Abstract
Scaffold-based analogs of cinnamic acid benzyl amide (CABA) exhibit pleiotropic effects in cancer cells, and their exact molecular mechanism of action is under investigation. The present study is part of our systemic analysis of interactions of CABA analogs with their molecular targets. These compounds were shown to inhibit Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and JAK2/signal transducer and activator of transcription 5 (STAT5) signaling and thus are attractive scaffolds for anticancer drug design. To identify the potential mechanisms of action of this class of compounds, direct interactions of the selected CABA analogs with JAK2 kinase were examined. Inhibition of JAK2 enzymatic activity was assessed, and molecular modeling studies of selected compounds—(E)-2-cyano-N-[(S)-1-phenylethyl]-3-(pyridin-2-yl)acrylamide (WP1065), (E)-2-cyano-N-[(S)-1-phenylbutyl]- 3-(3-bromopyridin-2-yl)acrylamide (WP1130), and (E)-2-cyano-N-[(S)-1,4-diphenylbutyl]-3-(3-bromopyridin-2-yl)acrylamide (WP1702)—in the JAK2 kinase domain were used to support interpretation of the experimental data. Our results indicated that the tested CABA analogs are nonclassical inhibitors of activated (phosphorylated) JAK2, although markedly weaker than clinically tested ATP-competitive JAK2 inhibitors. Relatively small structural changes in the studied compounds affected interactions with JAK2, and their mode of action ranged from allosteric-noncompetitive to bisubstratecompetitive. These results demonstrated that direct inhibition of JAK2 enzymatic activity by the WP1065 (half-maximal inhibitory concentration [IC50] = 14.8 µM), WP1130 (IC50 = 3.8 µM), and WP1702 (IC50 = 2.9 µM) potentially contributes, albeit minimally, to suppression of the JAK2/STAT signaling pathways in cancer cells and that additional specific structural modifications may amplify JAK2-inhibitory effects.
Keywords: Bisubstrate-competitive, CABA, cinnamic acid, inhibitor, JAK2, molecular modeling, noncompetitive, STAT3, STAT5, WP1065, WP1130, WP1702.
Current Cancer Drug Targets
Title:Analogs of Cinnamic Acid Benzyl Amide As Nonclassical Inhibitors of Activated JAK2 Kinase
Volume: 14 Issue: 7
Author(s): Marcin Mielecki, Małgorzata Milner-Krawczyk, Krystyna Grzelak, Damian Mielecki, Krystiana A. Krzysko, Bogdan Lesyng and Waldemar Priebe
Affiliation:
Keywords: Bisubstrate-competitive, CABA, cinnamic acid, inhibitor, JAK2, molecular modeling, noncompetitive, STAT3, STAT5, WP1065, WP1130, WP1702.
Abstract: Scaffold-based analogs of cinnamic acid benzyl amide (CABA) exhibit pleiotropic effects in cancer cells, and their exact molecular mechanism of action is under investigation. The present study is part of our systemic analysis of interactions of CABA analogs with their molecular targets. These compounds were shown to inhibit Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and JAK2/signal transducer and activator of transcription 5 (STAT5) signaling and thus are attractive scaffolds for anticancer drug design. To identify the potential mechanisms of action of this class of compounds, direct interactions of the selected CABA analogs with JAK2 kinase were examined. Inhibition of JAK2 enzymatic activity was assessed, and molecular modeling studies of selected compounds—(E)-2-cyano-N-[(S)-1-phenylethyl]-3-(pyridin-2-yl)acrylamide (WP1065), (E)-2-cyano-N-[(S)-1-phenylbutyl]- 3-(3-bromopyridin-2-yl)acrylamide (WP1130), and (E)-2-cyano-N-[(S)-1,4-diphenylbutyl]-3-(3-bromopyridin-2-yl)acrylamide (WP1702)—in the JAK2 kinase domain were used to support interpretation of the experimental data. Our results indicated that the tested CABA analogs are nonclassical inhibitors of activated (phosphorylated) JAK2, although markedly weaker than clinically tested ATP-competitive JAK2 inhibitors. Relatively small structural changes in the studied compounds affected interactions with JAK2, and their mode of action ranged from allosteric-noncompetitive to bisubstratecompetitive. These results demonstrated that direct inhibition of JAK2 enzymatic activity by the WP1065 (half-maximal inhibitory concentration [IC50] = 14.8 µM), WP1130 (IC50 = 3.8 µM), and WP1702 (IC50 = 2.9 µM) potentially contributes, albeit minimally, to suppression of the JAK2/STAT signaling pathways in cancer cells and that additional specific structural modifications may amplify JAK2-inhibitory effects.
Export Options
About this article
Cite this article as:
Mielecki Marcin, Milner-Krawczyk Małgorzata, Grzelak Krystyna, Mielecki Damian, Krzysko A. Krystiana, Lesyng Bogdan and Priebe Waldemar, Analogs of Cinnamic Acid Benzyl Amide As Nonclassical Inhibitors of Activated JAK2 Kinase, Current Cancer Drug Targets 2014; 14 (7) . https://dx.doi.org/10.2174/1568009614666140821122718
DOI https://dx.doi.org/10.2174/1568009614666140821122718 |
Print ISSN 1568-0096 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-5576 |
Call for Papers in Thematic Issues
Innovative Cancer Drug Targets: A New Horizon in Oncology
Cancer remains one of the most challenging diseases, with its complexity and adaptability necessitating continuous research efforts into more effective and targeted therapeutic approaches. Recent years have witnessed significant progress in understanding the molecular and genetic basis of cancer, leading to the identification of novel drug targets. These include, but ...read more
Role of Immune and Genotoxic Response Biomarkers in Tumor Microenvironment in Cancer Diagnosis and Treatment
Biological biomarkers have been used in medical research as an indicator of a normal or abnormal process inside the body, or of a disease. Nowadays, various researchers are in process of exploring and investigating the biological markers for the early assessment of cancer. DNA Damage response (DDR) pathways and immune ...read more
The Impact of Cancer Neuroscience on Novel Brain Cancer Treatment
Brain cancer remains one of the most challenging malignancies due to its complexity and resistance to conventional therapies. Recent advancements in cancer neuroscience have transformed our understanding of the brain's tumor microenvironment, offering promising insights into novel treatments. By studying the intricate interactions between cancer cells and the nervous system, ...read more
Unraveling the Tumor Microenvironment and Potential Therapeutic Targets: Insights from Single-Cell Sequencing and Spatial Transcriptomics
This special issue will focus on unraveling the complexities of the tumor microenvironment (TME) and identifying key biomarkers for potential therapeutic targets using advanced multi-omics techniques, such as single-cell sequencing and spatial transcriptomics. We seek original research and comprehensive reviews that investigate the heterogeneity and dynamics of the TME, emphasizing ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
MicroRNAs in Glioblastoma: Role in Pathogenesis and Opportunities for Targeted Therapies
CNS & Neurological Disorders - Drug Targets Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops
Current Signal Transduction Therapy Tropism-Modified Adenoviral and Adeno-Associated Viral Vectors for Gene Therapy
Current Gene Therapy Targeted Oncolytic Herpes Simplex Viruses for Aggressive Cancers
Current Pharmaceutical Biotechnology C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors
Current Cancer Drug Targets Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94
Current Topics in Medicinal Chemistry Drug Delivery Systems and Strategies to Overcome the Barriers of Brain
Current Pharmaceutical Design Clinical Development of MET Targeted Therapy For Human Cancer
Current Cancer Therapy Reviews Nanotechnology and Radiopharmaceuticals: Diagnostic and Therapeutic Approaches
Current Drug Delivery Naphthoquinone Derivatives Isolated from Plants: Recent Advances in Biological Activity
Mini-Reviews in Medicinal Chemistry Riluzole Inhibits Proliferation, Migration and Cell Cycle Progression and Induces Apoptosis in Tumor Cells of Various Origins
Anti-Cancer Agents in Medicinal Chemistry Research Highlights BAY 1436032: A Novel Pan-mutant IDH1 Inhibitor Extends Survival of Mice with Experimental Brain Tumors
CNS & Neurological Disorders - Drug Targets Noradrenergic Regulation of Glial Activation: Molecular Mechanisms and Therapeutic Implications
Current Neuropharmacology The Antimitotic Potential of PARP Inhibitors, An Unexplored Therapeutic Alternative
Current Topics in Medicinal Chemistry Rho GTPase Effector Functions in Tumor Cell Invasion and Metastasis
Current Drug Targets MicroRNAs: Key Players in Microglia and Astrocyte Mediated Inflammation in CNS Pathologies
Current Medicinal Chemistry Understanding Molecular Pathways and Targets of Brachyury in Epithelial-mesenchymal Transition (EMT) in Human Cancers
Current Cancer Drug Targets Current Status of Delivery Systems to Improve Target Efficacy of Oligonu-cleotides
Current Pharmaceutical Design Nicotine, Body Weight and Potential Implications in the Treatment of Obesity
Current Topics in Medicinal Chemistry Lung Cancer Detection from CT Images: Modified Adaptive Threshold Segmentation with Support Vector Machines and Artificial Neural Network Classifier
Current Medical Imaging