Abstract
Cytosolic 5'-nucleotidase II (cN-II) is an intracellular 5'-nucleotidase characterized by substrate specificity. It preferentially hydrolyzes 6-hydroxypurine nucleotides such as IMP and GMP over AMP or UMP. cN-II is allosterically activated by ATP and inhibited by inorganic phosphate. It also has phosphotransferase activity and transfers phosphate moieties from IMP or GMP to nonphysiological nucleoside analogues used to treat some viral infections or malignancies. The cN-II gene has a strikingly conserved primary structure from humans to nematodes and its activity has been detected in various animals including snails. Its activity is highest in the livers of birds, crocodiles, lizards and snakes. The activity in chicken liver increases 2-fold by feeding a high-protein diet. These results suggest that cN-II participates, through IMP dephosphorylation, in production of uric acid as the main end product of aminonitrogen in these animals. Some studies suggest that cN-II participates in dephosphorylation of IMP accumulated in cells of some tissues to diffusible inosine for reutilization by other tissues. It has also been proposed that cN-II, together with purine nucleoside phosphorylase and hypoxanthine-guanine phosphoribosyltransferase, constitutes the “oxypurine cycle”, thus regulating intracellular phosphoribosyl pyrophosphate (PRPP) concentrations. As for intracellular dephosphorylation of AMP, another intracellular 5'-nucleotidase, cN-I, is supposed to participate, because it hydrolyzes AMP more preferentially than IMP or GMP. However, for the tissues, in which the expression of cN-I is very low or undetectable, e.g. liver or brain tissues, results have been obtained that suggest the participation of cN-II in intracellular dephosphorylation of AMP.
Keywords: Allosteric regulation, cN-II, Energy charge, Enzymatic properties, Physiological roles, 5'-Nucleotidase, Phosphotransferase.
Current Medicinal Chemistry
Title:Enzymatic Properties and Physiological Roles of Cytosolic 5’-Nucleotidase II.
Volume: 20 Issue: 34
Author(s): Roichi Itoh
Affiliation:
Keywords: Allosteric regulation, cN-II, Energy charge, Enzymatic properties, Physiological roles, 5'-Nucleotidase, Phosphotransferase.
Abstract: Cytosolic 5'-nucleotidase II (cN-II) is an intracellular 5'-nucleotidase characterized by substrate specificity. It preferentially hydrolyzes 6-hydroxypurine nucleotides such as IMP and GMP over AMP or UMP. cN-II is allosterically activated by ATP and inhibited by inorganic phosphate. It also has phosphotransferase activity and transfers phosphate moieties from IMP or GMP to nonphysiological nucleoside analogues used to treat some viral infections or malignancies. The cN-II gene has a strikingly conserved primary structure from humans to nematodes and its activity has been detected in various animals including snails. Its activity is highest in the livers of birds, crocodiles, lizards and snakes. The activity in chicken liver increases 2-fold by feeding a high-protein diet. These results suggest that cN-II participates, through IMP dephosphorylation, in production of uric acid as the main end product of aminonitrogen in these animals. Some studies suggest that cN-II participates in dephosphorylation of IMP accumulated in cells of some tissues to diffusible inosine for reutilization by other tissues. It has also been proposed that cN-II, together with purine nucleoside phosphorylase and hypoxanthine-guanine phosphoribosyltransferase, constitutes the “oxypurine cycle”, thus regulating intracellular phosphoribosyl pyrophosphate (PRPP) concentrations. As for intracellular dephosphorylation of AMP, another intracellular 5'-nucleotidase, cN-I, is supposed to participate, because it hydrolyzes AMP more preferentially than IMP or GMP. However, for the tissues, in which the expression of cN-I is very low or undetectable, e.g. liver or brain tissues, results have been obtained that suggest the participation of cN-II in intracellular dephosphorylation of AMP.
Export Options
About this article
Cite this article as:
Itoh Roichi, Enzymatic Properties and Physiological Roles of Cytosolic 5’-Nucleotidase II., Current Medicinal Chemistry 2013; 20 (34) . https://dx.doi.org/10.2174/0929867311320340006
DOI https://dx.doi.org/10.2174/0929867311320340006 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
A Review on the Design, Synthesis, and Structure-activity Relationships of
Benzothiazole Derivatives against Hypoxic Tumors
Current Organic Synthesis Natural Antibodies: Protecting Role of IgM in Glioblastoma and Brain Tumours
Current Pharmaceutical Design <i>Lepidium meyenii</i> Supplemented Diet Modulates Neurobehavioral and Biochemical Parameters in Mice Fed High-Fat High-Sugar Diet
Endocrine, Metabolic & Immune Disorders - Drug Targets Regulation of Insulin Release at Pre-exocytotic Stages of the Secretory Process
Current Medicinal Chemistry - Immunology, Endocrine & Metabolic Agents Protein-Protein and Peptide-Protein Interactions of NudE-Like 1 (Ndel1): A Protein Involved in Schizophrenia
Current Protein & Peptide Science Two Orthogonal Approaches to Overcome Multi-Drug Resistant HIV-1s: Development of Protease Inhibitors and Entry Inhibitors Based on CXCR4 Antagonists
Current Drug Targets - Infectious Disorders Antiangiogenic Function of Antithrombin is Dependent on its Conformational Variation: Implication for Other Serpins
Protein & Peptide Letters Pleiotropic Effects of Cardioactive Glycosides
Current Medicinal Chemistry The Impact of Small Heat Shock Proteins (HspBs) in Alzheimer’s and Other Neurological Diseases
Current Pharmaceutical Design Skeletal Muscle Cell Behavior After Physical Agent Treatments
Current Pharmaceutical Design Nitroxides as Cancer Imaging Agents
Anti-Cancer Agents in Medicinal Chemistry Pharmacology and Therapeutic Potential of Sigma1 Receptor Ligands
Current Neuropharmacology Antioxidant Properties of Crocus Sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer’s and Parkinson’s Disease
Current Neuropharmacology Novel Drugs for Neuroblastoma
Drug Design Reviews - Online (Discontinued) RGD-based Therapy: Principles of Selectivity
Current Pharmaceutical Design Electrical Impedance Scanning - A New Diagnostic Tool in Cancer Detection: Current Status and Recent Developments
Current Medical Imaging The ATP-Binding Cassette Transporter-2 (ABCA2) Increases Endogenous Amyloid Precursor Protein Expression and Abeta Fragment Generation
Current Alzheimer Research The Interactions of the 5-HT3 Receptor with Quipazine-Like Arylpiperazine Ligands. The Journey Track at the End of the First Decade of the Third Millennium
Current Topics in Medicinal Chemistry Ultrasound Promoted Green Synthesis, Docking Study of Indole Spliced Thiadiazole, α-amino Phosphonates as Anticancer Agents and Antityrosinase Agents
Anti-Cancer Agents in Medicinal Chemistry Potential Telomere-Related Pharmacological Targets
Current Topics in Medicinal Chemistry