Abstract
The evolutionarily conserved mechanistic target of rapamycin (mTOR) forms two functionally distinct complexes, mTORC1 and mTORC2. mTORC1, consisting of mTOR, raptor, and mLST8 (GβL), is sensitive to rapamycin and thought to control autonomous cell growth in response to nutrient availability and growth factors. mTORC2, containing the core components mTOR, mLST8, Rictor, mSIN1, and Protor1/2 is largely insensitive to rapamycin. mTORC2 specifically senses growth factors and regulates cell proliferation, metabolism, actin rearrangement, and survival. Dysregulation of mTOR signaling often occurs in a variety of human malignant diseases, rendering it a crucial and validated target in cancer treatment. However, the effectiveness of rapamycin as single-agent therapy is suppressed, in part, by the numerous strong mTORC1-dependent negative feedback loops. Although preclinical and clinical studies of ATP-competitive mTOR inhibitors that target both mTORC1 and mTORC2 have shown greater effectiveness than rapalogs for cancer treatment, the mTORC1 inhibition-induced negative feedback activation of PI3- K/PDK1 and Akt (Thr308) may be sufficient to promote cell survival. Recent cancer biology studies indicated that mTORC2 is a promising target, since its activity is essential for the development of a number of cancers. These studies provide a rationale for developing inhibitors specifically targeting mTORC2, which do not perturb the mTORC1- dependent negative feedback loops and have a more acceptable therapeutic window. This review summarizes the present understanding of mTORC2 signaling and functions, especially tumorigenic functions, highlighting the current status and future perspectives for targeting mTORC2 in cancer treatment.
Keywords: Cancer, mSIN1, mTORC2, mTOR inhibitors, rapamycin, rictor.
Current Cancer Drug Targets
Title:Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin
Volume: 16 Issue: 4
Author(s): Zhipeng Zou, Juan Chen, Jun Yang and Xiaochun Bai
Affiliation:
Keywords: Cancer, mSIN1, mTORC2, mTOR inhibitors, rapamycin, rictor.
Abstract: The evolutionarily conserved mechanistic target of rapamycin (mTOR) forms two functionally distinct complexes, mTORC1 and mTORC2. mTORC1, consisting of mTOR, raptor, and mLST8 (GβL), is sensitive to rapamycin and thought to control autonomous cell growth in response to nutrient availability and growth factors. mTORC2, containing the core components mTOR, mLST8, Rictor, mSIN1, and Protor1/2 is largely insensitive to rapamycin. mTORC2 specifically senses growth factors and regulates cell proliferation, metabolism, actin rearrangement, and survival. Dysregulation of mTOR signaling often occurs in a variety of human malignant diseases, rendering it a crucial and validated target in cancer treatment. However, the effectiveness of rapamycin as single-agent therapy is suppressed, in part, by the numerous strong mTORC1-dependent negative feedback loops. Although preclinical and clinical studies of ATP-competitive mTOR inhibitors that target both mTORC1 and mTORC2 have shown greater effectiveness than rapalogs for cancer treatment, the mTORC1 inhibition-induced negative feedback activation of PI3- K/PDK1 and Akt (Thr308) may be sufficient to promote cell survival. Recent cancer biology studies indicated that mTORC2 is a promising target, since its activity is essential for the development of a number of cancers. These studies provide a rationale for developing inhibitors specifically targeting mTORC2, which do not perturb the mTORC1- dependent negative feedback loops and have a more acceptable therapeutic window. This review summarizes the present understanding of mTORC2 signaling and functions, especially tumorigenic functions, highlighting the current status and future perspectives for targeting mTORC2 in cancer treatment.
Export Options
About this article
Cite this article as:
Zou Zhipeng, Chen Juan, Yang Jun and Bai Xiaochun, Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin, Current Cancer Drug Targets 2016; 16 (4) . https://dx.doi.org/10.2174/1568009616666151113120830
DOI https://dx.doi.org/10.2174/1568009616666151113120830 |
Print ISSN 1568-0096 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-5576 |
Call for Papers in Thematic Issues
Innovative Cancer Drug Targets: A New Horizon in Oncology
Cancer remains one of the most challenging diseases, with its complexity and adaptability necessitating continuous research efforts into more effective and targeted therapeutic approaches. Recent years have witnessed significant progress in understanding the molecular and genetic basis of cancer, leading to the identification of novel drug targets. These include, but ...read more
Role of Immune and Genotoxic Response Biomarkers in Tumor Microenvironment in Cancer Diagnosis and Treatment
Biological biomarkers have been used in medical research as an indicator of a normal or abnormal process inside the body, or of a disease. Nowadays, various researchers are in process of exploring and investigating the biological markers for the early assessment of cancer. DNA Damage response (DDR) pathways and immune ...read more
The Impact of Cancer Neuroscience on Novel Brain Cancer Treatment
Brain cancer remains one of the most challenging malignancies due to its complexity and resistance to conventional therapies. Recent advancements in cancer neuroscience have transformed our understanding of the brain's tumor microenvironment, offering promising insights into novel treatments. By studying the intricate interactions between cancer cells and the nervous system, ...read more
Unraveling the Tumor Microenvironment and Potential Therapeutic Targets: Insights from Single-Cell Sequencing and Spatial Transcriptomics
This special issue will focus on unraveling the complexities of the tumor microenvironment (TME) and identifying key biomarkers for potential therapeutic targets using advanced multi-omics techniques, such as single-cell sequencing and spatial transcriptomics. We seek original research and comprehensive reviews that investigate the heterogeneity and dynamics of the TME, emphasizing ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies
Current Pharmaceutical Design Quantitative Structure-Activity Relationship Studies: Understanding the Mechanism of Tyrosine Kinase Inhibition
Current Enzyme Inhibition Development of Focal Adhesion Kinase Inhibitors in Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Nanoparticle-based CRISPR/Cas Delivery: An Emerging Tactic for Cancer Therapy
Current Medicinal Chemistry The Current Role of PET/CT in Radiotherapy Planning
Current Radiopharmaceuticals Mechanisms of Oxidative Glutamate Toxicity: The Glutamate/Cystine Antiporter System xc¯ as a Neuroprotective Drug Target
CNS & Neurological Disorders - Drug Targets The Emerging Role of LncRNA FENDRR in Multiple Cancers: A Review
Current Molecular Medicine Natural Product-Derived Small Molecule Activators of Hypoxia-Inducible Factor-1 (HIF-1)
Current Pharmaceutical Design A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices
Current Drug Delivery MIIP, a Cytoskeleton Regulator that Blocks Cell Migration and Invasion, Delays Mitosis, and Suppresses Tumorogenesis
Current Protein & Peptide Science RAGE as a Receptor of HMGB1 (Amphoterin): Roles in Health and Disease
Current Molecular Medicine The Nuclear Orphan Receptors NR4A as Therapeutic Target in Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Newly Identified Tumor Antigens as Promising Cancer Vaccine Targets for Malignant Melanoma Treatment
Current Topics in Medicinal Chemistry Apoptosis-related BCL2-family Members: Key Players in Chemotherapy
Anti-Cancer Agents in Medicinal Chemistry Presenilin and γ -Secretase Activity: A Viable Therapeutic Target for Alzheimers Disease?
Current Signal Transduction Therapy Circumventing Melanoma Chemoresistance by Targeting DNA Repair
Current Medicinal Chemistry Tyrosine Kinase Inhibitors
Current Cancer Drug Targets Tachykinins and their Receptors in Human Malignancies
Current Drug Targets The Use of Herbal Medicine in Cancer-related Anorexia/ Cachexia Treatment Around the World
Current Pharmaceutical Design The Medicinal Chemistry of Therapeutic Peptides: Recent Developments in Synthesis and Design Optimizations
Current Medicinal Chemistry