Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Role of the APP Non-Amyloidogenic Signaling Pathway and Targeting α-Secretase as an Alternative Drug Target for Treatment of Alzheimers Disease

Author(s): S. Bandyopadhyay, L. E. Goldstein, D. K. Lahiri and J. T. Rogers

Volume 14, Issue 27, 2007

Page: [2848 - 2864] Pages: 17

DOI: 10.2174/092986707782360060

Price: $65

conference banner
Abstract

Alzheimers disease (AD) is the most prevalent form of dementia, and its effective disease modifying therapies are desperately needed. Promotion of non-amyloidogenic alpha (α)-secretase cleavage of amyloid precursor protein (APP) to release soluble sAPPα, based on the most widely accepted “amyloid model” as a plausible mechanism for AD treatment, is the focus of this review. Modulation of α-secretase or “a disintegrin and metalloprotease (ADAM)”s activity via protein kinase C (PKC), calcium ion (Ca2+), tyrosine kinase (TK), MAP kinase (MAPK), and hormonal signaling, which regulate catabolic processing of APP, are discussed. The inhibition of amyloidogenic processing of APP by the beta (β)-and gamma (γ)-secretase has been considered till now a promising strategy to treat AD. But β- and γ-secretase inhibitors, along with the available therapeutic tools for AD, have side effects. These challenges can be circumvented to certain extent; but activation of sAPPα release appears to be a potential alternative strategy to reduce cerebral amyloidosis. Drug screens have been performed to identify therapeutics for AD, but an effective screening strategy to isolate activators of α-secretase has been rarely reported. Novel reporter-based screens targeted toward APP mRNA 5 untranslated region (UTR), followed by counterscreens to detect α-secretase stimulators, could be important in detecting compounds to promote sAPPα release and reduce amyloid beta (Aβ) buildup. The primary inflammatory cytokine interleukin-1, which stimulates APP 5UTR-directed translation of cell-associated APP, enhances processing to sAPPα in astrocytes and co-activates ADAM-10/ADAM-17 through MAPK signaling; thus illustrating a novel pathway that could serve as therapeutic model for AD.

Keywords: APP proteolysis, soluble sAPPα, ADAM activators, signaling, drug screens, interleukin-1


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy