Abstract
Ion channels have a critical role in the function of the nervous system, where they instigate and conduct nerve impulses by asserting control over the voltage potential across the plasma membrane. Propagation of electrical impulses occurs by opening of voltage-gated ion channels. Ion channel blockers prevent this from occurring, and can therefore be used in the treatment of central nervous system disorders and neuropathic pain. Recent identification of ion channel gene mutations in Mendelian epilepsies suggests that genetically driven neuronal hyperexcitability plays an important role in epileptogenesis. Studies with animal seizure models have indicated that changes in temporal and spatial expression of voltage-gated sodium channels may be important in the pathology of epilepsy. This paper is aimed at elucidating the organization of the ion channels and covers a review on the antiepileptic drugs, both established and currently under development targeted to the ion channels in order to bring about effective seizure control.
Keywords: epilepsy, voltage-gated ion channels, antiepileptic drugs, sodium ion channel, calcium ion channel, potassium ion channel, h-channels
Current Drug Targets
Title: Ion Channels as Important Targets for Antiepileptic Drug Design
Volume: 5 Issue: 7
Author(s): P. Yogeeswari, J. Vaigunda Ragavendran, R. Thirumurugan, A. Saxena and D. Sriram
Affiliation:
Keywords: epilepsy, voltage-gated ion channels, antiepileptic drugs, sodium ion channel, calcium ion channel, potassium ion channel, h-channels
Abstract: Ion channels have a critical role in the function of the nervous system, where they instigate and conduct nerve impulses by asserting control over the voltage potential across the plasma membrane. Propagation of electrical impulses occurs by opening of voltage-gated ion channels. Ion channel blockers prevent this from occurring, and can therefore be used in the treatment of central nervous system disorders and neuropathic pain. Recent identification of ion channel gene mutations in Mendelian epilepsies suggests that genetically driven neuronal hyperexcitability plays an important role in epileptogenesis. Studies with animal seizure models have indicated that changes in temporal and spatial expression of voltage-gated sodium channels may be important in the pathology of epilepsy. This paper is aimed at elucidating the organization of the ion channels and covers a review on the antiepileptic drugs, both established and currently under development targeted to the ion channels in order to bring about effective seizure control.
Export Options
About this article
Cite this article as:
Yogeeswari P., Ragavendran Vaigunda J., Thirumurugan R., Saxena A. and Sriram D., Ion Channels as Important Targets for Antiepileptic Drug Design, Current Drug Targets 2004; 5 (7) . https://dx.doi.org/10.2174/1389450043345227
DOI https://dx.doi.org/10.2174/1389450043345227 |
Print ISSN 1389-4501 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-5592 |
Call for Papers in Thematic Issues
Drug-Targeted Approach with Polymer Nanocomposites for Improved Therapeutics
Polymer nanocomposites have been recognized as an advanced and cutting-edge technique in drug targeting administration. These materials combine the unique features of nanoparticles with the adaptability of polymers to produce highly personalized drug administration devices. Integrating nanoparticles containing pharmaceuticals into a polymer matrix enables researchers to regulate the rates at ...read more
New drug therapy for eye diseases
Eyesight is one of the most critical senses, accounting for over 80% of our perceptions. Our quality of life might be significantly affected by eye disease, including glaucoma, diabetic retinopathy, dry eye, etc. Although the development of microinvasive ocular surgery reduces surgical complications and improves overall outcomes, medication therapy is ...read more
Therapeutic Chemical and RNA Design with Artificial Intelligence
Computer-Aided Drug Design (CADD) has emerged as a fundamental component of modern drug discovery. Molecular docking facilitates virtual screening on a large scale through structural simulations. However, traditional CADD approaches face significant limitations, as they can only screen known compounds from existing libraries. PubChem, as the most widely used chemical ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Are Antipsychotics Useful in the Treatment of Anorexia Nervosa? A Review of the Literature
Current Psychopharmacology Anticonvulsant and Antinociceptive Actions of Novel Adenosine Kinase Inhibitors
Current Topics in Medicinal Chemistry Toxins Targeting Voltage-Activated Ca<sup>2+</sup> Channels and their Potential Biomedical Applications
Current Topics in Medicinal Chemistry The New Patient and Responsible Self-Medication Practices: A Critical Review
Current Drug Safety Optimization of Therapy in Patients with Epilepsy and Psychiatric Comorbidities: Key Points
Current Neuropharmacology Phytochemical Analysis with Antioxidant and Cytotoxicity Studies of the Bioactive Principles from Zanthoxylum capense (Small Knobwood)
Anti-Cancer Agents in Medicinal Chemistry 5'-Nucleotidases, Nucleosides and their Distribution in the Brain: Pathological and Therapeutic Implications
Current Medicinal Chemistry Editorial [Is Drug Safety Dangerous?]
Current Drug Safety Editorial [Hot topic: Pharmacotherapies for Alcoholism: The Old and the New (Guest Editor: M. Foster Olive)]
CNS & Neurological Disorders - Drug Targets Editorial [Hot Topic: Analysis of Progenitor Cells in the Brain before and after Treatment (Guest Editors: M.A. Curtis and L. Paulson)]
Current Pharmaceutical Biotechnology Potassium Channels as Targets for the Management of Pain
Central Nervous System Agents in Medicinal Chemistry The Synthesis and Use of BMS 204352 (MaxiPost<sup>TM</sup>)
Mini-Reviews in Organic Chemistry Neurogenesis as a New Target for the Development of Antidepressant Drugs
Current Pharmaceutical Design Efficient High-throughput Techniques for the Analysis of Disease- Resistant Plant Varieties and Detection of Food Adulteration
Current Protein & Peptide Science Liposomes as Versatile Platform for Cancer Theranostics: Therapy, Bio-imaging, and Toxicological Aspects
Current Pharmaceutical Design Catatonia: A Narrative Review
Central Nervous System Agents in Medicinal Chemistry GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development
CNS & Neurological Disorders - Drug Targets One-Step Synthesis of 1H-1,2,3-Triazol-1-Ylmethyl-2,3-Dihydronaphtho[1,2-b]furan- 4,5-Diones
Current Organic Synthesis Molecular Recognisation of 3a, 4-Dihydro-3-H-Indeno [1, 2-C] Pyrazole-2- Carboxamide/Carbothioamide Anticonvulsant Analogues Towards GABA-Aminotransferase- An in Silico Approach
Central Nervous System Agents in Medicinal Chemistry Application of Pharmacophore Models for the Design and Synthesis of New Anticonvulsant Drugs
Mini-Reviews in Medicinal Chemistry