Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson’s Disease and Huntington’s Disease: A Review

Author(s): Sumit Jamwal and Puneet Kumar*

Volume 17, Issue 2, 2019

Page: [165 - 175] Pages: 11

DOI: 10.2174/1570159X16666180302115032

Price: $65

conference banner
Abstract

Alteration in neurotransmitters signaling in basal ganglia has been consistently shown to significantly contribute to the pathophysiological basis of Parkinson’s disease and Huntington’s disease. Dopamine is an important neurotransmitter which plays a critical role in coordinated body movements. Alteration in the level of brain dopamine and receptor radically contributes to irregular movements, glutamate mediated excitotoxic neuronal death and further leads to imbalance in the levels of other neurotransmitters viz. GABA, adenosine, acetylcholine and endocannabinoids. This review is based upon the data from clinical and preclinical studies to characterize the role of various striatal neurotransmitters in the pathogenesis of Parkinson’s disease and Huntington’s disease. Further, we have collected data of altered level of various neurotransmitters and their metabolites and receptor density in basal ganglia region. Although the exact mechanisms underlying neuropathology of movement disorders are not fully understood, but several mechanisms related to neurotransmitters alteration, excitotoxic neuronal death, oxidative stress, mitochondrial dysfunction, neuroinflammation are being put forward. Restoring neurotransmitters level and downstream signaling has been considered to be beneficial in the treatment of Parkinson’s disease and Huntington’s disease. Therefore, there is an urgent need to identify more specific drugs and drug targets that can restore the altered neurotransmitters level in brain and prevent/delay neurodegeneration.

Keywords: Movement disorders, neurotransmitters, striatum, dopamine, glutamate, GABA, adenosine, acetylcholine.

Graphical Abstract
[1]
Sharma, S.; Kumar, K.; Deshmukh, R.; Sharma, P.L. Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur. J. Pharmacol., 2013, 714(1-3), 486-497.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.038] [PMID: 23850946]
[2]
Jamwal, S.; Kumar, P. Antidepressants for neuroprotection in Huntington’s disease: A review. Eur. J. Pharmacol., 2015, 769, 33-42.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.033] [PMID: 26511378]
[3]
Glass, M.; Dragunow, M.; Faull, R.L. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 2000, 97(3), 505-519.
[http://dx.doi.org/10.1016/S0306-4522(00) 00008-7] [PMID: 10828533]
[4]
Chen, J.Y.; Wang, E.A.; Cepeda, C.; Levine, M.S. Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front. Neurosci., 2013, 7, 114.
[http://dx.doi.org/10.3389/fnins.2013.00114] [PMID: 23847463]
[5]
di Michele, F.; Luchetti, S.; Bernardi, G.; Romeo, E.; Longone, P. Neurosteroid and neurotransmitter alterations in Parkinson’s disease. Front. Neuroendocrinol., 2013, 34(2), 132-142.
[http://dx.doi.org/10.1016/j.yfrne.2013.03.001] [PMID: 23563222]
[6]
Graybiel, A.M. The basal ganglia. Curr. Biol., 2000, 10(14), R509-R511.
[http://dx.doi.org/10.1016/S0960-9822(00)00593-5] [PMID: 10899013]
[7]
Gerfen, C.R.; Engber, T.M.; Mahan, L.C.; Susel, Z.; Chase, T.N.; Monsma, F.J., Jr; Sibley, D.R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 1990, 250(4986), 1429-1432.
[http://dx.doi.org/10. 1126/science.2147780] [PMID: 2147780]
[8]
Steiner, H.; Gerfen, C.R. Enkephalin regulates acute D2 dopamine receptor antagonist-induced immediate-early gene expression in striatal neurons. Neuroscience, 1999, 88(3), 795-810.
[http://dx.doi.org/10.1016/S0306-4522(98)00241-3] [PMID: 10363818]
[9]
Bolam, J.P.; Hanley, J.J.; Booth, P.A.; Bevan, M.D. Synaptic organisation of the basal ganglia. J. Anat., 2000, 196(Pt 4), 527-542.
[http://dx.doi.org/10.1046/j.1469-7580.2000.19640527.x] [PMID: 10923985]
[10]
Albin, R.L.; Young, A.B.; Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci., 1989, 12(10), 366-375.
[http://dx.doi.org/10.1016/0166-2236(89)90074-X] [PMID: 2479133]
[11]
Tepper, J.M.; Wilson, C.J.; Koós, T. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res. Brain Res. Rev., 2008, 58(2), 272-281.
[http://dx.doi.org/10.1016/j. brainresrev.2007.10.008] [PMID: 18054796]
[12]
Bolam, J.P.; Wainer, B.H.; Smith, A.D. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience, 1984, 12(3), 711-718.
[http://dx.doi.org/10.1016/0306-4522(84)90165-9] [PMID: 6382048]
[13]
Zhou, F.M.; Wilson, C.J.; Dani, J.A. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J. Neurobiol., 2002, 53(4), 590-605.
[http://dx.doi.org/10.1002/neu.10150] [PMID: 12436423]
[14]
Kim, H.F.; Hikosaka, O. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain, 2015, 138(7), 1776-1800.
[15]
Picetti, R.; Saiardi, A.; Samad, T.A.; Bozzi, Y.; Baik, J-H.; Borrelli, E. Dopamine D2 receptors in signal transduction and behavior. Crit. Rev. Neurobiol., 1997, 11(2-3), 121-142.
[16]
Luo, Y.; Roth, G.S. The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antioxid. Redox Signal., 2000, 2(3), 449-460.
[http://dx.doi.org/10.1089/15230860050192224] [PMID: 11229358]
[17]
Vallone, D.; Picetti, R.; Borrelli, E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev., 2000, 24(1), 125-132.
[http://dx.doi.org/10.1016/S0149-7634(99)00063-9] [PMID: 10654668]
[18]
Spina, M.B.; Cohen, G. Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc. Natl. Acad. Sci. USA, 1989, 86(4), 1398-1400.
[http://dx.doi.org/10.1073/pnas.86. 4.1398] [PMID: 2919185]
[19]
Kumar, P.; Kalonia, H.; Kumar, A. Huntington’s disease: pathogenesis to animal models. Pharmacol. Rep., 2010, 62(1), 1-14.
[http://dx.doi.org/10.1016/S1734-1140(10)70238-3] [PMID: 20360611]
[20]
Sharma, N.; Jamwal, S.; Kumar, P. Beneficial effect of antidepressants against rotenone induced Parkinsonism like symptoms in rats. Pathophysiology, 2016, 23(2), 123-134.
[http://dx.doi.org/10. 1016/j.pathophys.2016.03.002] [PMID: 26996500]
[21]
Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet, 2009, 373(9680), 2055-2066.
[http://dx.doi.org/10.1016/S0140-6736(09) 60492-X] [PMID: 19524782]
[22]
Li, X.; Patel, J.C.; Wang, J.; Avshalumov, M.V.; Nicholson, C.; Buxbaum, J.D.; Elder, G.A.; Rice, M.E.; Yue, Z. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J. Neurosci., 2010, 30(5), 1788-1797.
[http://dx.doi.org/10.1523/JNEUROSCI.5604-09.2010] [PMID: 20130188]
[23]
Singh, S.; Jamwal, S.; Kumar, P. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen. Res., 2017, 12(7), 1137-1144.
[http://dx.doi.org/10.4103/1673-5374. 211194] [PMID: 28852397]
[24]
Bird, E.D. Chemical pathology of Huntington’s disease. Annu. Rev. Pharmacol. Toxicol., 1980, 20(1), 533-551.
[http://dx.doi.org/10. 1146/annurev.pa.20.040180.002533] [PMID: 6446256]
[25]
Spokes, E.G. Neurochemical alterations in Huntington’s chorea: a study of post-mortem brain tissue. Brain, 1980, 103(1), 179-210.
[http://dx.doi.org/10.1093/brain/103.1.179] [PMID: 6102490]
[26]
Garrett, M.C.; Soares-da-Silva, P. Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington’s disease: evidence for an overactive dopaminergic brain transmission. J. Neurochem., 1992, 58(1), 101-106.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09283.x] [PMID: 1309230]
[27]
Bernheimer, H.; Birkmayer, W.; Hornykiewicz, O.; Jellinger, K.; Seitelberger, F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci., 1973, 20(4), 415-455.
[http://dx.doi.org/10. 1016/0022-510X(73)90175-5] [PMID: 4272516]
[28]
Kish, S.J.; Shannak, K.; Hornykiewicz, O. Elevated serotonin and reduced dopamine in subregionally divided Huntington’s disease striatum. Ann. Neurol., 1987, 22(3), 386-389.
[http://dx.doi.org/10. 1002/ana.410220318] [PMID: 2445259]
[29]
van Oostrom, J.C.; Dekker, M.; Willemsen, A.T.; de Jong, B.M.; Roos, R.A.; Leenders, K.L. Changes in striatal dopamine D2 receptor binding in pre-clinical Huntington’s disease. Eur. J. Neurol., 2009, 16(2), 226-231.
[http://dx.doi.org/10.1111/j.1468-1331.2008. 02390.x] [PMID: 19138335]
[30]
Antonini, A.; Leenders, K.L.; Spiegel, R.; Meier, D.; Vontobel, P.; Weigell-Weber, M.; Sanchez-Pernaute, R.; de Yébenez, J.G.; Boesiger, P.; Weindl, A.; Maguire, R.P. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain, 1996, 119(Pt 6), 2085-2095.
[http://dx.doi.org/10.1093/brain/119.6.2085] [PMID: 9010012]
[31]
Weeks, R.A.; Piccini, P.; Harding, A.E.; Brooks, D.J. Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington’s disease. Ann. Neurol., 1996, 40(1), 49-54.
[http://dx.doi.org/10.1002/ana.410400110] [PMID: 8687191]
[32]
Johnson, M.A.; Rajan, V.; Miller, C.E.; Wightman, R.M. Dopamine release is severely compromised in the R6/2 mouse model of Huntington’s disease. J. Neurochem., 2006, 97(3), 737-746.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03762.x] [PMID: 16573654]
[33]
Callahan, J.W.; Abercrombie, E.D. In vivo dopamine efflux is decreased in striatum of both fragment (R6/2) and full-length (YAC128) transgenic mouse models of Huntington’s disease. Front. Syst. Neurosci., 2011, 5(61), 61.
[PMID: 21811446]
[34]
Mochel, F.; Durant, B.; Durr, A.; Schiffmann, R. Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice. PLoS One, 2011, 6(3), e18336.
[http://dx.doi.org/10.1371/journal. pone.0018336] [PMID: 21483838]
[35]
Pouladi, M.A.; Stanek, L.M.; Xie, Y.; Franciosi, S.; Southwell, A.L.; Deng, Y.; Butland, S.; Zhang, W.; Cheng, S.H.; Shihabuddin, L.S.; Hayden, M.R. Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum. Mol. Genet., 2012, 21(10), 2219-2232.
[http://dx.doi.org/10.1093/hmg/dds037] [PMID: 22328089]
[36]
Jahanshahi, A.; Vlamings, R.; Kaya, A.H.; Lim, L.W.; Janssen, M.L.; Tan, S.; Visser-Vandewalle, V.; Steinbusch, H.W.; Temel, Y. Hyperdopaminergic status in experimental Huntington disease. J. Neuropathol. Exp. Neurol., 2010, 69(9), 910-917.
[http://dx.doi.org/10.1097/NEN.0b013e3181ee005d] [PMID: 20720506]
[37]
Jamwal, S.; Kumar, P. L-theanine, a component of green tea prevents 3-Nitropropionic Acid (3-NP)-Induced striatal toxicity by modulating nitric oxide pathway. Mol. Neurobiol., 2017, 54(3), 2327-2337.
[http://dx.doi.org/10.1007/s12035-016-9822-5] [PMID: 26957301]
[38]
Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev., 1999, 51(1), 7-61.
[PMID: 10049997]
[39]
Olney, J.W. Excitotoxic amino acids and neuropsychiatric disorders. Annu. Rev. Pharmacol. Toxicol., 1990, 30(1), 47-71.
[http://dx.doi.org/10.1146/annurev.pa.30.040190.000403] [PMID: 2188577]
[40]
Albin, R.L.; Greenamyre, J.T. Alternative excitotoxic hypotheses. Neurology, 1992, 42(4), 733-738.
[http://dx.doi.org/10.1212/WNL.42.4.733] [PMID: 1314341]
[41]
Greene, J.G.; Greenamyre, J.T. Bioenergetics and glutamate excitotoxicity. Prog. Neurobiol., 1996, 48(6), 613-634.
[http://dx.doi.org/ 10.1016/0301-0082(96)00006-8] [PMID: 8809910]
[42]
Küppenbender, K.D.; Standaert, D.G.; Feuerstein, T.J.; Penney, J.B., Jr; Young, A.B.; Landwehrmeyer, G.B. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J. Comp. Neurol., 2000, 419(4), 407-421.
[http://dx.doi.org/10.1002/(SICI)1096-9861 (20000417)419:4<407:AID-CNE1>3.0.CO;2-I] [PMID: 10742712]
[43]
Calon, F.; Morissette, M.; Ghribi, O.; Goulet, M.; Grondin, R.; Blanchet, P.J.; Bédard, P.J.; Di Paolo, T. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(1), 127-138.
[http://dx.doi.org/10.1016/S0278-5846(01)00237-8] [PMID: 11853103]
[44]
Nash, J.E.; Brotchie, J.M. Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat. Mov. Disord., 2002, 17(3), 455-466.
[http://dx.doi.org/10.1002/mds. 10107] [PMID: 12112191]
[45]
Sevcík, J.; Mašek, K. Potential role of cannabinoids in Parkinson’s disease. Drugs Aging, 2000, 16(6), 391-395.
[http://dx.doi.org/10. 2165/00002512-200016060-00001] [PMID: 10939305]
[46]
Dong, X.X.; Wang, Y.; Qin, Z.H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[47]
DiFiglia, M. Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci., 1990, 13(7), 286-289.
[http://dx.doi.org/10.1016/0166-2236(90)90111-M] [PMID: 1695405]
[48]
Chwarcz, R; Bennett, JP; Coyle, JT Inhibitors of GABA metabolism: implications,
[49]
Dong, X.X.; Wang, Y.; Qin, Z.H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387.
[50]
Young, A.B.; Greenamyre, J.T.; Hollingsworth, Z.; Albin, R.; D’Amato, C.; Shoulson, I.; Penney, J.B. NMDA receptor losses in putamen from patients with Huntington’s disease. Science, 1988, 241(4868), 981-983.
[http://dx.doi.org/10.1126/science.2841762] [PMID: 2841762]
[51]
Wagster, M.V.; Hedreen, J.C.; Peyser, C.E.; Folstein, S.E.; Ross, C.A. Selective loss of [3H]kainic acid and [3H]AMPA binding in layer VI of frontal cortex in Huntington’s disease. Exp. Neurol., 1994, 127(1), 70-75.
[http://dx.doi.org/10.1006/exnr.1994.1081] [PMID: 7515353]
[52]
Dure, L.S., IV; Young, A.B.; Penney, J.B. Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington’s disease. Ann. Neurol., 1991, 30(6), 785-793.
[http://dx.doi.org/10. 1002/ana.410300607] [PMID: 1665055]
[53]
Hassel, B.; Tessler, S.; Faull, R.L.; Emson, P.C. Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem. Res., 2008, 33(2), 232-237.
[http://dx.doi.org/10.1007/s11064-007-9463-1] [PMID: 17726644]
[54]
Cha, J.H.; Kosinski, C.M.; Kerner, J.A.; Alsdorf, S.A.; Mangiarini, L.; Davies, S.W.; Penney, J.B.; Bates, G.P.; Young, A.B. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 6480-6485.
[http://dx.doi.org/10. 1073/pnas.95.11.6480] [PMID: 9600992]
[55]
Cha, J.H.; Frey, A.S.; Alsdorf, S.A.; Kerner, J.A.; Kosinski, C.M.; Mangiarini, L.; Penney, J.B., Jr; Davies, S.W.; Bates, G.P.; Young, A.B. Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1999, 354(1386), 981-989.
[http://dx.doi.org/10. 1098/rstb.1999.0449] [PMID: 10434296]
[56]
Nicniocaill, B.; Haraldsson, B.; Hansson, O.; O’Connor, W.T.; Brundin, P. Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. Eur. J. Neurosci., 2001, 13(1), 206-210.
[http://dx.doi.org/10. 1046/j.0953-816X.2000.01379.x] [PMID: 11135020]
[57]
Levine, M.S.; Klapstein, G.J.; Koppel, A.; Gruen, E.; Cepeda, C.; Vargas, M.E.; Jokel, E.S.; Carpenter, E.M.; Zanjani, H.; Hurst, R.S.; Efstratiadis, A.; Zeitlin, S.; Chesselet, M.F. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J. Neurosci. Res., 1999, 58(4), 515-532.
[http://dx.doi.org/10.1002/(SICI)1097-4547 (19991115)58:4<515:AID-JNR5>3.0.CO;2-F] [PMID: 10533044]
[58]
Cepeda, C.; Ariano, M.A.; Calvert, C.R.; Flores-Hernández, J.; Chandler, S.H.; Leavitt, B.R.; Hayden, M.R.; Levine, M.S. NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res., 2001, 66(4), 525-539.
[http://dx.doi.org/10.1002/jnr. 1244] [PMID: 11746372]
[59]
Starling, A.J.; André, V.M.; Cepeda, C.; de Lima, M.; Chandler, S.H.; Levine, M.S. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington’s disease. J. Neurosci. Res., 2005, 82(3), 377-386.
[http://dx.doi.org/10.1002/jnr.20651] [PMID: 16211559]
[60]
André, V.M.; Cepeda, C.; Venegas, A.; Gomez, Y.; Levine, M.S. Altered cortical glutamate receptor function in the R6/2 model of Huntington’s disease. J. Neurophysiol., 2006, 95(4), 2108-2119.
[http://dx.doi.org/10.1152/jn.01118.2005] [PMID: 16381805]
[61]
Banaie, M.; Sarbaz, Y.; Gharibzadeh, S.; Towhidkhah, F. Huntington’s disease: modeling the gait disorder and proposing novel treatments. J. Theor. Biol., 2008, 254(2), 361-367.
[http://dx.doi.org/10.1016/j.jtbi.2008.05.023] [PMID: 18621402]
[62]
Soghomonian, J-J.; Pedneault, S.; Audet, G.; Parent, A. Increased glutamate decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated primates. J. Neurosci., 1994, 14(10), 6256-6265.
[http://dx.doi.org/10.1523/JNEUROSCI.14-10-06256.1994] [PMID: 7931578]
[63]
Nambu, A. GABA-B receptor: possible target for Parkinson’s disease therapy. Exp. Neurol., 2012, 233(1), 121-122.
[http://dx.doi.org/10.1016/j.expneurol.2011.10.012] [PMID: 22036748]
[64]
Calon, F.; Morissette, M.; Goulet, M.; Grondin, R.; Blanchet, P.J.; Bédard, P.J.; Di Paolo, T. 125I-CGP 64213 binding to GABA(B) receptors in the brain of monkeys: effect of MPTP and dopaminomimetic treatments. Exp. Neurol., 2000, 163(1), 191-199.
[http://dx.doi.org/10.1006/exnr.2000.7366] [PMID: 10785458]
[65]
Calon, F.; Morissette, M.; Rajput, A.H.; Hornykiewicz, O.; Bédard, P.J.; Di Paolo, T. Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Mov. Disord., 2003, 18(3), 241-253.
[http://dx.doi.org/10.1002/mds.10343] [PMID: 12621627]
[66]
Johnston, T.; Duty, S. Changes in GABA(B) receptor mRNA expression in the rodent basal ganglia and thalamus following lesion of the nigrostriatal pathway. Neuroscience, 2003, 120(4), 1027-1035.
[http://dx.doi.org/10.1016/S0306-4522(03)00418-4] [PMID: 12927208]
[67]
Perry, T.L.; Hansen, S.; Kloster, M. Huntington’s chorea. Deficiency of γ-aminobutyric acid in brain. N. Engl. J. Med., 1973, 288(7), 337-342.
[http://dx.doi.org/10.1056/NEJM197302152880703] [PMID: 4345566]
[68]
Hickey, M.A.; Chesselet, M-F. Apoptosis in Huntington’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(2), 255-265.
[http://dx.doi.org/10.1016/S0278-5846(03)00021-6] [PMID: 12657365]
[69]
Ramaswamy, S.; McBride, J.L.; Kordower, J.H. Animal models of Huntington’s disease. ILAR J., 2007, 48(4), 356-373.
[http://dx.doi.org/10.1093/ilar.48.4.356] [PMID: 17712222]
[70]
Ferrante, R.J.; Kowall, N.W.; Beal, M.F.; Richardson, E.P., Jr; Bird, E.D.; Martin, J.B. Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 1985, 230(4725), 561-563.
[http://dx.doi.org/10.1126/science.2931802] [PMID: 2931802]
[71]
Reynolds, G.P.; Pearson, S.J. Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington’s disease brain. Neurosci. Lett., 1987, 78(2), 233-238.
[http://dx.doi.org/10.1016/0304-3940(87)90639-2] [PMID: 2442679]
[72]
Charara, A.; Heilman, T.C.; Levey, A.I.; Smith, Y. Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. Neuroscience, 2000, 95(1), 127-140.
[http://dx.doi.org/ 10.1016/S0306-4522(99)00409-1] [PMID: 10619469]
[73]
Lacey, C.J.; Boyes, J.; Gerlach, O.; Chen, L.; Magill, P.J.; Bolam, J.P. GABA(B) receptors at glutamatergic synapses in the rat striatum. Neuroscience, 2005, 136(4), 1083-1095.
[http://dx.doi.org/10. 1016/j.neuroscience.2005.07.013] [PMID: 16226840]
[74]
Nisenbaum, E.S.; Berger, T.W.; Grace, A.A. Presynaptic modulation by GABAB receptors of glutamatergic excitation and GABAergic inhibition of neostriatal neurons. J. Neurophysiol., 1992, 67(2), 477-481.
[http://dx.doi.org/10.1152/jn.1992.67.2.477] [PMID: 1349038]
[75]
Ferrante, R.J.; Kowall, N.W.; Richardson, E.P. Jr Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J. Neurosci., 1991, 11(12), 3877-3887.
[http://dx.doi.org/10.1523/JNEUROSCI.11-12-03877. 1991] [PMID: 1836019]
[76]
Calabresi, P.; Mercuri, N.B.; De Murtas, M.; Bernardi, G. Endogenous GABA mediates presynaptic inhibition of spontaneous and evoked excitatory synaptic potentials in the rat neostriatum. Neurosci. Lett., 1990, 118(1), 99-102.
[http://dx.doi.org/10.1016/0304-3940(90)90258-B] [PMID: 2259476]
[77]
Yin, H.H.; Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci., 2006, 7(6), 464-476.
[http://dx.doi.org/10.1038/nrn1919] [PMID: 16715055]
[78]
Hettinger, B.D.; Lee, A.; Linden, J.; Rosin, D.L. Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J. Comp. Neurol., 2001, 431(3), 331-346.
[http://dx.doi.org/10. 1002/1096-9861(20010312)431:3<331:AID-CNE1074>3.0.CO;2-W] [PMID: 11170009]
[79]
Schiffmann, S.N.; Libert, F.; Vassart, G.; Vanderhaeghen, J.J. Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci. Lett., 1991, 130(2), 177-181.
[http://dx.doi.org/10.1016/0304-3940(91)90391-6] [PMID: 1795877]
[80]
Gao, Y.; Phillis, J.W. CGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in the Mongolian gerbil. Life Sci., 1994, 55(3), PL61-PL65.
[http://dx.doi.org/10.1016/0024-3205(94)00889-2] [PMID: 8007757]
[81]
Popoli, P.; Betto, P.; Reggio, R.; Ricciarello, G. Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur. J. Pharmacol., 1995, 287(2), 215-217.
[http://dx.doi.org/10.1016/0014-2999(95)00679-6] [PMID: 8749040]
[82]
Popoli, P.; Pintor, A.; Domenici, M.R.; Frank, C.; Tebano, M.T.; Pèzzola, A.; Scarchilli, L.; Quarta, D.; Reggio, R.; Malchiodi-Albedi, F.; Falchi, M.; Massotti, M. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J. Neurosci., 2002, 22(5), 1967-1975.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01967.2002] [PMID: 11880527]
[83]
Monopoli, A.; Lozza, G.; Forlani, A.; Mattavelli, A.; Ongini, E. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport, 1998, 9(17), 3955-3959.
[http://dx.doi.org/10.1097/00001756-199812010-00034] [PMID: 9875735]
[84]
Chen, J.F.; Huang, Z.; Ma, J.; Zhu, J.; Moratalla, R.; Standaert, D.; Moskowitz, M.A.; Fink, J.S.; Schwarzschild, M.A.A. (2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J. Neurosci., 1999, 19(21), 9192-9200.
[http://dx.doi.org/10.1523/JNEUROSCI.19-21-09192.1999] [PMID: 10531422]
[85]
Reggio, R.; Pèzzola, A.; Popoli, P. The intrastratial injection of an adenosine A(2) receptor antagonist prevents frontal cortex EEG abnormalities in a rat model of Huntington’s disease. Brain Res., 1999, 831(1-2), 315-318.
[http://dx.doi.org/10.1016/S0006-8993(99)01489-4] [PMID: 10412014]
[86]
Morelli, M.; Di Paolo, T.; Wardas, J.; Calon, F.; Xiao, D.; Schwarzschild, M.A. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol., 2007, 83(5), 293-309.
[http://dx.doi.org/ 10.1016/j.pneurobio.2007.07.001] [PMID: 17826884]
[87]
Varani, K.; Rigamonti, D.; Sipione, S.; Camurri, A.; Borea, P.A.; Cattabeni, F.; Abbracchio, M.P.; Cattaneo, E. Aberrant amplification of A(2A) receptor signaling in striatal cells expressing mutant huntingtin. FASEB J., 2001, 15(7), 1245-1247.
[http://dx.doi.org/ 10.1096/fj.00-0730fje] [PMID: 11344102]
[88]
Maglione, V.; Cannella, M.; Gradini, R.; Cislaghi, G.; Squitieri, F. Huntingtin fragmentation and increased caspase 3, 8 and 9 activities in lymphoblasts with heterozygous and homozygous Huntington’s disease mutation. Mech. Ageing Dev., 2006, 127(2), 213-216.
[http://dx.doi.org/10.1016/j.mad.2005.09.011] [PMID: 16289252]
[89]
Blum, D.; Gall, D.; Cuvelier, L.; Schiffmann, S.N. Topological analysis of striatal lesions induced by 3-nitropropionic acid in the Lewis rat. Neuroreport, 2001, 12(8), 1769-1772.
[http://dx.doi.org/ 10.1097/00001756-200106130-00050] [PMID: 11409756]
[90]
Christie, M.J.; Vaughan, C.W. Neurobiology Cannabinoids act backwards. Nature, 2001, 410(6828), 527-530.
[http://dx.doi.org/ 10.1038/35069167] [PMID: 11279473]
[91]
Kent, A. Huntington’s disease. Nurs. Stand., 2004, 18(32), 45-51.
[http://dx.doi.org/10.7748/ns2004.04.18.32.45.c3596] [PMID: 15132037]
[92]
Manyam, B.V.; Giacobini, E.; Colliver, J.A. Cerebrospinal fluid acetylcholinesterase and choline measurements in Huntington’s disease. J. Neurol., 1990, 237(5), 281-284.
[http://dx.doi.org/10. 1007/BF00314742] [PMID: 2146369]
[93]
Browne, S.E.; Ferrante, R.J.; Beal, M.F. Oxidative stress in Huntington’s disease. Brain Pathol., 1999, 9(1), 147-163.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00216.x] [PMID: 9989457]
[94]
Cui, Q.L.; Yung, W.H.; Chen, L. Effects of substance P on neuronal firing of pallidal neurons in parkinsonian rats. Neurosci. Res., 2008, 60(2), 162-169.
[http://dx.doi.org/10.1016/j.neures.2007.10. 007] [PMID: 18054402]
[95]
Lévesque, M.; Wallman, M.J.; Parent, R.; Sík, A.; Parent, A. Neurokinin-1 and neurokinin-3 receptors in primate substantia nigra. Neurosci. Res., 2007, 57(3), 362-371.
[http://dx.doi.org/10.1016/j.neures.2006.11.002] [PMID: 17134780]
[96]
Reid, M.S.; Herrera-Marschitz, M.; Hökfelt, T.; Lindefors, N.; Persson, H.; Ungerstedt, U. Striatonigral GABA, dynorphin, substance P and neurokinin A modulation of nigrostriatal dopamine release: evidence for direct regulatory mechanisms. Exp. Brain Res., 1990, 82(2), 293-303.
[http://dx.doi.org/10.1007/BF00231249] [PMID: 1704847]
[97]
Teunissen, C.E.; Steinbusch, H.W.; Angevaren, M.; Appels, M.; de Bruijn, C.; Prickaerts, J.; de Vente, J. Behavioural correlates of striatal glial fibrillary acidic protein in the 3-nitropropionic acid rat model: disturbed walking pattern and spatial orientation. Neuroscience, 2001, 105(1), 153-167.
[http://dx.doi.org/10.1016/S0306-4522(01)00164-6] [PMID: 11483309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy