Abstract
Background: Malignant Pleural Mesothelioma (MPM) is an asbestos-associated tumor with poor prognosis and few therapeutic options. JQ1, a selective antagonist of BRD4, modulates transcription of oncogenes, including MPM chemoresistance-associated c-Myc and Fra-1.
Objective: We investigated if JQ1 could enhance the efficacy of cisplatin against MPM.
Methods: The antiproliferative activity of cisplatin in combination with JQ1 was assessed on MPM cell lines representative of the cellular phenotypes of this tumor (epithelioid, sarcomatoid and biphasic), and on one cisplatin resistant sub-line. The combination schedule was optimized adopting a 3Dspheroid model. Drug combination effects were correlated with cell cycle distribution and senescence- associated β-galactosidase positive cells. The expression of c-Myc and Fra-1 proteins and some apoptosis markers was assessed by immunoblotting and RT-qPCR. DNA damage and repair were evaluated by means of alkaline comet assay.
Results: JQ1 in combination with cisplatin elicited additive or synergistic (superadditive) antiproliferative effects on MPM cells, depending on the cell line. The combination showed tumor regression on the 3D-spheroid model. It induced increased apoptosis, along with decreased c-Myc and, sometimes, Fra-1 expression. JQ1 decreased cisplatin-induced DNA breaks in all MPM cells and increased senescence even in less proficient cells, thus enhancing the DNA Damage Response (DDR).
Conclusion: The superadditive effect is due to c-Myc repression. The consequent DDR enhancement triggers to apoptosis induction and/or permanent growth arrest (senescence), depending on the MPM cellular context, leading to tumor regression. Thus, the pharmacological modulation of BET activity could represent a promising tool for future MPM therapy.
Keywords: Malignant mesothelioma, BET bromodomain inhibition, JQ1, epigenetics, platinum-based chemotherapy, c-Myc, Fra-1.
Current Cancer Drug Targets
Title:JQ1, a BET Inhibitor, Synergizes with Cisplatin and Induces Apoptosis in Highly Chemoresistant Malignant Pleural Mesothelioma Cells
Volume: 18 Issue: 8
Author(s): Ilaria Zanellato*, Donato Colangelo and Domenico Osella
Affiliation:
- Dipartimento di Scienze ed Innovazione Tecnologica (DiSIT), Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria,Italy
Keywords: Malignant mesothelioma, BET bromodomain inhibition, JQ1, epigenetics, platinum-based chemotherapy, c-Myc, Fra-1.
Abstract: Background: Malignant Pleural Mesothelioma (MPM) is an asbestos-associated tumor with poor prognosis and few therapeutic options. JQ1, a selective antagonist of BRD4, modulates transcription of oncogenes, including MPM chemoresistance-associated c-Myc and Fra-1.
Objective: We investigated if JQ1 could enhance the efficacy of cisplatin against MPM.
Methods: The antiproliferative activity of cisplatin in combination with JQ1 was assessed on MPM cell lines representative of the cellular phenotypes of this tumor (epithelioid, sarcomatoid and biphasic), and on one cisplatin resistant sub-line. The combination schedule was optimized adopting a 3Dspheroid model. Drug combination effects were correlated with cell cycle distribution and senescence- associated β-galactosidase positive cells. The expression of c-Myc and Fra-1 proteins and some apoptosis markers was assessed by immunoblotting and RT-qPCR. DNA damage and repair were evaluated by means of alkaline comet assay.
Results: JQ1 in combination with cisplatin elicited additive or synergistic (superadditive) antiproliferative effects on MPM cells, depending on the cell line. The combination showed tumor regression on the 3D-spheroid model. It induced increased apoptosis, along with decreased c-Myc and, sometimes, Fra-1 expression. JQ1 decreased cisplatin-induced DNA breaks in all MPM cells and increased senescence even in less proficient cells, thus enhancing the DNA Damage Response (DDR).
Conclusion: The superadditive effect is due to c-Myc repression. The consequent DDR enhancement triggers to apoptosis induction and/or permanent growth arrest (senescence), depending on the MPM cellular context, leading to tumor regression. Thus, the pharmacological modulation of BET activity could represent a promising tool for future MPM therapy.
Export Options
About this article
Cite this article as:
Zanellato Ilaria *, Colangelo Donato and Osella Domenico, JQ1, a BET Inhibitor, Synergizes with Cisplatin and Induces Apoptosis in Highly Chemoresistant Malignant Pleural Mesothelioma Cells, Current Cancer Drug Targets 2018; 18 (8) . https://dx.doi.org/10.2174/1568009617666170623101722
DOI https://dx.doi.org/10.2174/1568009617666170623101722 |
Print ISSN 1568-0096 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-5576 |
Call for Papers in Thematic Issues
Innovative Cancer Drug Targets: A New Horizon in Oncology
Cancer remains one of the most challenging diseases, with its complexity and adaptability necessitating continuous research efforts into more effective and targeted therapeutic approaches. Recent years have witnessed significant progress in understanding the molecular and genetic basis of cancer, leading to the identification of novel drug targets. These include, but ...read more
Role of Immune and Genotoxic Response Biomarkers in Tumor Microenvironment in Cancer Diagnosis and Treatment
Biological biomarkers have been used in medical research as an indicator of a normal or abnormal process inside the body, or of a disease. Nowadays, various researchers are in process of exploring and investigating the biological markers for the early assessment of cancer. DNA Damage response (DDR) pathways and immune ...read more
The Impact of Cancer Neuroscience on Novel Brain Cancer Treatment
Brain cancer remains one of the most challenging malignancies due to its complexity and resistance to conventional therapies. Recent advancements in cancer neuroscience have transformed our understanding of the brain's tumor microenvironment, offering promising insights into novel treatments. By studying the intricate interactions between cancer cells and the nervous system, ...read more
Unraveling the Tumor Microenvironment and Potential Therapeutic Targets: Insights from Single-Cell Sequencing and Spatial Transcriptomics
This special issue will focus on unraveling the complexities of the tumor microenvironment (TME) and identifying key biomarkers for potential therapeutic targets using advanced multi-omics techniques, such as single-cell sequencing and spatial transcriptomics. We seek original research and comprehensive reviews that investigate the heterogeneity and dynamics of the TME, emphasizing ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Estrogen Receptor Beta (ERβ) Expression in Different Subtypes of Malignant
Pleural Mesothelioma
Current Respiratory Medicine Reviews Identification of AHSA1 as a Potential Therapeutic Target for Breast Cancer: Bioinformatics Analysis and <i>in vitro</i> Studies
Current Cancer Drug Targets Mitocans: Mitochondrial Targeted Anti-Cancer Drugs as Improved Therapies and Related Patent Documents
Recent Patents on Anti-Cancer Drug Discovery Mucosal T Cell Proliferation and Apoptosis in Inflammatory Bowel Disease
Current Drug Targets Platinum-Based Agents for Individualized Cancer Treatment
Current Molecular Medicine The Role of Pemetrexed in Advanced Non Small-Cell Lung Cancer: Special Focus on Pharmacology and Mechanism of Action
Current Drug Targets Are Selenoproteins Important for the Cancer Protective Effects of Selenium?
Current Nutrition & Food Science Malignant Pleural Mesothelioma in 2011. Is there a Gold Standard Therapy?
Current Respiratory Medicine Reviews New Trends in Anti-Cancer Therapy: Combining Conventional Chemotherapeutics with Novel Immunomodulators
Current Medicinal Chemistry Therapeutic Strategies to Target TGF-β in the Treatment of Bone Metastases
Current Pharmaceutical Biotechnology Pharmacological Aspects of the Enzastaurin-Pemetrexed Combination in Non-Small Cell Lung Cancer (NSCLC)
Current Drug Targets Anti-VEGF Anticancer Drugs: Mind the Hypertension
Recent Advances in Cardiovascular Drug Discovery (Discontinued) Cancer Bioinformatics for Updating Anticancer Drug Developments and Personalized Therapeutics
Reviews on Recent Clinical Trials In Silico Transcriptomic Analysis of the Chloride Intracellular Channels (CLIC) Interactome Identifies a Molecular Panel of Seven Prognostic Markers in Patients with Pancreatic Ductal Adenocarcinoma
Current Genomics The Innate Immune System and Fever under Redox Control: A Narrative Review
Current Medicinal Chemistry Immunohistochemical and Serological 90K / Mac-2BP Detection in Hepatocellular Carcinoma Patients: Different Behaviour of Two Monoclonal Antibodies
Medicinal Chemistry Organoselenium Compounds in Cancer Chemoprevention
Mini-Reviews in Medicinal Chemistry Nuclear Medicine Application of Pentixafor/Pentixather Targeting CXCR4 for Imaging and Therapy in Related Disease
Mini-Reviews in Medicinal Chemistry Idronoxil as an Anticancer Agent: Activity and Mechanisms
Current Cancer Drug Targets Acrylamide Induced Toxicity and the Propensity of Phytochemicals in Amelioration: A Review
Central Nervous System Agents in Medicinal Chemistry