Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

伊达鲁比星-ZHER 2结合物对HER 2阳性头颈鳞状细胞癌细胞系HN5的特异性靶向作用

卷 19, 期 1, 2019

页: [65 - 73] 页: 9

弟呕挨: 10.2174/1568009617666170427105417

价格: $65

conference banner
摘要

背景:人表皮生长因子受体2(HER 2)在头颈部鳞状细胞癌(HNSCC)细胞株HN5中的表达,为人头颈部鳞状细胞癌(HNSCC)细胞株HN5的成功应用提供了抗癌化疗药物的特异性靶向性研究。 目的:本研究选择her 2特异性粘附体分子zher 2:342(一种与her 2受体有很强亲和力的工程蛋白)与伊大比星(一种抗新生体)结合。(IC抗生素) 方法:在ITS 5‘端添加半胱氨酸编码的ZHER 2:342亲和体基因重新合成,插入pET 302质粒,转入大肠杆菌BL 21宿主系统。后印利用Ni-NTA树脂纯化了重组ZHER 2亲体分子,并用SDS-PAGE分析了其纯度。亲和纯化的粘附体分子通过异双功能交联剂磺基琥珀酰亚胺4-(N-马来酰亚胺基)环己烷-1-羧酸盐(Sulfo-SMCC)。依达鲁比星-ZHER 2粘附体结合物对t的特异性毒性用MTT法检测WoHER 2阳性细胞、HN5和MCF-7在不同浓度的共轭物作用48h后的变化。 结果:非偶联型依达拉霉素对两种细胞系均有较强的毒性作用,而HN5细胞对MCF-7细胞的敏感性明显高于MCF-7细胞。二聚体ZHER 2在最佳浓度下,对HN5和MCF-7细胞的生长均有轻微的抑制作用。伊达比星-ZHER 2结合物在最佳浓度下降低Hn5细胞活力的研究与MCF-7细胞株比较有显着性差异。 结论:依达比星-ZHER 2亲和体结合物的最佳浓度可用于HN5细胞的特异性靶向和杀伤。

关键词: 头颈部肿瘤,HN5细胞,HER 2受体,特异性靶向,依达卢比-ZHER 2结合物。

图形摘要
[1]
Li, H.; Wawrose, J.S.; Gooding, W.E.; Garraway, L.A.; Lui, V.W.Y.; Peyser, N.D.; Grandis, J.R. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Mol. Cancer Res., 2014, 12(4), 571-582.
[2]
Sanderson, R.J.; Ironside, J.A.; Wei, W.I. Squamous cell carcinomas of the head and neck. BMJ, 2002, 325(7368), 822-827.
[3]
Mydlarz, W.K.; Hennessey, P.T.; Califano, J.A. Advances and perspectives in the molecular diagnosis of head and neck cancer. Expert Opin. Med. Diagn., 2010, 4(1), 53-65.
[4]
Price, K.A.; Cohen, E.E. Current treatment options for metastatic head and neck cancer. Curr. Treat. Options Oncol., 2012, 13(1), 35-46.
[5]
Price, K.A.; Cohen, E.E. Current treatment options for metastatic head and neck cancer. Curr. Treat. Options Oncol., 2012, 13(1), 35-46.
[6]
Egloff, A.M.; Grandis, J.R. Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer, Seminars in oncology; Elsevier, 2008, pp. 286-297.
[7]
Cavalot, A.; Martone, T.; Roggero, N.; Brondino, G.; Pagano, M.; Cortesina, G. Prognostic impact of HER2/neu expression on squamous head and neck carcinomas. Head Neck, 2007, 29(7), 655-664.
[8]
de Melo Gagliato, D.; Jardim, D.L.; Marchesi, M.S.; Hortobagyi, G.N. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget, 2016, 7(39), 64431-64446.
[9]
Hansson, M.; Ringdahl, J.; Robert, A.; Power, U.; Goetsch, L.; Nguyen, T.N.; Uhlén, M.; Ståhl, S.; Nygren, P-Å. An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. Immunotechnology, 1999, 4(3-4), 237-252.
[10]
(a) De Genst, E.; Muyldermans, S. Development of a high affinity Affibody-derived protein against amyloid β-peptide for future Alzheimer’s disease therapy. Biotechnol. J., 2015, 10(11), 1668-1669.
(b) Orlova, A.; Magnusson, M.; Eriksson, T.L.; Nilsson, M.; Larsson, B.; Höidén-Guthenberg, I.; Widström, C.; Carlsson, J.; Tolmachev, V.; Ståhl, S.; Nilsson, F.Y. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res., 2006, 66(8), 4339-4348.
[11]
Wikman, M.; Steffen, A-C.; Gunneriusson, E.; Tolmachev, V.; Adams, G.P.; Carlsson, J.; Ståhl, S. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng. Des. Sel., 2004, 17(5), 455-462.
[12]
A) Sörensen, J.; Sandberg, D.; Sandström, M.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Åström, G.; Lubberink, M.; Garske-Román, U.; Carlsson, J.; Lindman, H. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J. Nucl. Med., 2014, 55(5), 730-735.
B) Sörensen, J.; Velikyan, I.; Sandberg, D.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Orlova, A.; Sandström, M.; Lubberink, M.; Olofsson, H.; Carlsson, J.; Lindman, H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga] ABY-025 Affibody PET/CT. Theranostics, 2016, 6(2), 262-271.
[13]
(a) Easty, D.M.; Easty, G.C.; Carter, R.L.; Monaghan, P.; Butler, L.J. Ten human carcinoma cell lines derived from squamous carcinomas of the head and neck. Br. J. Cancer, 1981, 43(6), 772-785.
(b) Torres, M.A.; Raju, U.; Molkentine, D.; Riesterer, O.; Milas, L.; Ang, K.K. AC480, formerly BMS-599626, a pan Her inhibitor, enhances radiosensitivity and radioresponse of head and neck squamous cell carcinoma cells in vitro and in vivo. Invest. New Drugs, 2011, 29(4), 554-561.
[14]
Eigenbrot, C.; Ultsch, M.; Dubnovitsky, A.; Abrahmsén, L.; Härd, T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15039-15044.
[15]
Inoue, H.; Nojima, H.; Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene, 1990, 96(1), 23-28.
[16]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[17]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[18]
a) Berens, M.E.; Saito, T.; Welander, C.E.; Modest, E.J. Antitumor activity of new anthracycline analogues in combination with interferon alfa. Cancer Chemother. Pharmacol.,1987, 19(4), 301-306. B) Gewirtz, D.A.; Randolph, J.K.; Chawla, J.; Orr, M.S.; Fornari, F.A. Induction of DNA damage, inhibition of DNA synthesis and suppression of c-myc expression by the anthracycline analog, idarubicin (4-demethoxy-daunorubicin) in the MCF-7 breast tumor cell line. Cancer Chemother. Pharmacol.,1998, 41(5), 361-369.c) Cilenti, G.; Tozzi, L.; Suriano, A.; Tartarone, A.; Lelli, G. Phase I-II study of oral idarubicin, tegafur and levo-folinate in patients with pretreated advanced breast cancer. J. Chemother., 2013.
[19]
Gallois, L.; Fiallo, M.; Garnier-Suillerot, A. Comparison of the interaction of doxorubicin, daunorubicin, idarubicin and idarubicinol with large unilamellar vesicles. Circular dichroism study. Biochim. Biophys. Acta, 1998, 1370(1), 31-40.
[20]
Ristic, B.; Bosnjak, M.; Arsikin, K.; Mircic, A.; Suzin-Zivkovic, V.; Bogdanovic, A.; Perovic, V.; Martinovic, T.; Kravic-Stevovic, T.; Bumbasirevic, V.; Trajkovic, V.; Harhaji-Trajkovic, L. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells. Exp. Cell Res., 2014, 326(1), 90-102.
[21]
a) Sandström, M.; Lindskog, K.; Velikyan, I.; Wennborg, A.; Feldwisch, J.; Sandberg, D.; Tolmachev, V.; Orlova, A.; Sörensen, J.; Carlsson, J.; Lindman, H.; Lubberink, M. Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68Ga-ABY-025 in breast cancer patients. J. Nucl. Med.,2016, 57(6), 867-871. B) Trousil, S.; Hoppmann, S.; Nguyen, Q-D.; Kaliszczak, M.; Tomasi, G.; Iveson, P.; Hiscock, D.; Aboagye, E.O. Positron emission tomography imaging with 18F-labeled ZHER2:2891 affibody for detection of HER2 expression and pharmacodynamic response to HER2-modulating therapies. Clin. Cancer Res., 2014, 20(6), 1632-1643.
[22]
Ekerljung, L.; Lindborg, M.; Gedda, L.; Frejd, F.Y.; Carlsson, J.; Lennartsson, J. Dimeric HER2-specific affibody molecules inhibit proliferation of the SKBR-3 breast cancer cell line. Biochem. Biophys. Res. Commun., 2008, 377(2), 489-494.
[23]
Smaglo, B.G.; Aldeghaither, D.; Weiner, L.M. The development of immunoconjugates for targeted cancer therapy. Nat. Rev. Clin. Oncol., 2014, 11(11), 637-648.
[24]
Löfblom, J.; Feldwisch, J.; Tolmachev, V.; Carlsson, J.; Ståhl, S.; Frejd, F.Y. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett., 2010, 584(12), 2670-2680.
[25]
aLeung, K. IRDye 800-albumin-binding domain-fused-ZHER2: 342 Af-fibody. 2013. bChopra, A. 111In/68Ga-Labeled anti-epidermal growth factor receptor, native chemical ligation cyclized Affibody ZHER2: 342min. 2013.cGoldstein, R.; Sosabowski, J.; Vigor, K.; Chester, K.; Meyer, T. Developments in single photon emission computed tomography and PET-based HER2 molecular imaging for breast cancer. Expert Rev. Anticancer Ther., 2013, 13(3), 359-373.
[26]
(a) Puri, A.; Kramer-Marek, G.; Campbell-Massa, R.; Yavlovich, A.; Tele, S.C.; Lee, S-B.; Clogston, J.D.; Patri, A.K.; Blumenthal, R.; Capala, J. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J. Liposome Res., 2008, 18(4), 293-307.
(b) Alavizadeh, S.H.; Akhtari, J.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert Opin. Drug Deliv., 2016, 13(3), 325-336.
(c) Liu, H.; Seijsing, J.; Frejd, F.Y.; Tolmachev, V.; Gräslund, T. Target-specific cytotoxic effects on HER2-expressing cells by the tripartite fusion toxin ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and a half-life extension domain. Int. J. Oncol., 2015, 47(2), 601-609.
(d) Zielinski, R.; Lyakhov, I.; Jacobs, A.; Chertov, O.; Kramer-Marek, G.; Francella, N.; Stephen, A.; Fisher, R.; Blumenthal, R.; Capala, J. Affitoxin–a novel recombinant, HER2-specific, anti-cancer agent for targeted therapy of HER2-positive tumors. Journal of immunotherapy (Hagerstown, Md.: 1997), 2009. 32(8), 817,
(e) Zielinski, R.; Lyakhov, I.; Hassan, M.; Kuban, M.; Shafer-Weaver, K.; Gandjbakhche, A.; Capala, J. HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin. Cancer Res., 2011, 17(15), 5071-5081.
[27]
A) Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin., 2011, 61(4), 212-236.
B) Prince, M.E.; Ailles, L.E. Cancer stem cells in head and neck squamous cell cancer. J. Clin. Oncol., 2008, 26(17), 2871-2875.
[28]
a) Li, X.; Xu, S.; Tan, Y.; Chen, J. The effects of idarubicin versus other anthracyclines for induction therapy of patients with newly diagnosed leukaemia. Cochrane Database Syst. Rev.,2015, 6, CD010432. B) Borchmann, P.; Hübel, K.; Schnell, R.; Engert, A. Idarubicin: a brief overview on pharmacology and clinical use. Int. J. Clin. Pharmacol. Ther., 1997, 35(2), 80-83.
[29]
Kerpel-Fronius, S.; Heinisch, H. [Oral idarubicin in treatment of advanced breast carcinoma]. Zentralbl. Gynakol., 1996, 118(10), 587-589. Oral idarubicin in treatment of advanced breast carcinoma
[30]
aDavies, C.L.; Loizidou, M.; Cooper, A.J.; Taylor, I. Effect of γ-linolenic acid on cellular uptake of structurally related anthracyclines in human drug sensitive and multidrug resistant bladder and breast cancer cell lines. Eur. J. Cancer,1999, 35(10), 1534-1540. B) Gunduz, U.; Keskin, T.; Tansık, G.; Mutlu, P.; Yalcin, S.; Unsoy, G.; Yakar, A.; Khodadust, R.; Gunduz, G. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed. Pharmacother.,2014, 68(6), 729-736. C) Güç, E.; Gündüz, G.; Gündüz, U. Fatty acid based hyperbranched polymeric nanoparticles for hydrophobic drug delivery. Drug Dev. Ind. Pharm., 2010, 36(10), 1139-1148.
[31]
(a) Jimeno, A. In Molecular pathways in head and neck cancer: EGFR, PI3K, and more; American Society of Clinical Oncology, 2013.
(b) Stadler, M.E.; Patel, M.R.; Couch, M.E.; Hayes, D.N. Molecular biology of head and neck cancer: risks and pathways. Hematol. Oncol. Clin. North Am.,2008, 22(6), 1099-1124, vii. C) Sharma, H.; Sen, S.; Singh, N. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol. Ther., 2005, 4(9), 949-955.
[32]
A) Matta, A.; Ralhan, R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol., 2009, 1(1), 6.
B) Papaspyrou, G.; Werner, J.A.; Dietz, A. Pharmacotherapy for squamous-cell carcinoma of the head and neck. Expert Opin. Pharmacother., 2011, 12(3), 397-409.
C) Pollock, N.I.; Grandis, J.R. HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin. Cancer Res., 2015, 21(3), 526-533.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy