Abstract
Protein kinases are versatile molecule switches that govern functional processes in signal transduction networks and regulate fundamental biological processes of cell cycle and organism development. The continuous growth of biological information and a remarkable breath of structural, genetic, and pharmacological studies on protein kinase genes have significantly advanced our knowledge of the kinase activation, drug binding and allosteric mechanisms underlying kinase regulation and interactions in signaling cascades.. Structural and biochemical studies of the genetic and molecular determinants of protein kinases binding with inhibitors have been the cornerstone of drug discovery efforts in clinical oncology leading to proliferation of effective anticancer therapies. Recent advances in understanding allosteric regulation of protein kinases have fueled unprecedented efforts aiming in the discovery of targeted and allosteric kinase inhibitors that can combat cancer mutants and are at the forefront of the precision medicine initiative in oncology. Despite diversity of regulatory scenarios underlying kinase functions, dimerization-driven activation is a common mechanism of allosteric regulation that is shared by many protein kinase families, most notably ErbB and BRAF kinases that play a central role in growth factor signaling and human disease. In this review, we focused on structural, biochemical and computational studies of the ErbB and BRAF kinases and discuss how diversity of the structural landscape for these kinase genes and dimerization- dependent mechanisms of their regulation can be leveraged in the design and discovery of kinase inhibitors and allosteric modulators of kinase activation. The lessons from this analysis could inform discovery of specific targeted therapies and robust drug combinations for cancer treatment.
Keywords: ErbB kinases, BRAF kinases, dimerization-induced kinase activation, BRAF paradoxical activation, allosteric regulation, allosteric kinase inhibitors, computational modeling of protein kinases, multiscale simulations, kinase residue interaction networks.
Current Medicinal Chemistry
Title:Leveraging Structural Diversity and Allosteric Regulatory Mechanisms of Protein Kinases in the Discovery of Small Molecule Inhibitors
Volume: 24 Issue: 42
Author(s): Gennady M. Verkhivker*
Affiliation:
- Department of Computational Sciences, Faculty of Physics, Computational Science and Engineering, Schmid College of Science & Technology, Chapman University, Orange, CA 92866,United States
Keywords: ErbB kinases, BRAF kinases, dimerization-induced kinase activation, BRAF paradoxical activation, allosteric regulation, allosteric kinase inhibitors, computational modeling of protein kinases, multiscale simulations, kinase residue interaction networks.
Abstract: Protein kinases are versatile molecule switches that govern functional processes in signal transduction networks and regulate fundamental biological processes of cell cycle and organism development. The continuous growth of biological information and a remarkable breath of structural, genetic, and pharmacological studies on protein kinase genes have significantly advanced our knowledge of the kinase activation, drug binding and allosteric mechanisms underlying kinase regulation and interactions in signaling cascades.. Structural and biochemical studies of the genetic and molecular determinants of protein kinases binding with inhibitors have been the cornerstone of drug discovery efforts in clinical oncology leading to proliferation of effective anticancer therapies. Recent advances in understanding allosteric regulation of protein kinases have fueled unprecedented efforts aiming in the discovery of targeted and allosteric kinase inhibitors that can combat cancer mutants and are at the forefront of the precision medicine initiative in oncology. Despite diversity of regulatory scenarios underlying kinase functions, dimerization-driven activation is a common mechanism of allosteric regulation that is shared by many protein kinase families, most notably ErbB and BRAF kinases that play a central role in growth factor signaling and human disease. In this review, we focused on structural, biochemical and computational studies of the ErbB and BRAF kinases and discuss how diversity of the structural landscape for these kinase genes and dimerization- dependent mechanisms of their regulation can be leveraged in the design and discovery of kinase inhibitors and allosteric modulators of kinase activation. The lessons from this analysis could inform discovery of specific targeted therapies and robust drug combinations for cancer treatment.
Export Options
About this article
Cite this article as:
Verkhivker M. Gennady*, Leveraging Structural Diversity and Allosteric Regulatory Mechanisms of Protein Kinases in the Discovery of Small Molecule Inhibitors, Current Medicinal Chemistry 2017; 24 (42) . https://dx.doi.org/10.2174/0929867323666161006113418
DOI https://dx.doi.org/10.2174/0929867323666161006113418 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cell-free DNA: Characteristics, Detection and its Applications in Myocardial Infarction
Current Pharmaceutical Design Predicting Cancer-Related MiRNAs Using Expression Profiles in Tumor Tissue
Current Pharmaceutical Biotechnology Targeting the AKT Pathway in Glioblastoma
Current Pharmaceutical Design Construction of Network Biomarkers Using Inter-Feature Correlation Coefficients (FeCO<sub>3</sub>) and their Application in Detecting High-Order Breast Cancer Biomarkers
Current Bioinformatics Epithelial-Mesenchymal Transitions and Cancer
Current Genomics Aflibercept (VEGF-TRAP): The Next Anti-VEGF Drug
Inflammation & Allergy - Drug Targets (Discontinued) Latest Results for Anti-Angiogenic Drugs in Cancer Treatment
Current Pharmaceutical Design Non-viral Delivery Systems for the Application in p53 Cancer Gene Therapy
Current Medicinal Chemistry Wnt Signaling in Rhabdomyosarcoma – A Potential Targeted Therapy Option
Current Drug Targets Immunoregulatory and Effector Activities of Nitric Oxide and Reactive Nitrogen Species in Cancer
Current Medicinal Chemistry Genetic Variation at the Human MGMT Locus and its Biological Consequences
Current Pharmacogenomics Glycodendrimer PPI as a Potential Drug in Chronic Lymphocytic Leukaemia. The Influence of Glycodendrimer on Apoptosis in In Vitro B-CLL Cells Defined by Microarrays
Anti-Cancer Agents in Medicinal Chemistry Chemopreventive Effects of Conjugated Linolenic Acids (CLN) Occurring in Plant Seed Oils
Current Nutrition & Food Science A Review on Novel Breast Cancer Therapies: Photodynamic Therapy and Plant Derived Agent Induced Cell Death Mechanisms
Anti-Cancer Agents in Medicinal Chemistry The Use of Growth Factors in Hematopoietic Stem Cell Transplantation
Current Pharmaceutical Design p73 as a Pharmaceutical Target for Cancer Therapy
Current Pharmaceutical Design SUV39H1-Mediated <i>DNMT1</i> is Involved in the Epigenetic Regulation of Smad3 in Cervical Cancer
Anti-Cancer Agents in Medicinal Chemistry Cross Talk between COVID-19 and Breast Cancer
Current Cancer Drug Targets Retraction Note: Low Doses of CPS49 and Flavopiridol Combination as Potential Treatment for Advanced Prostate Cancer
Current Pharmaceutical Biotechnology Air Pollution, Platelet Activation and Atherosclerosis
Inflammation & Allergy - Drug Targets (Discontinued)