Abstract
In normal cells, the accuracy of chromosome segregation which assures cells euploidy depends on mitosis mechanics and on proper functioning of a specific complex of proteins represented by the error-checking spindle assembly checkpoint (SAC). SAC proteins are deeply involved in correct cell divisions, but some of these, such as mitotic arrest-deficient proteins (Mad1 and Mad2), are critical. Mad1 and Mad2 are involved in preventing “wrong” cellular divisions which lead to cellular aneuploidy and are recognized as inductors of genetic disorders, as well as activators of oncoproteins. To clarify aneuploidy involvement in the evolution of cancer or other genetic disorders, structural and functional specificity of spindle checkpoint proteins have been analyzed, but the process is still poorly understood.
In order to better understand SAC proteins involvement in initiation of cancer and other genetic disorders, here we review studies that conducted to relevant structural and functional information regarding these proteins. The results of these studies suggest that minor changes in structure and functionality of SAC proteins are able to generate aneuploidy. Therefore, a deeper understanding of Mad1 and Mad2 structural changes obtained by experimental and theoretical studies could open new perspectives of genetic medicine.
Keywords: 3D-structural analysis, cancer, genetic disorders, mitotic arrest-deficient proteins, molecular simulation, mutagenesis.
Current Computer-Aided Drug Design
Title:Mitotic Checkpoint Proteins Mad1 and Mad2 Structural and Functional Relationship with Implication in Genetic Diseases
Volume: 10 Issue: 2
Author(s): Speranta Avram, Maria Mernea, Dan Florin Mihailescu, Corina Duda Seiman, Daniel Duda Seiman and Mihai Viorel Putz
Affiliation:
Keywords: 3D-structural analysis, cancer, genetic disorders, mitotic arrest-deficient proteins, molecular simulation, mutagenesis.
Abstract: In normal cells, the accuracy of chromosome segregation which assures cells euploidy depends on mitosis mechanics and on proper functioning of a specific complex of proteins represented by the error-checking spindle assembly checkpoint (SAC). SAC proteins are deeply involved in correct cell divisions, but some of these, such as mitotic arrest-deficient proteins (Mad1 and Mad2), are critical. Mad1 and Mad2 are involved in preventing “wrong” cellular divisions which lead to cellular aneuploidy and are recognized as inductors of genetic disorders, as well as activators of oncoproteins. To clarify aneuploidy involvement in the evolution of cancer or other genetic disorders, structural and functional specificity of spindle checkpoint proteins have been analyzed, but the process is still poorly understood.
In order to better understand SAC proteins involvement in initiation of cancer and other genetic disorders, here we review studies that conducted to relevant structural and functional information regarding these proteins. The results of these studies suggest that minor changes in structure and functionality of SAC proteins are able to generate aneuploidy. Therefore, a deeper understanding of Mad1 and Mad2 structural changes obtained by experimental and theoretical studies could open new perspectives of genetic medicine.
Export Options
About this article
Cite this article as:
Avram Speranta, Mernea Maria, Mihailescu Florin Dan, Seiman Duda Corina, Seiman Duda Daniel and Putz Viorel Mihai, Mitotic Checkpoint Proteins Mad1 and Mad2 Structural and Functional Relationship with Implication in Genetic Diseases, Current Computer-Aided Drug Design 2014; 10 (2) . https://dx.doi.org/10.2174/1573409910666140410124315
DOI https://dx.doi.org/10.2174/1573409910666140410124315 |
Print ISSN 1573-4099 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6697 |
Call for Papers in Thematic Issues
Artificial Intelligence in Biomedical Research: Enhancing Data Analysis for Drug Discovery and Development
This thematic issue highlights the transformative impact of Artificial Intelligence (AI), with a particular focus on Machine Learning (ML) and Deep Learning (DL) techniques, in advancing biomedical research. As a result of these cutting-edge AI methodologies, drug discovery and development are revolutionizing data analysis. Rapid advances in artificial intelligence technologies ...read more
Computer-Aided Drug Discoveries for Emerging Diseases
Computer-aided drug design is a rapidly growing research field that continues to gain momentum, attracting increasing interest from the scientific community. This trend is largely driven by the growing utilization of machine learning and artificial intelligence in drug design and discovery. Artificial Intelligence has proven efficacy across various applications, including ...read more
Deep Learning Approaches in Bioinformatics for Computer-Aided Drug Development Targeting Brain Tumors
The integration of deep learning and bioinformatics is revolutionizing the field of computer-aided drug development, particularly in the fight against brain tumors one of the most aggressive and lethal types of cancer. Brain tumors present significant challenges due to their heterogeneity and complexity, which require novel approaches for early diagnosis ...read more
Emerging Trends in Computer-Aided Drug and Healthcare Solutions
This special issue aims to further the advancement of knowledge in drug design, healthcare innovations, and medical solutions by leveraging modern computational techniques. In recent years, computer-aided drug design has transformed the approach to medicinal chemistry, accelerating the drug discovery process and fostering innovation. The goal of this issue is ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers