Abstract
Isocitrate dehydrogenase (IDH) is a metabolic enzyme that converts isocitrate to α-ketoglutarate (α-KG). Genetic gain-of-function mutations in IDH1 and IDH2 confer a neomorphic activity that allow reduction of α -KG to (R)-2- hydroxyglutarate, the accumulation of which results in the development of cancers like low grade gliomas and leukemia. After treatment with AG-221 in clinical trials, a first-in-class inhibitor of mutated IDH2, 29 patients with acute myeloid leukemia or myelodysplastic syndrome experience complete remissions and the overall response rate is 59/159 (37%). Thus, IDH mutants have become intriguing targets for cancer therapeutics. In addition to providing a brief summary of IDH mutations, this review describes known inhibitors with potential activities against IDH mutants such as AG-120, AG-221, AG-881 and AGI-6780. The evolving landscape of IDH mutant inhibitors provides us an outlook on the discovery of novel, safer, and more effective cancer treatment strategies.
Keywords: Cancer, drug discovery, IDH1, IDH2, inhibitor, mutant.
Mini-Reviews in Medicinal Chemistry
Title:The Evolving Landscape in the Development of Isocitrate Dehydrogenase Mutant Inhibitors
Volume: 16 Issue: 16
Author(s): Jiao Chen, Jie Yang and Peng Cao
Affiliation:
Keywords: Cancer, drug discovery, IDH1, IDH2, inhibitor, mutant.
Abstract: Isocitrate dehydrogenase (IDH) is a metabolic enzyme that converts isocitrate to α-ketoglutarate (α-KG). Genetic gain-of-function mutations in IDH1 and IDH2 confer a neomorphic activity that allow reduction of α -KG to (R)-2- hydroxyglutarate, the accumulation of which results in the development of cancers like low grade gliomas and leukemia. After treatment with AG-221 in clinical trials, a first-in-class inhibitor of mutated IDH2, 29 patients with acute myeloid leukemia or myelodysplastic syndrome experience complete remissions and the overall response rate is 59/159 (37%). Thus, IDH mutants have become intriguing targets for cancer therapeutics. In addition to providing a brief summary of IDH mutations, this review describes known inhibitors with potential activities against IDH mutants such as AG-120, AG-221, AG-881 and AGI-6780. The evolving landscape of IDH mutant inhibitors provides us an outlook on the discovery of novel, safer, and more effective cancer treatment strategies.
Export Options
About this article
Cite this article as:
Chen Jiao, Yang Jie and Cao Peng, The Evolving Landscape in the Development of Isocitrate Dehydrogenase Mutant Inhibitors, Mini-Reviews in Medicinal Chemistry 2016; 16 (16) . https://dx.doi.org/10.2174/1389557516666160609085520
DOI https://dx.doi.org/10.2174/1389557516666160609085520 |
Print ISSN 1389-5575 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5607 |
Call for Papers in Thematic Issues
Bioprospecting of Natural Products as Sources of New Multitarget Therapies
According to the Convention on Biological Diversity, bioprospecting is the exploration of biodiversity and indigenous knowledge to develop commercially valuable products for pharmaceutical and other applications. Bioprospecting involves searching for useful organic compounds in plants, fungi, marine organisms, and microorganisms. Natural products traditionally constituted the primary source of more than ...read more
Computational Frontiers in Medicinal Chemistry
The thematic issue "Computational Frontiers in Medicinal Chemistry" provides a robust platform for delving into state-of-the-art computational methodologies and technologies that significantly propel advancements in medicinal chemistry. This edition seeks to amalgamate top-tier reviews spotlighting the latest trends and breakthroughs in the fusion of computational approaches, including artificial intelligence (AI) ...read more
Drugs and Mitochondria
Mitochondria play a central role in the life and death of cells. They are not merely the center for energy metabolism but are also the headquarters for different catabolic and anabolic processes, calcium fluxes, and various signaling pathways. Mitochondria maintain homeostasis in the cell by interacting with reactive oxygen-nitrogen species ...read more
Mitochondria as a Therapeutic Target in Metabolic Disorders
Mitochondria are the primary site of adenosine triphosphate (ATP) production in mammalian cells. Moreover, these organelles are an important source of reactive oxygen and nitrogen species in virtually any nucleated cell type. The modulation of a myriad of cellular signaling pathways depends on the mitochondrial physiology. Mitochondrial dysfunction is observed ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
RNA Splicing: Basic Aspects Underlie Antitumor Targeting
Recent Patents on Anti-Cancer Drug Discovery Astrocytic Target Mechanisms in Epilepsy
Current Medicinal Chemistry Uncertainty in the Translation of Preclinical Experiments to Clinical Trials. Why do Most Phase III Clinical Trials Fail?
Current Gene Therapy Recent Advances in the Imaging of Programmed Cell Death
Current Pharmaceutical Design The Role of PEDF in Tumor Growth and Metastasis
Current Molecular Medicine Gli1+ Mesenchymal Stem Cells in Bone and Teeth
Current Stem Cell Research & Therapy Heterologous Production of Death Ligands’ and Death Receptors’ Extracellular Domains: Structural Features and Efficient Systems
Protein & Peptide Letters Anti-Angiogenic Activity of Curcumin in Cancer Therapy: A Narrative Review
Current Vascular Pharmacology Physiopathological Roles of P2X Receptors in the Central Nervous System
Current Medicinal Chemistry Design and Synthesis of Coumarin Derivatives as Novel PI3K Inhibitors
Anti-Cancer Agents in Medicinal Chemistry Glutathione Peroxidase Activity of Ebselen and its Analogues: Some Insights into the Complex Chemical Mechanisms Underlying the Antioxidant Activity
Current Chemical Biology Status Epilepticus in the Immature Rodent Brain Alters the Dynamics of Autophagy
Current Neurovascular Research Potential of Unengineered and Engineered Wharton’s Jelly Mesenchymal Stem Cells as Cancer Inhibitor Agent
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Insulin-Like Growth Factor 2 - The Oncogene and its Accomplices
Current Pharmaceutical Design Modular Protein Engineering in Emerging Cancer Therapies
Current Pharmaceutical Design Targeting Ion Channels for New Strategies in Cancer Diagnosis and Therapy
Current Clinical Pharmacology Therapeutic Targeting of CPT-11 Induced Diarrhea: A Case for Prophylaxis
Current Drug Targets Dysregulation of SIRT-1 Signaling in Multiple Sclerosis and Neuroimmune Disorders: A Systematic Review of SIRTUIN Activators as Potential Immunomodulators and their Influences on other Dysfunctions
Endocrine, Metabolic & Immune Disorders - Drug Targets Poly(Ethylene Glycol) Amphiphilic Copolymer for Anticancer Drugs Delivery
Anti-Cancer Agents in Medicinal Chemistry Imaging Findings of Primary Non-functioning Hepatic Paraganglioma: A Case Report
Current Medical Imaging