Abstract
Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.
Keywords: Induced fit docking, MM-GBSA, molecular dynamics, pharmacophore, Yersinia pestis, YopH.
Combinatorial Chemistry & High Throughput Screening
Title:Biologically Active Ligands for Yersinia Outer Protein H (YopH): Feature Based Pharmacophore Screening, Docking and Molecular Dynamics Studies
Volume: 17 Issue: 7
Author(s): Thangaraju Tamilvanan and Waheeta Hopper
Affiliation:
Keywords: Induced fit docking, MM-GBSA, molecular dynamics, pharmacophore, Yersinia pestis, YopH.
Abstract: Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.
Export Options
About this article
Cite this article as:
Tamilvanan Thangaraju and Hopper Waheeta, Biologically Active Ligands for Yersinia Outer Protein H (YopH): Feature Based Pharmacophore Screening, Docking and Molecular Dynamics Studies, Combinatorial Chemistry & High Throughput Screening 2014; 17 (7) . https://dx.doi.org/10.2174/1386207317666140211095137
DOI https://dx.doi.org/10.2174/1386207317666140211095137 |
Print ISSN 1386-2073 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5402 |
Call for Papers in Thematic Issues
Advances in the design of antibody & protein with conformational dynamics and artificial intelligence approaches
“Antibodies & Protein Design” section focuses on the utilization of multiple strategies to engineer and optimize antibodies and proteins that serve diverse analytical strategies, such as combinatorial protein design, structure-based design, sequence-based design, and other techniques that incorporate principles of protein-protein interactions, allosteric regulation, and post-translational modifications. Example applications include ...read more
Artificial Intelligence Methods for Biomedical, Biochemical and Bioinformatics Problems
Recently, a large number of technologies based on artificial intelligence have been developed and applied to solve a diverse range of problems in the areas of biomedical, biochemical and bioinformatics problems. By utilizing powerful computing resources and massive amounts of data, methods based on artificial intelligence can significantly improve the ...read more
Emerging trends in diseases mechanisms, noble drug targets and therapeutic strategies: focus on immunological and inflammatory disorders
Recently infectious and inflammatory diseases have been a key concern worldwide due to tremendous morbidity and mortality world Wide. Recent, nCOVID-9 pandemic is a good example for the emerging infectious disease outbreak. The world is facing many emerging and re-emerging diseases out breaks at present however, there is huge lack ...read more
Exploring Spectral Graph Theory in Combinatorial Chemistry
Combinatorial chemistry involves the synthesis and analysis of a large number of diverse compounds simultaneously. Traditional methods rely on brute-force experimentation, which can be time-consuming and resource-intensive. Spectral graph theory, a branch of mathematics dealing with the properties of graphs in relation to the eigenvalues and eigenvectors of matrices associated ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers