Abstract
Major Histocompatibility Complex class II (MHCII) molecules direct the development, activation and homeostasis of CD4+ T cells. Given these key functions it is not surprising that the absence of MHCII expression results in a severe primary immunodeficiency disease called MHCII deficiency or the Bare Lymphocyte Syndrome (BLS). The genetic defects responsible for BLS lie in genes encoding transcription factors required for MHCII expression. Four different MHCII regulatory genes encoding RFXANK, RFX5, RFXAP and CIITA have been identified. The first three are subunits of RFX, a ubiquitously expressed factor that binds cooperatively with other proteins to MHCII and related promoters to form a highly stable macromolecular nucleoprotein complex referred to as the MHCII enhanceosome. This enhanceosome serves as a landing pad for the MHCII transactivator CIITA. CIITA is a non-DNA binding coactivator that serves as the master control factor for MHCII expression. The highly regulated expression pattern of CIITA ultimately dictates the cell type specificity, induction and level of MHCII expression. The enhanceosome and CIITA collaborate in activating transcription by promoting histone hyperacetylation and by recruiting components of the general transcription machinery. In this review we summarize what is known about the molecular basis of BLS and what this has taught us about the mechanisms regulating transcription of MHCII and related genes. Particular attention is devoted to the structure, function and mode of action of the MHCII enhanceosome and CIITA. In addition, we focus on the highly regulated and cell type specific expression of CIITA.
Keywords: MHCII Enhanceosome, hyperacetylation, histone, immunodeficiency disease, Bare Lymphocyte
Current Genomics
Title: CIITA and the MHCII Enhanceosome in the Regulation of MHCII Expression
Volume: 4 Issue: 4
Author(s): S. Landmann, J.- M. Waldburger, K. Masternak, A. Muhlethaler-Mottet and W. Reith
Affiliation:
Keywords: MHCII Enhanceosome, hyperacetylation, histone, immunodeficiency disease, Bare Lymphocyte
Abstract: Major Histocompatibility Complex class II (MHCII) molecules direct the development, activation and homeostasis of CD4+ T cells. Given these key functions it is not surprising that the absence of MHCII expression results in a severe primary immunodeficiency disease called MHCII deficiency or the Bare Lymphocyte Syndrome (BLS). The genetic defects responsible for BLS lie in genes encoding transcription factors required for MHCII expression. Four different MHCII regulatory genes encoding RFXANK, RFX5, RFXAP and CIITA have been identified. The first three are subunits of RFX, a ubiquitously expressed factor that binds cooperatively with other proteins to MHCII and related promoters to form a highly stable macromolecular nucleoprotein complex referred to as the MHCII enhanceosome. This enhanceosome serves as a landing pad for the MHCII transactivator CIITA. CIITA is a non-DNA binding coactivator that serves as the master control factor for MHCII expression. The highly regulated expression pattern of CIITA ultimately dictates the cell type specificity, induction and level of MHCII expression. The enhanceosome and CIITA collaborate in activating transcription by promoting histone hyperacetylation and by recruiting components of the general transcription machinery. In this review we summarize what is known about the molecular basis of BLS and what this has taught us about the mechanisms regulating transcription of MHCII and related genes. Particular attention is devoted to the structure, function and mode of action of the MHCII enhanceosome and CIITA. In addition, we focus on the highly regulated and cell type specific expression of CIITA.
Export Options
About this article
Cite this article as:
Landmann S., Waldburger M. J.-, Masternak K., Muhlethaler-Mottet A. and Reith W., CIITA and the MHCII Enhanceosome in the Regulation of MHCII Expression, Current Genomics 2003; 4 (4) . https://dx.doi.org/10.2174/1389202033490330
DOI https://dx.doi.org/10.2174/1389202033490330 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Advanced AI Techniques in Big Genomic Data Analysis
The thematic issue on "Advanced AI Techniques in Big Genomic Data Analysis" aims to explore the cutting-edge methodologies and applications of artificial intelligence (AI) in the realm of genomic research, where vast amounts of data pose both challenges and opportunities. This issue will cover a broad spectrum of AI-driven strategies, ...read more
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Genomic Insights into Oncology: Harnessing Machine Learning for Breakthroughs in Cancer Genomics.
This special issue aims to explore the cutting-edge intersection of genomics and oncology, with a strong emphasis on original data and experimental validation. While maintaining the focus on how machine learning and advanced data analysis techniques are revolutionizing our understanding and treatment of cancer, this issue will prioritize contributions that ...read more
Integrating Artificial Intelligence and Omics Approaches in Complex Diseases
Recent advancements in AI and omics methodologies have revolutionized the landscape of biomedical research, enabling us to extract valuable information from vast amounts of complex data. By combining AI algorithms with omics technologies such as genomics, proteomics, metabolomics, and transcriptomics, researchers can obtain a more comprehensive and multi-dimensional analysis of ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
VEGF in Tumor Progression and Targeted Therapy
Current Cancer Drug Targets A Comprehensive Review of Alzheimer’s Association with Related Proteins: Pathological Role and Therapeutic Significance
Current Neuropharmacology Brain Aging and Disorders of the Central Nervous System: Kynurenines and Drug Metabolism
Current Drug Metabolism 123I-FP-CIT Brain SPECT Findings in Succinic Semialdehyde Dehydrogenase (SSADH) Deficiency
Current Radiopharmaceuticals Patent Selections
Recent Patents on CNS Drug Discovery (Discontinued) Chemical and Genetic Engineering Strategies to Improve the Potency of Pharmaceutical Proteins and Enzymes
Current Medicinal Chemistry Picornavirus IRES: Structure Function Relationship
Current Pharmaceutical Design Heat Shock Proteins And Neuroprotection
Recent Patents on DNA & Gene Sequences Tofacitinib-induced Ramsay- Hunt Syndrome in a Patient with Rheumatoid Arthritis
Current Drug Safety The Endocannabinoid System and Multiple Sclerosis
Current Pharmaceutical Design Occurrence of DAT1 (VNTR) Polymorphism in Individuals with HIV Infection
Current Pharmacogenomics and Personalized Medicine Recent Advances in Nanoneurology for Drug Delivery to the Brain
Current Nanoscience Roles of Chemokine CXCL12 and its Receptors in Ischemic Stroke
Current Drug Targets Anti-NMDA Receptor Encephalitis in a Patient with a History of Autism Spectrum Disorder
Adolescent Psychiatry Inhibitors of Cholinesterases in Pharmacology: the Current Trends
Mini-Reviews in Medicinal Chemistry Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry
Current Pharmaceutical Design Therapeutic Indications and Action Mechanisms of Bilirubin: Suggestions from Natural Calculus Bovis
Current Signal Transduction Therapy Antimicrobial Effect of Garlic (Allium sativum)
Recent Patents on Anti-Infective Drug Discovery Antiviral Activity of Jodantipyrin – An Anti-Inflammatory Oral Therapeutic with Interferon-Inducing Properties
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry The Role of Viruses in Neurodegenerative and Neurobehavioral Diseases
CNS & Neurological Disorders - Drug Targets