Abstract
Correcting aberrant folds that develop during protein folding disease states is now an active research endeavor that is attracting increasing attention from both academic and industrial circles. One particular approach focuses on developing or identifying small molecule correctors or pharmacological chaperones that specifically stabilize the native fold. Unfortunately, the limited screening platforms available to rapidly identify or validate potential drug candidates are usually inadequate or slow because the folding disease proteins in question are often transiently folded and/or aggregationprone, complicating and/or interfering with the assay outcomes. In this review, we outline and discuss the numerous platform options currently being employed to identify small molecule therapeutics for folding diseases. Finally, we describe a new stability screening approach that is broad based and is easily applicable toward a very large number of both common and rare protein folding diseases. The label free screening method described herein couples the promiscuity of the GroEL binding to transient aggregation-prone hydrophobic folds with surface plasmon resonance enabling one to rapidly identify potential small molecule pharmacological chaperones.
Keywords: Protein misfolding, missense mutations, pharmacological chaperones, GroEL chaperonin, Surface Plasmon Resonance
Current Topics in Medicinal Chemistry
Title:On the Design of Broad Based Screening Assays to Identify Potential Pharmacological Chaperones of Protein Misfolding Diseases
Volume: 12 Issue: 22
Author(s): Subhashchandra Naik, Na Zhang, Phillip Gao and Mark T. Fisher
Affiliation:
Keywords: Protein misfolding, missense mutations, pharmacological chaperones, GroEL chaperonin, Surface Plasmon Resonance
Abstract: Correcting aberrant folds that develop during protein folding disease states is now an active research endeavor that is attracting increasing attention from both academic and industrial circles. One particular approach focuses on developing or identifying small molecule correctors or pharmacological chaperones that specifically stabilize the native fold. Unfortunately, the limited screening platforms available to rapidly identify or validate potential drug candidates are usually inadequate or slow because the folding disease proteins in question are often transiently folded and/or aggregationprone, complicating and/or interfering with the assay outcomes. In this review, we outline and discuss the numerous platform options currently being employed to identify small molecule therapeutics for folding diseases. Finally, we describe a new stability screening approach that is broad based and is easily applicable toward a very large number of both common and rare protein folding diseases. The label free screening method described herein couples the promiscuity of the GroEL binding to transient aggregation-prone hydrophobic folds with surface plasmon resonance enabling one to rapidly identify potential small molecule pharmacological chaperones.
Export Options
About this article
Cite this article as:
Naik Subhashchandra, Zhang Na, Gao Phillip and T. Fisher Mark, On the Design of Broad Based Screening Assays to Identify Potential Pharmacological Chaperones of Protein Misfolding Diseases, Current Topics in Medicinal Chemistry 2012; 12 (22) . https://dx.doi.org/10.2174/1568026611212220006
DOI https://dx.doi.org/10.2174/1568026611212220006 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more
Challenges, Consequences and Possible Treatments of Anticancer Drug Discovery ll
The use of several compounds has been the subject of increasing interest in phytochemistry, biochemistry, and other fields of research at the chemistry-biology-ecosystems interface. In spite of the continued search for new anticancer drugs, cancer remains a leading cause of death. Cancer mortalities are expected to increase to 12.9 million, ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Chronic Cerebrospinal Venous Insufficiency (CCSVI) and Multiple Sclerosis (MS): A Critical Review
CNS & Neurological Disorders - Drug Targets Patient-Specific Induced Pluripotent Stem Cell Models in Mitochondrial Diseases
Current Stem Cell Research & Therapy Erythropoietin Signaling and Neuroprotection
Current Signal Transduction Therapy Functional Roles of Mesenchymal Stem Cell-derived Exosomes in Ischemic Stroke Treatment
Current Stem Cell Research & Therapy Mesenchymal Stromal Cells from Umbilical Cord Blood
Current Stem Cell Research & Therapy Oxidative Stress and Mitochondrial Dysfunction in Type 2 Diabetes
Current Pharmaceutical Design Cytokine-Induced Depression: Current Status and Novel Targets for Depression Therapy
CNS & Neurological Disorders - Drug Targets Targeting Mitochondrial Dysfunction in Chronic Heart Failure: Current Evidence and Potential Approaches
Current Pharmaceutical Design Securinine Derivatives as Potential Anti-amyloid Therapeutic Approach
CNS & Neurological Disorders - Drug Targets Copper Status Abnormalities and How to Measure Them in Neurodegenerative Disorders
Recent Patents on CNS Drug Discovery (Discontinued) Meet the Editorial Board:
Technology Transfer and Entrepreneurship (Discontinued) Mitochondria: A Promising Target for Anticancer Alkaloids
Current Topics in Medicinal Chemistry Biomarkers and Future Targets for Development in Amyotrophic Lateral Sclerosis
Current Medicinal Chemistry Role of Sirtuins and Calorie Restriction in Neuroprotection: Implications in Alzheimers and Parkinsons Diseases
Current Pharmaceutical Design A Perspective on Monoamine Oxidase Enzyme as Drug Target: Challenges and Opportunities
Current Drug Targets Alzheimer´s Disease and Oxidative Stress: A Review
Current Medicinal Chemistry Inflammation in the CNS: Understanding Various Aspects of the Pathogenesis of Alzheimer's Disease
Current Alzheimer Research Iron Chelating Strategies in Systemic Metal Overload, Neurodegeneration and Cancer
Current Medicinal Chemistry Is Innate Immunity and Inflammasomes Involved in Pathogenesis of Amyotrophic Lateral Sclerosis (ALS)?
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Multi-Target Directed Compounds with Antioxidant and/or Anti- Inflammatory Properties as Potent Agents for Alzheimer’s Disease
Medicinal Chemistry