Abstract
Lacosamide is an anticonvulsant drug which presents carbonic anhydrase inhibition. In this paper, we analyzed the apparent relationship between both activities performing a molecular modeling, docking and QSAR studies on 18 lacosamide derivatives with known anticonvulsant activity. Docking results suggested the zinc-binding site of carbonic anhydrase is a possible target of lacosamide and lacosamide derivatives making favorable Van der Waals interactions with Asn67, Gln92, Phe131 and Thr200. The mathematical models revealed a poor relationship between the anticonvulsant activity and molecular descriptors obtained from DFT and docking calculations. However, a QSAR model was developed using Dragon software descriptors. The statistic parameters of the model are: correlation coefficient, R=0.957 and standard deviation, S=0.162. Our results provide new valuable information regarding the relationship between both activities and contribute important insights into the essential molecular requirements for the anticonvulsant activity.
Keywords: Anticonvulsant activity, carbonic anhydrase, dragon descriptors, lacosamide derivatives, molecular docking, QSAR.
Current Computer-Aided Drug Design
Title:Lacosamide Derivatives with Anticonvulsant Activity as Carbonic Anhydrase Inhibitors. Molecular Modeling, Docking and QSAR Analysis
Volume: 10 Issue: 2
Author(s): Juan C. Garro Martinez, Esteban G. Vega-Hissi, Matias F. Andrada, Pablo R. Duchowicz, Francisco Torrens and Mario R. Estrada
Affiliation:
Keywords: Anticonvulsant activity, carbonic anhydrase, dragon descriptors, lacosamide derivatives, molecular docking, QSAR.
Abstract: Lacosamide is an anticonvulsant drug which presents carbonic anhydrase inhibition. In this paper, we analyzed the apparent relationship between both activities performing a molecular modeling, docking and QSAR studies on 18 lacosamide derivatives with known anticonvulsant activity. Docking results suggested the zinc-binding site of carbonic anhydrase is a possible target of lacosamide and lacosamide derivatives making favorable Van der Waals interactions with Asn67, Gln92, Phe131 and Thr200. The mathematical models revealed a poor relationship between the anticonvulsant activity and molecular descriptors obtained from DFT and docking calculations. However, a QSAR model was developed using Dragon software descriptors. The statistic parameters of the model are: correlation coefficient, R=0.957 and standard deviation, S=0.162. Our results provide new valuable information regarding the relationship between both activities and contribute important insights into the essential molecular requirements for the anticonvulsant activity.
Export Options
About this article
Cite this article as:
Martinez C. Garro Juan, Vega-Hissi G. Esteban, Andrada F. Matias, Duchowicz R. Pablo, Torrens Francisco and Estrada R. Mario, Lacosamide Derivatives with Anticonvulsant Activity as Carbonic Anhydrase Inhibitors. Molecular Modeling, Docking and QSAR Analysis, Current Computer-Aided Drug Design 2014; 10 (2) . https://dx.doi.org/10.2174/1573409910666140410123706
DOI https://dx.doi.org/10.2174/1573409910666140410123706 |
Print ISSN 1573-4099 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6697 |
Call for Papers in Thematic Issues
Artificial Intelligence in Biomedical Research: Enhancing Data Analysis for Drug Discovery and Development
This thematic issue highlights the transformative impact of Artificial Intelligence (AI), with a particular focus on Machine Learning (ML) and Deep Learning (DL) techniques, in advancing biomedical research. As a result of these cutting-edge AI methodologies, drug discovery and development are revolutionizing data analysis. Rapid advances in artificial intelligence technologies ...read more
Computer-Aided Drug Discoveries for Emerging Diseases
Computer-aided drug design is a rapidly growing research field that continues to gain momentum, attracting increasing interest from the scientific community. This trend is largely driven by the growing utilization of machine learning and artificial intelligence in drug design and discovery. Artificial Intelligence has proven efficacy across various applications, including ...read more
Deep Learning Approaches in Bioinformatics for Computer-Aided Drug Development Targeting Brain Tumors
The integration of deep learning and bioinformatics is revolutionizing the field of computer-aided drug development, particularly in the fight against brain tumors one of the most aggressive and lethal types of cancer. Brain tumors present significant challenges due to their heterogeneity and complexity, which require novel approaches for early diagnosis ...read more
Emerging Trends in Computer-Aided Drug and Healthcare Solutions
This special issue aims to further the advancement of knowledge in drug design, healthcare innovations, and medical solutions by leveraging modern computational techniques. In recent years, computer-aided drug design has transformed the approach to medicinal chemistry, accelerating the drug discovery process and fostering innovation. The goal of this issue is ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers