Abstract
The formation of liposomes, nanoparticle micelles, and related systems by mixtures of drugs and/or surfactants is of major relevance for the design of drug delivery systems. We can design new systems using different compounds. Traditionally these systems are created by trial and error using experimental data. However, in most cases measuring all the possible combinations represents a extensive work and almost always unaffordable. In this sense, we can use theoretical concepts and develop computational models to predict different physicochemical properties of self-aggregation processes of mixed molecular systems. In a previous work, we developed a new PT-LFER model (Linear Free Energy Relationships, LFER, combined with Perturbation Theory, PT, ideas) for binary systems. The best PT-LFER model found predicted the effects of 25000 perturbations over nine different properties of binary systems. The present work has two parts. Firstly, we carry out an analysis on the new results on the applications and experimental-theoretical studies of binary selfassembled systems. In the second part, we report for the first time, a new experimental-theoretic study of the NaDC-DTAB binary system. For this purpose, we have combined experimental procedures plus physicochemical thermodynamic framework with the PT-LFER model reported in our previous work.
Keywords: Nanoparticles, micelle self-aggregation, drug delivery systems, perturbation theory, linear free energy relationships.
Current Pharmaceutical Design
Title:Computational Modeling and Experimental Facts of Mixed Self- Assembly Systems
Volume: 22 Issue: 34
Author(s): Paula V. Messina, Jose Miguel Besada-Porto, Ramón Rial, Humberto González-Díaz and Juan M. Ruso
Affiliation:
Keywords: Nanoparticles, micelle self-aggregation, drug delivery systems, perturbation theory, linear free energy relationships.
Abstract: The formation of liposomes, nanoparticle micelles, and related systems by mixtures of drugs and/or surfactants is of major relevance for the design of drug delivery systems. We can design new systems using different compounds. Traditionally these systems are created by trial and error using experimental data. However, in most cases measuring all the possible combinations represents a extensive work and almost always unaffordable. In this sense, we can use theoretical concepts and develop computational models to predict different physicochemical properties of self-aggregation processes of mixed molecular systems. In a previous work, we developed a new PT-LFER model (Linear Free Energy Relationships, LFER, combined with Perturbation Theory, PT, ideas) for binary systems. The best PT-LFER model found predicted the effects of 25000 perturbations over nine different properties of binary systems. The present work has two parts. Firstly, we carry out an analysis on the new results on the applications and experimental-theoretical studies of binary selfassembled systems. In the second part, we report for the first time, a new experimental-theoretic study of the NaDC-DTAB binary system. For this purpose, we have combined experimental procedures plus physicochemical thermodynamic framework with the PT-LFER model reported in our previous work.
Export Options
About this article
Cite this article as:
Messina V. Paula, Besada-Porto Miguel Jose, Rial Ramón, González-Díaz Humberto and Ruso M. Juan, Computational Modeling and Experimental Facts of Mixed Self- Assembly Systems, Current Pharmaceutical Design 2016; 22 (34) . https://dx.doi.org/10.2174/1381612822666160513150054
DOI https://dx.doi.org/10.2174/1381612822666160513150054 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements