Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a DNA-binding enzyme that is activated by DNA breaks, converting them into an intracellular signal via poly(ADP-ribosyl)ation of nuclear proteins. Negatively charged polymers of ADP-ribose (PAR) attached to PARP-1 itself and histones lead to chromatin relaxation, facilitating the access of base excision/single strand break repair proteins and activating these repair enzymes. PARP inhibitors have been developed to investigate the role of PARP-1 in cell biology and to overcome DNA repair-mediated resistance of cancer cells to cytotoxic therapy. Since the early benzamide inhibitors of the 1980s PARP inhibitors, developed through structure-activity relationships and crystal structure-based drug design, that are 1,000x more potent have been identified. These novel PARP inhibitors have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation in advanced pre-clinical studies and are now under clinical evaluation. PARP inhibitors can also selectively kill cells and tumours with homozygous defects in the hereditary breast cancer genes, BRCA1 and BRCA2.
Keywords: Base excision repair/single strand break repair, Poly(ADP-ribose) polymerase-1 (PARP-1), PARP inhibitors
Anti-Cancer Agents in Medicinal Chemistry
Title: PARP Inhibitor Development for Systemic Cancer Targeting
Volume: 7 Issue: 5
Author(s): Tomasz Zaremba and Nicola Jane Curtin
Affiliation:
Keywords: Base excision repair/single strand break repair, Poly(ADP-ribose) polymerase-1 (PARP-1), PARP inhibitors
Abstract: Poly(ADP-ribose) polymerase 1 (PARP-1) is a DNA-binding enzyme that is activated by DNA breaks, converting them into an intracellular signal via poly(ADP-ribosyl)ation of nuclear proteins. Negatively charged polymers of ADP-ribose (PAR) attached to PARP-1 itself and histones lead to chromatin relaxation, facilitating the access of base excision/single strand break repair proteins and activating these repair enzymes. PARP inhibitors have been developed to investigate the role of PARP-1 in cell biology and to overcome DNA repair-mediated resistance of cancer cells to cytotoxic therapy. Since the early benzamide inhibitors of the 1980s PARP inhibitors, developed through structure-activity relationships and crystal structure-based drug design, that are 1,000x more potent have been identified. These novel PARP inhibitors have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation in advanced pre-clinical studies and are now under clinical evaluation. PARP inhibitors can also selectively kill cells and tumours with homozygous defects in the hereditary breast cancer genes, BRCA1 and BRCA2.
Export Options
About this article
Cite this article as:
Zaremba Tomasz and Curtin Jane Nicola, PARP Inhibitor Development for Systemic Cancer Targeting, Anti-Cancer Agents in Medicinal Chemistry 2007; 7 (5) . https://dx.doi.org/10.2174/187152007781668715
DOI https://dx.doi.org/10.2174/187152007781668715 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Discovery of Lead compounds targeting transcriptional regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
Innovative targets in medicinal chemistry
Medicinal chemistry continuously evolves in response to emerging healthcare needs and advancements in scientific understanding. This special issue explores the current landscape of innovative targets in medicinal chemistry, highlighting the quest for novel therapeutic avenues. From traditional drug targets such as enzymes and receptors to emerging targets like protein-protein interactions ...read more
Rechallenge Therapy in different types of cancer
Cancer is responsible for approximately 8 million deaths annually worldwide. GLOBOCAN 2020 reported 19.3 million new cases of cancer, which is projected to increase to 28.4 million by 2040. In the future, female breast cancer will be the most common cancer (11.7%), followed by lung (11.4%), colorectal (10.0%), prostate (7.3%), ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
A Simple and Reliable Approach for Assessing Anticancer Activity In Vitro
Current Medicinal Chemistry Electronic Noses in Medical Diagnostics
Current Medicinal Chemistry The Role of PEDF in Tumor Growth and Metastasis
Current Molecular Medicine Leptin, Ciliary Neurotrophic Factor, Leukemia Inhibitory Factor and Interleukin- 6: Class-I Cytokines Involved in the Neuroendocrine Regulation of the Reproductive Function
Current Protein & Peptide Science Overview of Molecular Signal Transduction of Malignant Gliomas and Correlation with Responses to Targeted Therapy Recent advances in Molecular Characterization of Glioblastoma
Current Signal Transduction Therapy Hypoxia-Inducible Factors and Sphingosine 1-Phosphate Signaling
Anti-Cancer Agents in Medicinal Chemistry Protein Kinase C as a Drug Target Implications for Drug or Diet Prevention and Treatment of Cancer
Current Drug Targets Mechanism-based Combinations with Pim Kinase Inhibitors in Cancer Treatments
Current Pharmaceutical Design Biological Importance and Therapeutic Potential of Calycopterin from <i>Dracocephalum kotschyi</i>: An Overview of Current Scientific Research Work
Recent Advances in Anti-Infective Drug Discovery Baicalin-induced Cytotoxicity and Apoptosis in Multidrug-resistant MC3/5FU Mucoepidermoid Carcinoma Cell Line
Letters in Drug Design & Discovery Pharmaceutical Perspectives of HECT-TYPE Ubiquitin Ligase Smurf1
Current Pharmaceutical Design Theranostic Systems and Strategies for Monitoring Nanomedicine-Mediated Drug Targeting
Current Pharmaceutical Biotechnology Heme Oxygenase -1 Gene Therapy: Recent Advances and Therapeutic Applications
Current Gene Therapy Prevention of Ischemic Stroke: Antithrombotic Therapy in Cardiac Embolism
Current Drug Targets Von Hippel-Lindau Disease
Current Molecular Medicine Women Tipping the Scale During Pregnancy: A Special Population for Obesity Interventions,Treatments and Clinical Trials
Current Pharmaceutical Design Marine Derived Bioactive Compounds for Breast and Prostate Cancer Treatment: A Review
Current Bioactive Compounds Targeting the Mannose Receptor with Mannosylated Subunit Vaccines
Current Medicinal Chemistry Cell-penetrating Peptides for Cancer-targeting Therapy and Imaging
Current Cancer Drug Targets Histone Deacetylase Inhibitors: A New Wave of Molecular Targeted Anticancer Agents
Recent Patents on Anti-Cancer Drug Discovery