Abstract
Background and Objective: Asenapine is an atypical antipsychotic approved by US Food and Drug Administration in 2009 and by European Medicines Agency in 2010 for Schizophrenia and Bipolar Disorder treatment. Currently, many studies have been developed in an attempt to clarify and minimize the risks related to the use of psychotropic during pre/postnatal period on patients with a history of mental disorders.
Conclusion: The aim of this study was to test the impact of pre and/or postnatal exposition to asenapine on mice offspring behavior. Four groups of animals, previously treated with a dosage equivalent to 50% of the bioavailability obtained with a 20 mg daily use for human treatment, were exposed to the Open Field and Elevated plus Maze test. Only the group exposed to asenapine during both pre and postnatal periods showed response difference in the Elevated Plus Maze test, which was restricted to urination. However, our data suggest that the administration of asenapine does not induce significant anxiety-like behaviors in mice.
Keywords: Antipsychotic, schizophrenia, bipolar disorder, behaviour, anxiety, stress, open field, elevated plus maze.
CNS & Neurological Disorders - Drug Targets
Title:Systemic Administration of Antipsychotic Asenapine Pre or Postnatal does not Induce Anxiety-like Behaviors in Mice
Volume: 16 Issue: 10
Author(s): Thais Barbosa de Souza, Daniela Miranda Farias, Rozimeri Fatima Coletti, Maria Silvia Oliveira, Carolina Gomes Carrilho, Jorge Aparecido de Barros, Susana Elisa Moreno, Eric Murillo-Rodriguez, Sergio Machado and Andre Barciela Veras*
Affiliation:
- Intercontinental Neuroscience Research Group, Campo Grande,Brazil
Keywords: Antipsychotic, schizophrenia, bipolar disorder, behaviour, anxiety, stress, open field, elevated plus maze.
Abstract: Background and Objective: Asenapine is an atypical antipsychotic approved by US Food and Drug Administration in 2009 and by European Medicines Agency in 2010 for Schizophrenia and Bipolar Disorder treatment. Currently, many studies have been developed in an attempt to clarify and minimize the risks related to the use of psychotropic during pre/postnatal period on patients with a history of mental disorders.
Conclusion: The aim of this study was to test the impact of pre and/or postnatal exposition to asenapine on mice offspring behavior. Four groups of animals, previously treated with a dosage equivalent to 50% of the bioavailability obtained with a 20 mg daily use for human treatment, were exposed to the Open Field and Elevated plus Maze test. Only the group exposed to asenapine during both pre and postnatal periods showed response difference in the Elevated Plus Maze test, which was restricted to urination. However, our data suggest that the administration of asenapine does not induce significant anxiety-like behaviors in mice.
Export Options
About this article
Cite this article as:
de Souza Barbosa Thais , Farias Miranda Daniela , Coletti Fatima Rozimeri , Oliveira Silvia Maria , Carrilho Gomes Carolina, de Barros Aparecido Jorge , Moreno Elisa Susana, Murillo-Rodriguez Eric , Machado Sergio and Veras Barciela Andre *, Systemic Administration of Antipsychotic Asenapine Pre or Postnatal does not Induce Anxiety-like Behaviors in Mice, CNS & Neurological Disorders - Drug Targets 2017; 16 (10) . https://dx.doi.org/10.2174/1871527317666171213162403
DOI https://dx.doi.org/10.2174/1871527317666171213162403 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
Call for Papers in Thematic Issues
Heart and Brain Axis Targets in CNS Neurological Disorders
Recently there has been a surge of interest in delving deeper into the complex interplay between the heart and brain. This fascination stems from a growing recognition of the profound influence each organ holds over the other, particularly in the realm of central nervous system (CNS) neurological disorders. The purpose ...read more
Lifestyle Interventions to Prevent and Treat Cognitive Impairment and Dementia
More than 55 million people live with dementia worldwide. By 2050, the population affected by dementia will exceed 139 million individuals. Mild cognitive impairment (MCI) is a pre-dementia stage, also known as prodromal dementia, affecting older adults. MCI emerges years before the manifestation of dementia but can be avoidable and ...read more
Pathogenic Proteins in Neurodegenerative Diseases: From Mechanisms to Treatment Modalities
The primary objective of this thematic issue is to elucidate the molecular mechanisms by which pathogenic proteins contribute to neurodegenerative diseases and to highlight current and emerging therapeutic strategies aimed at mitigating their effects. By bringing together cutting-edge research and reviews, this issue aims to: 1.Enhance Understanding: Provide a comprehensive ...read more
Role of glial cells in autism spectrum disorder: Molecular mechanism and therapeutic approaches
Emerging evidence suggests that glial cells may play a pivotal role in neuroanatomical and behavioral changes found in autism spectrum disorder (ASD). Many individuals with ASD experience a neuro-immune system abnormalities throughout life, which implicates a potential role of microglia in the pathogenesis of ASD. Dysfunctional astrocytes and oligodendrocytes were ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
1950 MHz Electromagnetic Fields Ameliorate Aβ Pathology in Alzheimer’s Disease Mice
Current Alzheimer Research Oxidative Stress and Opioids' Toxicity: An Update
Mini-Reviews in Organic Chemistry Are Lysosomes Potential Therapeutic Targets for Parkinson’s Disease?
CNS & Neurological Disorders - Drug Targets Biochemical and Therapeutic Effects of Antioxidants in the Treatment of Alzheimers Disease, Parkinsons Disease, and Amyotrophic Lateral Sclerosis
Current Drug Targets - CNS & Neurological Disorders Induced Pluripotent Stem Cells (iPSCs) Derived from Different Cell Sources and their Potential for Regenerative and Personalized Medicine
Current Molecular Medicine Identification of Molecular Targets Associated with Ethanol Toxicity and Implications in Drug Development
Current Pharmaceutical Design Ameliorative Effects of Phytomedicines on Alzheimer’s Patients
Current Alzheimer Research Editorial
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds
Current Organic Chemistry Thienyl Pyrimidine Derivatives with PrPSc Oligomer-Inducing Activity are a Promising Tool to Study Prions
Current Topics in Medicinal Chemistry Involvement of the Mitochondrial Benzodiazepine Receptor in Traumatic Brain Injury: Therapeutic Implications
CNS & Neurological Disorders - Drug Targets Current Options and Future Possibilities for the Treatment of Dyskinesia and Motor Fluctuations in Parkinson's Disease
CNS & Neurological Disorders - Drug Targets Chemical Modification of Chitosan as a Gene Transporter
Current Organic Chemistry A Review on the Neuroprotective Effect of Berberine against Chemotherapy- induced Cognitive Impairment
Current Drug Targets Engineered Nanoparticles for Improved Vasoactive Intestinal Peptide (VIP) Biomedical Applications
Recent Patents on Nanomedicine Alzheimer's Disease and Chinese Medicine as a Useful Alternative Intervention Tool: A Mini-Review
Current Alzheimer Research Glia as a Turning Point in the Therapeutic Strategy of Parkinsons Disease
CNS & Neurological Disorders - Drug Targets Prodromal Metabolic Phenotype in MCI Cybrids: Implications for Alzheimer’s Disease
Current Alzheimer Research Activated Immune System and Inflammation in Healthy Ageing: Relevance for Tryptophan and Neopterin Metabolism
Current Pharmaceutical Design Possible Neuroprotective Strategies for Huntingtons Disease
Current Neuropharmacology