Abstract
Toxins have been important tools to characterize the structures and functions of K+ channels in recent years due to their unique blockage of the K+ current and other physiological functions to the K+ channels, especially the voltagegated K+ channels. Knowledge of the interacting surfaces between the toxins and the channels has been accumulated both from biological explorations and theoretical simulations. It has been found that the electrostatic potentials act as the driving force for the recognition of the toxins with the channels, and the orientation of the toxins over the channels follows the direction of the dipole moment. The binding site is composed most of the conservative residues of the negatively charged rings of Asp/Glu and residues around the edge of the central pore. The selectivity mainly comes from the type and distribution of the positive charged residues, and the whole topologies of the toxins. Based on the molecular determinants of the complex formation, and taking advantage of the structure-based methodologies of molecular design, it is hopefully to develop new generation of lead compounds specifically binding with subtypes of K+ channels.
Keywords: toxins, brownian dynamics, electrostatic potential, structure-function relationships
Current Pharmaceutical Design
Title: Simulating the Interactions of Toxins with K+ Channels
Volume: 10 Issue: 9
Author(s): Xiaoqin Huang, Hong Liu, Meng Cui, Wei Fu, Kunqian Yu, Kaixian Chen, Xiaomin Luo, Jianhua Shen and Hualiang Jiang
Affiliation:
Keywords: toxins, brownian dynamics, electrostatic potential, structure-function relationships
Abstract: Toxins have been important tools to characterize the structures and functions of K+ channels in recent years due to their unique blockage of the K+ current and other physiological functions to the K+ channels, especially the voltagegated K+ channels. Knowledge of the interacting surfaces between the toxins and the channels has been accumulated both from biological explorations and theoretical simulations. It has been found that the electrostatic potentials act as the driving force for the recognition of the toxins with the channels, and the orientation of the toxins over the channels follows the direction of the dipole moment. The binding site is composed most of the conservative residues of the negatively charged rings of Asp/Glu and residues around the edge of the central pore. The selectivity mainly comes from the type and distribution of the positive charged residues, and the whole topologies of the toxins. Based on the molecular determinants of the complex formation, and taking advantage of the structure-based methodologies of molecular design, it is hopefully to develop new generation of lead compounds specifically binding with subtypes of K+ channels.
Export Options
About this article
Cite this article as:
Huang Xiaoqin, Liu Hong, Cui Meng, Fu Wei, Yu Kunqian, Chen Kaixian, Luo Xiaomin, Shen Jianhua and Jiang Hualiang, Simulating the Interactions of Toxins with K+ Channels, Current Pharmaceutical Design 2004; 10 (9) . https://dx.doi.org/10.2174/1381612043452776
DOI https://dx.doi.org/10.2174/1381612043452776 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Exploring the Role of “Brahmi” (Bacopa monnieri and Centella asiatica) in Brain Function and Therapy
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Connection between JAK/STAT and PPARγ Signaling During the Progression of Multiple Sclerosis: Insights into the Modulation of T-Cells and Immune Responses in the Brain
Current Molecular Pharmacology Subject Index To Volume 12
Current Pharmaceutical Design The Use of Antibody Engineering to Create Novel Drugs that Target N-methyl-D-Aspartate Receptors
Current Drug Targets Ursolic Acid: Historical Aspects to Promising Pharmacological Actions for the Treatment of Central Nervous System Diseases
Current Cosmetic Science Progress in Research of K<sub>V</sub>1.1 and K<sub>V</sub>1.3 Channels as Therapeutic Targets
Current Topics in Medicinal Chemistry Perspective on mTOR-dependent Protection in Status Epilepticus
Current Neuropharmacology Resveratrol in Medicinal Chemistry: A Critical Review of its Pharmacokinetics, Drug-Delivery, and Membrane Interactions
Current Medicinal Chemistry Update on Pharmacological Treatment of Progressive Myoclonus Epilepsies
Current Pharmaceutical Design HIV-1 Induced CNS Dysfunction: Current Overview and Research Priorities
Current HIV Research The Importance of Citicoline in Combined Treatment in Dementia: What did the Citimem Study Teach us?
Reviews on Recent Clinical Trials Pharmacological Medical Treatment of Epilepsy in Patients with Dementia: A Systematic Review
Current Alzheimer Research Delirium Secondary to Lamotrigine Toxicity
Current Drug Safety An Emerging Antiarrhythmic Target: Late Sodium Current
Current Pharmaceutical Design <i>Notopterygium incisum</i> Root Extract (NRE) Alleviates Epileptiform Symptoms in PTZ-Induced Acute Seizure Mice
CNS & Neurological Disorders - Drug Targets Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review
Mini-Reviews in Medicinal Chemistry Navigating the Sea Changes in Patent Law to Successfully Build Value
Technology Transfer and Entrepreneurship (Discontinued) Neutralization of Interleukin-1β Reduces Vasospasm and Alters Cerebral Blood Vessel Density Following Experimental Subarachnoid Hemorrhage in Rats
Current Neurovascular Research Population Pharmacokinetics of Phenytoin Based on NONMEM in Patients with Intracranial Tumor During the First Week of Post-Craniotomy
Current Drug Metabolism The Effects of Vitamin B in Depression
Current Medicinal Chemistry