Johnson, F.; Golub, L.M.; Zhang, Y.; Ojima, I.; Shroyer, K.R. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PLoS One, 2013, 8(9), e69884.
[118]
Caruso, F.; Rossi, M.; Benson, A.; Opazo, C.; Freedman, D.; Monti, E.; Gariboldi, M.B.; Shaulky, J.; Marchetti, F.; Pettinari, R.; Pettinari, C. Ruthenium-arene complexes of curcumin: x-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene) ru (curcuminato)chloro. J. Med. Chem., 2012, 55(3), 1072-1081.
[119]
Caruso, F.; Pettinari, R.; Rossi, M.; Monti, E.; Gariboldi, M.B.; Marchetti, F.; Pettinari, C.; Caruso, A.; Ramani, M.V.; Subbaraju, G.V. The in vitro antitumor activity of arene-ruthenium(II) curcuminoid complexes improves when decreasing curcumin polarity. J. Inorg. Biochem., 2016.
[120]
Bonfili, L.; Pettinari, R.; Cuccioloni, M.; Cecarini, V.; Mozzicafreddo, M.; Angeletti, M.; Lupidi, G.; Marchetti, F.; Pettinari, C.; Eleuteri, A.M. Arene–RuII complexes of curcumin exert antitumor activity via proteasome inhibition and apoptosis induction. ChemMedChem, 2012, 7(11), 2010-2020.
[121]
Valentini, A.; Conforti, F.; Crispini, A.; De Martino, A.; Condello, R.; Stellitano, C.; Rotilio, G.; Ghedini, M.; Federici, G.; Bernardini, S.; Pucci, D. Synthesis, oxidant properties, and antitumoral effects of a heteroleptic palladium(ii) complex of curcumin on human prostate cancer cells. J. Med. Chem., 2009, 52(2), 484-491.
[122]
Hussain, A.; Somyajit, K.; Banik, B.; Banerjee, S.; Nagaraju, G.; Chakravarty, A.R. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(iii) complex formation. Dalton Trans., 2013, 42(1), 182-195.
[123]
Song, Y-M.; Xu, J-P.; Ding, L.; Hou, Q.; Liu, J-W.; Zhu, Z-L. Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J. Inorg. Biochem., 2009, 103(3), 396-400.
[124]
Asti, M.; Ferrari, E.; Croci, S.; Atti, G.; Rubagotti, S.; Iori, M.; Capponi, P.C.; Zerbini, A.; Saladini, M.; Versari, A. Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and alzheimer’s disease. Inorg. Chem., 2014, 53(10), 4922-4933.
[125]
de las-Heras, B.; Hortelano, S. Terpenoids in cancer: Molecular targets and clinical perspectives. Fron. Anti-cancer Drug Discov., 2015, 6, 137-195.
[126]
McMorris, T.C.; Kelner, M.J.; Wang, W.; Estes, L.A.; Montoya, M.A.; Taetle, R. Structure-activity relationships of illudins: Analogs with improved therapeutic index. J. Org. Chem., 1992, 57(25), 6876-6883.
[127]
Kelner, M.J.; McMorris, T.C.; Montoya, M.A.; Estes, L.; Rutherford, M.; Samson, K.M.; Taetle, R. Characterization of cellular accumulation and toxicity of illudin S in sensitive and nonsensitive tumor cells. Cancer Chemother. Pharmacol., 1997, 40(1), 65-71.
[128]
Knauer, S.; Biersack, B.; Zoldakova, M.; Effenberger, K.; Milius, W.; Schobert, R. Melanoma-specific ferrocene esters of the fungal cytotoxin illudin M. Anticancer Drugs, 2009, 20(8), 676-681.
[129]
Schobert, R.; Seibt, S.; Mahal, K.; Ahmad, A.; Biersack, B.; Effenberger-Neidnicht, K.; Padhye, S.; Sarkar, F.H.; Mueller, T. Cancer selective metallocenedicarboxylates of the fungal cytotoxin illudin M. J. Med. Chem., 2011, 54(18), 6177-6182.
[130]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus Brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[131]
Murugkar, A.; Padhye, S.; Guha-Roy, S.; Wagh, U. Metal complexes of Taxol precursor: Synthesis, characterization and antitumor activity of the copper complex of 10-deacetylbaccatin thiosemicarbazone. Inorg. Chem. Commun., 1999, 2(11), 545-548.
[132]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and pt(IV) Prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[133]
Jackson, A.; Davis, J.; Pither, R.J.; Rodger, A.; Hannon, M.J. Estrogen-derived steroidal metal complexes: Agents for cellular delivery of metal centers to estrogen receptor-positive cells. Inorg. Chem., 2001, 40(16), 3964-3973.
[134]
Descoteaux, C.; Leblanc, V.; Belanger, G.; Parent, S.; Asselin, E.; Berube, G. Improved synthesis of unique estradiol-linked platinum(II) complexes showing potent cytocidal activity and affinity for the estrogen receptor alpha and beta. Steroids, 2008, 73(11), 1077-1089.
[135]
Provencher-Mandeville, J.; Descoteaux, C.; Mandal, S.K.; Leblanc, V.; Asselin, E.; Berube, G. Synthesis of 17beta-estradiol-platinum(II) hybrid molecules showing cytotoxic activity on breast cancer cell lines. Bioorg. Med. Chem. Lett., 2008, 18(7), 2282-2287.
[136]
Provencher-Mandeville, J.; Debnath, C.; Mandal, S.K.; Leblanc, V.; Parent, S.; Asselin, É.; Bérubé, G. Design, synthesis and biological evaluation of estradiol-PEG-linked platinum(II) hybrid molecules: Comparative molecular modeling study of three distinct families of hybrids. Steroids, 2011, 76(1-2), 94-103.
[137]
Zamora, A.; Rodriguez, V.; Cutillas, N.; Yellol, G.S.; Espinosa, A.; Samper, K.G.; Capdevila, M.; Palacios, O.; Ruiz, J. New steroidal 7-azaindole platinum(II) antitumor complexes. J. Inorg. Biochem., 2013, 128, 48-56.
[138]
Kvasnica, M.; Rarova, L.; Oklestkova, J.; Budesinsky, M.; Kohout, L. Synthesis and cytotoxic activities of estrone and estradiol cis-dichloroplatinum(II) complexes. Bioorg. Med. Chem., 2012, 20(24), 6969-6978.
[139]
Saha, P.; Descoteaux, C.; Brasseur, K.; Fortin, S.; Leblanc, V.; Parent, S.; Asselin, E.; Berube, G. Synthesis, antiproliferative activity and estrogen receptor alpha affinity of novel estradiol-linked platinum(II) complex analogs to carboplatin and oxaliplatin. Potential vector complexes to target estrogen-dependent tissues. Eur. J. Med. Chem., 2012, 48, 385-390.
[140]
Ruiz, J.; Rodriguez, V.; Cutillas, N.; Espinosa, A.; Hannon, M.J. A potent ruthenium(II) antitumor complex bearing a lipophilic levonorgestrel group. Inorg. Chem., 2011, 50(18), 9164-9171.
[141]
Ruiz, J.; Rodriguez, V.; Cutillas, N.; Samper, K.G.; Capdevila, M.; Palacios, O.; Espinosa, A.; Novel, C. N-chelate rhodium(III) and iridium(III) antitumor complexes incorporating a lipophilic steroidal conjugate and their interaction with DNA. Dalton Trans., 2012, 41(41), 12847-12856.
[142]
Schobert, R.; Seibt, S.; Effenberger-Neidnicht, K.; Underhill, C.; Biersack, B.; Hammond, G.L. (Arene)Cl2Ru(II) complexes with N-coordinated estrogen and androgen isonicotinates: Interaction with sex hormone binding globulin and anticancer activity. Steroids, 2011, 76(4), 393-399.
[143]
Fortin, S.; Brasseur, K.; Morin, N.; Asselin, E.; Berube, G. New platinum(II) complexes conjugated at position 7alpha of 17beta-acetyl-testosterone as new combi-molecules against prostate cancer: Design, synthesis, structure-activity relationships and biological evaluation. Eur. J. Med. Chem., 2013, 68, 433-443.
[144]
Murugkar, A.; Unnikrishnan, B.; Padhye, S.; Bhonde, R.; Teat, S.; Triantafillou, E.; Sinn, E. Hormone anchored metal complexes. Synthesis, structure, spectroscopy and in vitro antitumor activity of testosterone acetate thiosemicarbazone and its metal complexes. Met. Based Drugs, 1999, 6(3), 177-182.
[145]
Top, S.; Thibaudeau, C.; Vessières, A.; Brulé, E.; Le Bideau, F.; Joerger, J-M.; Plamont, M-A.; Samreth, S.; Edgar, A.; Marrot, J.; Herson, P.; Jaouen, G. Synthesis and structure activity relationship of organometallic steroidal androgen derivatives. Organometallics, 2009, 28(5), 1414-1424.
[146]
Adsule, S.; Banerjee, S.; Ahmed, F.; Padhye, S.; Sarkar, F.H. Hybrid anticancer agents: Isothiocyanate–progesterone conjugates as chemotherapeutic agents and insights into their cytotoxicities. Bioorg. Med. Chem. Lett., 2010, 20(3), 1247-1251.
[147]
Lu, J-J.; Bao, J-L.; Chen, X-P.; Huang, M.; Wang, Y-T. Alkaloids Isolated from natural herbs as the anticancer agents. Evid. Based Comp. Alter. Med., 2012, 2012, 12.
[148]
Chen, Z-F.; Shi, Y-F.; Liu, Y-C.; Hong, X.; Geng, B.; Peng, Y.; Liang, H. TCM active ingredient oxoglaucine metal complexes: Crystal structure, cytotoxicity, and interaction with DNA. Inorg. Chem., 2012, 51(4), 1998-2009.
[149]
Wei, J.H.; Chen, Z.F.; Qin, J.L.; Liu, Y.C.; Li, Z.Q.; Khan, T.M.; Wang, M.; Jiang, Y.H.; Shen, W.Y.; Liang, H. Water-soluble oxoglaucine-Y(III), Dy(III) complexes: In vitro and in vivo anticancer activities by triggering DNA damage, leading to S phase arrest and apoptosis. Dalton Trans., 2015, 44(25), 11408-11419.
[150]
Liu, Y.C.; Chen, Z.F.; Shi, Y.F.; Huang, K.B.; Geng, B.; Liang, H. Oxoglaucine-lanthanide complexes: Synthesis, crystal structure and cytotoxicity. Anticancer Res., 2014, 34(1), 531-536.
[151]
Taylor, W.I. The structure and synthesis of liriodenine, a new type of isoquinoline alkaloid. Tetrahedron, 1961, 14(1), 42-45.
[152]
Li, Y.L.; Qin, Q.P.; Liu, Y.C.; Chen, Z.F.; Liang, H. A platinum(II) complex of liriodenine from Traditional Chinese Medicine (TCM): Cell cycle arrest, cell apoptosis induction and telomerase inhibition activity via G-quadruplex DNA stabilization. J. Inorg. Biochem., 2014, 137, 12-21.
[153]
Lai, J.P.; He, X.W.; Jiang, Y.; Chen, F. Preparative separation and determination of matrine from the chinese medicinal plant Sophora flavescens ait by molecularly imprinted solid-phase extraction. Anal. Bioanal. Chem., 2003, 375(2), 264-269.
[154]
Dai, Z.J.; Gao, J.; Ji, Z.Z.; Wang, X.J.; Ren, H.T.; Liu, X.X.; Wu, W.Y.; Kang, H.F.; Guan, H.T. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3. J. Ethnopharmacol., 2009, 123(1), 91-96.
[155]
Liang, C.Z.; Zhang, J.K.; Shi, Z.; Liu, B.; Shen, C.Q.; Tao, H.M. Matrine induces caspase-dependent apoptosis in human osteosarcoma cells in vitro and in vivo through the upregulation of Bax and Fas/FasL and downregulation of Bcl-2. Cancer Chemother. Pharmacol., 2012, 69(2), 317-331.
[156]
Liu, T.; Song, Y.; Chen, H.; Pan, S.; Sun, X. Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol. Pharm. Bull., 2010, 33(10), 1740-1745.
[157]
Zhang, P.; Wang, Z.; Chong, T.; Ji, Z. Matrine inhibits proliferation and induces apoptosis of the androgenindependent prostate cancer cell line PC-3. Mol. Med. Rep., 2012, 5(3), 783-787.
[158]
Chen, Z.F.; Mao, L.; Liu, L.M.; Liu, Y.C.; Peng, Y.; Hong, X.; Wang, H.H.; Liu, H.G.; Liang, H. Potential new inorganic antitumour agents from combining the anticancer Traditional Chinese Medicine (TCM) matrine with Ga(III), Au(III), Sn(IV) ions, and DNA binding studies. J. Inorg. Biochem., 2011, 105(2), 171-180.
[159]
Khan, A.R.; Al-Farhan, K.; de Almeida, A.; Alsalme, A.; Casini, A.; Ghazzali, M.; Reedijk, J. Light-stable bis(norharmane)silver(I) compounds: Synthesis, characterization and antiproliferative effects in cancer cells. J. Inorg. Biochem., 2014, 140, 1-5.
[160]
Khan, R.A.; de Almeida, A.; Al-Farhan, K.; Alsalme, A.; Casini, A.; Ghazzali, M.; Reedijk, J. Transition-metal norharmane compounds as possible cytotoxic agents: New insights based on a coordination chemistry perspective. J. Inorg. Biochem., 2016.
[161]
Mohamed, H.A.; Lake, B.R.; Laing, T.; Phillips, R.M.; Willans, C.E. Synthesis and anticancer activity of silver(I)-N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. Dalton Trans., 2015, 44(16), 7563-7569.
[162]
Emam, S.M.; El Sayed Iel, T.; Nassar, N. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and in vitro anticancer activity of copper(II) complexes. Mol. Biomol. Spect., 2015, 138, 942-953.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy