Review Article

使用CD19靶向嵌合抗原受体T细胞过继免疫治疗B细胞恶性肿瘤:系统评价疗效和安全性

卷 26, 期 17, 2019

页: [3068 - 3079] 页: 12

弟呕挨: 10.2174/0929867324666170801101842

价格: $65

conference banner
摘要

背景:过继输注嵌合抗原受体转导的T细胞(CAR-T)是血液恶性肿瘤免疫治疗的有力工具,最近发表的和未发表的临床结果证明了这一点。 目的:在本报告中,我们进行了一项Meta分析,以评估CAR-T对难治性和/或复发性B细胞恶性肿瘤(包括白血病和淋巴瘤)的疗效和副作用。 方法:通过检索PubMed和EMBASE,确定CAR-T在急性和慢性淋巴细胞白血病和淋巴瘤中的有效性和安全性的临床研究。 分析的疗效结果是完全缓解(CR)和部分缓解(PR)的比率。 安全性参数是不良反应的患病率,包括发热,低血压和急性肾衰竭。 使用R软件进行Meta分析。 计算每个结果的加权风险比(HR)和95%置信区间。 根据纳入研究的异质性,采用固定或随机效应模型。 结果:纳入了19项已发表的临床研究,共有391名患者进行Meta分析。 汇总完全缓解率为55%(95%CI 41%-69%); 汇总的部分缓解率为25%(95%CI:19%-33%)。 发热的患病率为62%(95%CI:41%-79%),低血压为22%(95%CI:15%-31%),急性肾功能衰竭为24%(95%CI:16) %-34%)。 所有不良反应均可控制,并且由于毒性未报告死亡。 结论:CD19靶向CAR-T是治疗难治性B细胞恶性肿瘤(包括白血病和淋巴瘤)的有效方式。 然而,仍然需要制定改善其临床应用安全性的策略。

关键词: 嵌合抗原受体,过继性T细胞疗法,B细胞恶性肿瘤,白血病,淋巴瘤,安全性。

[1]
Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood, 2014, 123(17), 2625-2635.
[http://dx.doi.org/10.1182/blood-2013-11-492231] [PMID: 24578504]
[2]
Sadelain, M.; Rivière, I.; Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer, 2003, 3(1), 35-45.
[http://dx.doi.org/10.1038/nrc971] [PMID: 12509765]
[3]
Ho, W.Y.; Blattman, J.N.; Dossett, M.L.; Yee, C.; Greenberg, P.D. Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell, 2003, 3(5), 431-437.
[http://dx.doi.org/10.1016/S1535-6108(03)00113-2] [PMID: 12781360]
[4]
Brenner, M.K.; Heslop, H.E. Adoptive T cell therapy of cancer. Curr. Opin. Immunol., 2010, 22(2), 251-257.
[http://dx.doi.org/10.1016/j.coi.2010.01.020] [PMID: 20171074]
[5]
Kochenderfer, J.N.; Feldman, S.A.; Zhao, Y.; Xu, H.; Black, M.A.; Morgan, R.A.; Wilson, W.H.; Rosenberg, S.A. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J. Immunother., 2009, 32(7), 689-702.
[http://dx.doi.org/10.1097/CJI.0b013e3181ac6138] [PMID: 19561539]
[6]
Imai, C.; Mihara, K.; Andreansky, M.; Nicholson, I.C.; Pui, C.H.; Geiger, T.L.; Campana, D. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia, 2004, 18(4), 676-684.
[http://dx.doi.org/10.1038/sj.leu.2403302] [PMID: 14961035]
[7]
Kowolik, C.M.; Topp, M.S.; Gonzalez, S.; Pfeiffer, T.; Olivares, S.; Gonzalez, N.; Smith, D.D.; Forman, S.J.; Jensen, M.C.; Cooper, L.J. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res., 2006, 66(22), 10995-11004.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0160] [PMID: 17108138]
[8]
Maude, S.L.; Teachey, D.T.; Porter, D.L.; Grupp, S.A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood, 2015, 125(26), 4017-4023.
[http://dx.doi.org/10.1182/blood-2014-12-580068] [PMID: 25999455]
[9]
Tasian, S.K.; Gardner, R.A. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther. Adv. Hematol., 2015, 6(5), 228-241.
[http://dx.doi.org/10.1177/2040620715588916] [PMID: 26425336]
[10]
Schubert, M.L.; Hückelhoven, A.; Hoffmann, J.M.; Schmitt, A.; Wuchter, P.; Sellner, L.; Hofmann, S.; Ho, A.D.; Dreger, P.; Schmitt, M. Chimeric antigen receptor (CAR) T cell therapy targeting CD19 positive leukemia and lymphoma in the context of stem cell transplantation. Hum. Gene Ther., 2016, 27(10), 758-771 Epub ahead of print.
[http://dx.doi.org/10.1089/hum.2016.097] [PMID: 27479233]
[11]
Di Stasi, A.; Tey, S.K.; Dotti, G.; Fujita, Y.; Kennedy-Nasser, A.; Martinez, C.; Straathof, K.; Liu, E.; Durett, A.G.; Grilley, B.; Liu, H.; Cruz, C.R.; Savoldo, B.; Gee, A.P.; Schindler, J.; Krance, R.A.; Heslop, H.E.; Spencer, D.M.; Rooney, C.M.; Brenner, M.K. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med., 2011, 365(18), 1673-1683.
[http://dx.doi.org/10.1056/NEJMoa1106152] [PMID: 22047558]
[12]
Sadelain, M. Chimeric antigen receptors: driving immunology towards synthetic biology. Curr. Opin. Immunol., 2016, 41, 68-76.
[http://dx.doi.org/10.1016/j.coi.2016.06.004] [PMID: 27372731]
[13]
Dong, L.J.; Chang, L.J.; Gao, Z.Y.; Lu, D-P.; Zhang, J-P.; Wang, J-B.; Zhang, L-P.; Chen, Y-H.; Zheng, H-Y.; Liu, T.; Niu, T.; Huang, H.; Liu, R.; Wang, H-X.; Gao, L.; Yang, T-H.; Lai, X. Chimeric antigen receptor 4SCAR19-modified T Cells in acute lymphoid leukemia: a phase II multi-center clinical trial in China. Blood, 2015, 126(23), 3774.
[14]
Chang, L.J.; Dong, L.J.; Zhu, J. 4SCAR19 chimeric antigen receptor-modified T Cells as a breakthrough therapy for highly chemotherapy-resistant late-stage B cell lymphoma patients with bulky tumor mass. Blood, 2015, 126(23), 264.
[15]
Scheuermann, R.H.; Racila, E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma, 1995, 18(5-6), 385-397.
[http://dx.doi.org/10.3109/10428199509059636] [PMID: 8528044]
[16]
Tedder, T.F.; Zhou, L.J.; Engel, P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today, 1994, 15(9), 437-442.
[http://dx.doi.org/10.1016/0167-5699(94)90274-7] [PMID: 7524521]
[17]
Brentjens, R.J.; Latouche, J.B.; Santos, E.; Marti, F.; Gong, M.C.; Lyddane, C.; King, P.D.; Larson, S.; Weiss, M.; Rivière, I.; Sadelain, M. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med., 2003, 9(3), 279-286.
[http://dx.doi.org/10.1038/nm827] [PMID: 12579196]
[18]
Rossig, C.; Bär, A.; Pscherer, S.; Altvater, B.; Pule, M.; Rooney, C.M.; Brenner, M.K.; Jürgens, H.; Vormoor, J. Target antigen expression on a professional antigen-presenting cell induces superior proliferative antitumor T-cell responses via chimeric T-cell receptors. J. Immunother., 2006, 29(1), 21-31.
[http://dx.doi.org/10.1097/01.cji.0000175492.28723.d6] [PMID: 16365597]
[19]
Cheadle, E.J.; Hawkins, R.E.; Batha, H.; O’Neill, A.L.; Dovedi, S.J.; Gilham, D.E. Natural expression of the CD19 antigen impacts the long-term engraftment but not antitumor activity of CD19-specific engineered T cells. J. Immunol., 2010, 184(4), 1885-1896.
[http://dx.doi.org/10.4049/jimmunol.0901440] [PMID: 20089697]
[20]
Kochenderfer, J.N.; Yu, Z.; Frasheri, D.; Restifo, N.P.; Rosenberg, S.A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood, 2010, 116(19), 3875-3886.
[http://dx.doi.org/10.1182/blood-2010-01-265041] [PMID: 20631379]
[21]
Kochenderfer, J.N.; Wilson, W.H.; Janik, J.E.; Dudley, M.E.; Stetler-Stevenson, M.; Feldman, S.A.; Maric, I.; Raffeld, M.; Nathan, D.A.; Lanier, B.J.; Morgan, R.A.; Rosenberg, S.A. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 2010, 116(20), 4099-4102.
[http://dx.doi.org/10.1182/blood-2010-04-281931] [PMID: 20668228]
[22]
Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med., 2011, 365(8), 725-733.
[http://dx.doi.org/10.1056/NEJMoa1103849] [PMID: 21830940]
[23]
Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med., 2011, 3(95), 95ra73.
[http://dx.doi.org/10.1126/scitranslmed.3002842] [PMID: 21832238]
[24]
Brentjens, R.J.; Rivière, I.; Park, J.H.; Davila, M.L.; Wang, X.; Stefanski, J.; Taylor, C.; Yeh, R.; Bartido, S.; Borquez-Ojeda, O.; Olszewska, M.; Bernal, Y.; Pegram, H.; Przybylowski, M.; Hollyman, D.; Usachenko, Y.; Pirraglia, D.; Hosey, J.; Santos, E.; Halton, E.; Maslak, P.; Scheinberg, D.; Jurcic, J.; Heaney, M.; Heller, G.; Frattini, M.; Sadelain, M. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118(18), 4817-4828.
[http://dx.doi.org/10.1182/blood-2011-04-348540] [PMID: 21849486]
[25]
Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; Milone, M.C.; Levine, B.L.; June, C.H. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med., 2013, 368(16), 1509-1518.
[http://dx.doi.org/10.1056/NEJMoa1215134] [PMID: 23527958]
[26]
Zhang, T.; Cao, L.; Xie, J.; Shi, N.; Zhang, Z.; Luo, Z.; Yue, D.; Zhang, Z.; Wang, L.; Han, W.; Xu, Z.; Chen, H.; Zhang, Y. Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget, 2015, 6(32), 33961-33971.
[http://dx.doi.org/10.18632/oncotarget.5582] [PMID: 26376680]
[27]
Ramos, C.A.; Savoldo, B.; Dotti, G. CD19-CAR trials. Cancer J., 2014, 20(2), 112-118.
[http://dx.doi.org/10.1097/PPO.0000000000000031] [PMID: 24667955]
[28]
Brentjens, R.; Yeh, R.; Bernal, Y.; Riviere, I.; Sadelain, M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol. Ther., 2010, 18(4), 666-668.
[http://dx.doi.org/10.1038/mt.2010.31] [PMID: 20357779]
[29]
Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control. Clin. Trials, 1996, 17(1), 1-12.
[http://dx.doi.org/10.1016/0197-2456(95)00134-4] [PMID: 8721797]
[30]
Zhou, B.; Chen, X.; Shi, J.P.; Fu, L.Y.; Wang, H.L.; Wu, X.M. Meta-analysis of rates and software implementation. Chin. J. Evid. Based Med., 2014, 14(8), 1009-1016.
[31]
Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994, 50(4), 1088-1101.
[http://dx.doi.org/10.2307/2533446] [PMID: 7786990]
[32]
Kochenderfer, J.N.; Dudley, M.E.; Feldman, S.A.; Wilson, W.H.; Spaner, D.E.; Maric, I.; Stetler-Stevenson, M.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; Yang, J.C.; Kammula, U.S.; Devillier, L.; Carpenter, R.; Nathan, D.A.; Morgan, R.A.; Laurencot, C.; Rosenberg, S.A. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 2012, 119(12), 2709-2720.
[http://dx.doi.org/10.1182/blood-2011-10-384388] [PMID: 22160384]
[33]
Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; Borquez-Ojeda, O.; Qu, J.; Wasielewska, T.; He, Q.; Bernal, Y.; Rijo, I.V.; Hedvat, C.; Kobos, R.; Curran, K.; Steinherz, P.; Jurcic, J.; Rosenblat, T.; Maslak, P.; Frattini, M.; Sadelain, M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med., 2013, 5(177), 177ra38.
[http://dx.doi.org/10.1126/scitranslmed.3005930] [PMID: 23515080]
[34]
Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; Raffeld, M.; Feldman, S.; Lu, L.; Li, Y.F.; Ngo, L.T.; Goy, A.; Feldman, T.; Spaner, D.E.; Wang, M.L.; Chen, C.C.; Kranick, S.M.; Nath, A.; Nathan, D.A.; Morton, K.E.; Toomey, M.A.; Rosenberg, S.A. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol., 2015, 33(6), 540-549.
[http://dx.doi.org/10.1200/JCO.2014.56.2025] [PMID: 25154820]
[35]
Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; Steinberg, S.M.; Stroncek, D.; Tschernia, N.; Yuan, C.; Zhang, H.; Zhang, L.; Rosenberg, S.A.; Wayne, A.S.; Mackall, C.L. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, 2015, 385(9967), 517-528.
[http://dx.doi.org/10.1016/S0140-6736(14)61403-3] [PMID: 25319501]
[36]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[37]
Cruz, C.R.; Micklethwaite, K.P.; Savoldo, B.; Ramos, C.A.; Lam, S.; Ku, S.; Diouf, O.; Liu, E.; Barrett, A.J.; Ito, S.; Shpall, E.J.; Krance, R.A.; Kamble, R.T.; Carrum, G.; Hosing, C.M.; Gee, A.P.; Mei, Z.; Grilley, B.J.; Heslop, H.E.; Rooney, C.M.; Brenner, M.K.; Bollard, C.M.; Dotti, G. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood, 2013, 122(17), 2965-2973.
[http://dx.doi.org/10.1182/blood-2013-06-506741] [PMID: 24030379]
[38]
Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med., 2011, 3(95), 95ra73.
[http://dx.doi.org/10.1126/scitranslmed.3002842] [PMID: 21832238]
[39]
Brudno, J.N.; Somerville, R.P.; Shi, V.; Rose, J.J.; Halverson, D.C.; Fowler, D.H.; Gea-Banacloche, J.C.; Pavletic, S.Z.; Hickstein, D.D.; Lu, T.L.; Feldman, S.A.; Iwamoto, A.T.; Kurlander, R.; Maric, I.; Goy, A.; Hansen, B.G.; Wilder, J.S.; Blacklock-Schuver, B.; Hakim, F.T.; Rosenberg, S.A.; Gress, R.E.; Kochenderfer, J.N.; Allogeneic, T. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-Cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol., 2016, 34(10), 1112-1121.
[http://dx.doi.org/10.1200/JCO.2015.64.5929] [PMID: 26811520]
[40]
Chang, L.J.; Dong, L.J.; Liu, Y.C. Safety and efficacy evaluation of 4SCAR19 chimeric anti-gen receptor-modified T cells targeting B cell acute lym-phoblastic leukemia - three-year follow-up of a multicen-ter phase I/II study. ASH 58th Annual Meeting, 2016.
[41]
Hollyman, D.; Stefanski, J.; Przybylowski, M.; Bartido, S.; Borquez-Ojeda, O.; Taylor, C.; Yeh, R.; Capacio, V.; Olszewska, M.; Hosey, J.; Sadelain, M.; Brentjens, R.J.; Rivière, I. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother., 2009, 32(2), 169-180.
[http://dx.doi.org/10.1097/CJI.0b013e318194a6e8] [PMID: 19238016]
[42]
Tumaini, B.; Lee, D.W.; Lin, T.; Castiello, L.; Stroncek, D.F.; Mackall, C.; Wayne, A.; Sabatino, M. Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy, 2013, 15(11), 1406-1415.
[http://dx.doi.org/10.1016/j.jcyt.2013.06.003] [PMID: 23992830]
[43]
Heslop, H.E.; Slobod, K.S.; Pule, M.A.; Hale, G.A.; Rousseau, A.; Smith, C.A.; Bollard, C.M.; Liu, H.; Wu, M.F.; Rochester, R.J.; Amrolia, P.J.; Hurwitz, J.L.; Brenner, M.K.; Rooney, C.M. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood, 2010, 115(5), 925-935.
[http://dx.doi.org/10.1182/blood-2009-08-239186] [PMID: 19880495]
[44]
Biasco, L.; Ambrosi, A.; Pellin, D.; Bartholomae, C.; Brigida, I.; Roncarolo, M.G.; Di Serio, C.; von Kalle, C.; Schmidt, M.; Aiuti, A. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol. Med., 2011, 3(2), 89-101.
[http://dx.doi.org/10.1002/emmm.201000108] [PMID: 21243617]
[45]
Scholler, J.; Brady, T.L.; Binder-Scholl, G.; Hwang, W.T.; Plesa, G.; Hege, K.M.; Vogel, A.N.; Kalos, M.; Riley, J.L.; Deeks, S.G.; Mitsuyasu, R.T.; Bernstein, W.B.; Aronson, N.E.; Levine, B.L.; Bushman, F.D.; June, C.H. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med., 2012, 4(132), 132ra53.
[http://dx.doi.org/10.1126/scitranslmed.3003761] [PMID: 22553251]
[46]
Zhang, F.; Thornhill, S.I.; Howe, S.J.; Ulaganathan, M.; Schambach, A.; Sinclair, J.; Kinnon, C.; Gaspar, H.B.; Antoniou, M.; Thrasher, A.J. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood, 2007, 110(5), 1448-1457.
[http://dx.doi.org/10.1182/blood-2006-12-060814] [PMID: 17456723]
[47]
Roddie, C.; Peggs, K.S. Donor lymphocyte infusion following allogeneic hematopoietic stem cell transplantation. Expert Opin. Biol. Ther., 2011, 11(4), 473-487.
[http://dx.doi.org/10.1517/14712598.2011.554811] [PMID: 21269237]
[48]
Straathof, K.C.; Pulè, M.A.; Yotnda, P.; Dotti, G.; Vanin, E.F.; Brenner, M.K.; Heslop, H.E.; Spencer, D.M.; Rooney, C.M. An inducible caspase 9 safety switch for T-cell therapy. Blood, 2005, 105(11), 4247-4254.
[http://dx.doi.org/10.1182/blood-2004-11-4564] [PMID: 15728125]
[49]
Wang, W.; Wang, Y. Equipping CAR-modified T cells with a brake to prevent chronic adverse effects. Curr. Gene Ther., 2012, 12(6), 493-495.
[http://dx.doi.org/10.2174/156652312803519751] [PMID: 22974421]
[50]
Saha, B.; Jyothi Prasanna, S.; Chandrasekar, B.; Nandi, D. Gene modulation and immunoregulatory roles of interferon gamma. Cytokine, 2010, 50(1), 1-14.
[http://dx.doi.org/10.1016/j.cyto.2009.11.021] [PMID: 20036577]
[51]
Olejniczak, K.; Kasprzak, A. Biological properties of interleukin 2 and its role in pathogenesis of selected diseases--a review. Med. Sci. Monit., 2008, 14(10), RA179-RA189.
[PMID: 18830208]
[52]
Porter, D.L.; Hwang, W.T.; Frey, N.V.; Lacey, S.F.; Shaw, P.A.; Loren, A.W.; Bagg, A.; Marcucci, K.T.; Shen, A.; Gonzalez, V.; Ambrose, D.; Grupp, S.A.; Chew, A.; Zheng, Z.; Milone, M.C.; Levine, B.L.; Melenhorst, J.J.; June, C.H. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med., 2015, 7(303), 303ra139.
[http://dx.doi.org/10.1126/scitranslmed.aac5415] [PMID: 26333935]
[53]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; Reichle, A.; Horst, H.A.; Brüggemann, M.; Wessiepe, D.; Holland, C.; Alekar, S.; Mergen, N.; Einsele, H.; Hoelzer, D.; Bargou, R.C. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol., 2014, 32(36), 4134-4140.
[http://dx.doi.org/10.1200/JCO.2014.56.3247] [PMID: 25385737]
[54]
Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; Qu, J.; Wasielewska, T.; He, Q.; Fink, M.; Shinglot, H.; Youssif, M.; Satter, M.; Wang, Y.; Hosey, J.; Quintanilla, H.; Halton, E.; Bernal, Y.; Bouhassira, D.C.; Arcila, M.E.; Gonen, M.; Roboz, G.J.; Maslak, P.; Douer, D.; Frattini, M.G.; Giralt, S.; Sadelain, M.; Brentjens, R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 2014, 6(224), 224ra25.
[http://dx.doi.org/10.1126/scitranslmed.3008226] [PMID: 24553386]
[55]
Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric antigen receptors modified T-Cells for cancer therapy. J. Natl. Cancer Inst., 2016, 108(7), djv439.
[http://dx.doi.org/10.1093/jnci/djv439] [PMID: 26819347]
[56]
Jensen, M.C.; Popplewell, L.; Cooper, L.J.; DiGiusto, D.; Kalos, M.; Ostberg, J.R.; Forman, S.J. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant., 2010, 16(9), 1245-1256.
[http://dx.doi.org/10.1016/j.bbmt.2010.03.014] [PMID: 20304086]
[57]
Reichert, J.M.; Rosensweig, C.J.; Faden, L.B.; Dewitz, M.C. Monoclonal antibody successes in the clinic. Nat. Biotechnol., 2005, 23(9), 1073-1078.
[http://dx.doi.org/10.1038/nbt0905-1073] [PMID: 16151394]
[58]
Wu, Y.; Jiang, S.; Ying, T. From therapeutic antibodies to chimeric antigen receptors (CARs): making better CARs based on antigen-binding domain. Expert Opin. Biol. Ther., 2016, 16(12), 1469-1478. Epub ahead of print
[http://dx.doi.org/10.1080/14712598.2016.1235148] [PMID: 27618260]
[59]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; Reichle, A.; Horst, H.A.; Brüggemann, M.; Wessiepe, D.; Holland, C.; Alekar, S.; Mergen, N.; Einsele, H.; Hoelzer, D.; Bargou, R.C. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol., 2014, 32(36), 4134-4140.
[http://dx.doi.org/10.1200/JCO.2014.56.3247] [PMID: 25385737]
[60]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Degenhard, E.; Goebeler, M.E.; Klinger, M.; Neumann, S.A.; Horst, H.A.; Raff, T.; Viardot, A.; Stelljes, M.; Schaich, M.; Köhne-Volland, R.; Brüggemann, M.; Ottmann, O.G.; Burmeister, T.; Baeuerle, P.A.; Nagorsen, D.; Schmidt, M.; Einsele, H.; Riethmüller, G.; Kneba, M.; Hoelzer, D.; Kufer, P.; Bargou, R.C. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood, 2012, 120(26), 5185-5187.
[http://dx.doi.org/10.1182/blood-2012-07-441030] [PMID: 23024237]
[61]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[62]
Gill, S.; Maus, M.V.; Porter, D.L. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev., 2016, 30(3), 157-167.
[http://dx.doi.org/10.1016/j.blre.2015.10.003] [PMID: 26574053]
[63]
Borowitz, M.J.; Pullen, D.J.; Winick, N.; Martin, P.L.; Bowman, W.P.; Camitta, B. Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children’s oncology group. Cytometry B Clin. Cytom., 2005, 68(1), 18-24.
[http://dx.doi.org/10.1002/cyto.b.20071] [PMID: 16184615]
[64]
Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; Lanauze, C.; Ruella, M.; Gazzara, M.R.; Martinez, N.M.; Harrington, C.T.; Chung, E.Y.; Perazzelli, J.; Hofmann, T.J.; Maude, S.L.; Raman, P.; Barrera, A.; Gill, S.; Lacey, S.F.; Melenhorst, J.J.; Allman, D.; Jacoby, E.; Fry, T.; Mackall, C.; Barash, Y.; Lynch, K.W.; Maris, J.M.; Grupp, S.A.; Thomas-Tikhonenko, A. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov., 2015, 5(12), 1282-1295.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1020] [PMID: 26516065]
[65]
Duffner, U.; Abdel-Mageed, A.; Younge, J.; Tornga, C.; Scott, K.; Staddon, J.; Elliott, K.; Stumph, J.; Kidd, P. The possible perils of targeted therapy. Leukemia, 2016, 30(7), 1619-1621.
[http://dx.doi.org/10.1038/leu.2016.18] [PMID: 26859079]
[66]
Gardner, R.; Wu, D.; Cherian, S.; Fang, M.; Hanafi, L.A.; Finney, O.; Smithers, H.; Jensen, M.C.; Riddell, S.R.; Maloney, D.G.; Turtle, C.J. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 2016, 127(20), 2406-2410.
[http://dx.doi.org/10.1182/blood-2015-08-665547] [PMID: 26907630]
[67]
Braig, F.; Brandt, A.; Goebeler, M.; Tony, H.P.; Kurze, A.K.; Nollau, P.; Bumm, T.; Böttcher, S.; Bargou, R.C.; Binder, M. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood, 2017, 129(1), 100-104.
[http://dx.doi.org/10.1182/blood-2016-05-718395] [PMID: 27784674]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy