Abstract
Genistein, a nontoxic flavonoid compound, has potent antitumor activity in various cancer cells. In the present study, we investigated whether genistein could be employed as a novel strategy to enhance the anti-tumor activity of gemcitabine using human osteosarcoma MNNG/HOS tumor model. In vitro, by MTT, electron microscopy, immunobloting and qRT-PCR assay, we found that the combination treatment of genistein and gemcitabine resulted in stronger growth inhibition and apoptosis induction through the downregulation of NF-κB activity and Akt activation in osteosarcoma cells. Moreover, the synergetic effects were observed when genistein was replaced by PI3K/Akt-pathway inhibitor (LY-294002) or NF-κB inhibitor (BAY11-7082). In vivo, the combination therapy augmented tumor growth inhibition through the down-regulation of NF-κB activity and Akt activation in xenografts. Taken together, these results provide in vitro and in vivo evidence that genistein abrogates gemcitabine-induced activation of NF-κB and increases the chemosensitization of osteosarcoma to gemcitabine. Combination therapy appears as a rational and novel approach for osteosarcoma treatment.
Keywords: Akt, Apoptosis, Gemcitabine, Genistein, NF-κB, Osteosarcoma, Immunoblotting, Electron Microscopy, Xenograft, Electrophoretic, Immunohistochemistry
Anti-Cancer Agents in Medicinal Chemistry
Title:Genistein Potentiates the Anti-cancer Effects of Gemcitabine in Human Osteosarcoma via the Downregulation of Akt and Nuclear Factor-κB Pathway
Volume: 12 Issue: 5
Author(s): Chengzhen Liang, Hao Li, Chengchun Shen, Jianbo Lai, Zhongli Shi, Bing Liu and Hui-min Tao
Affiliation:
Keywords: Akt, Apoptosis, Gemcitabine, Genistein, NF-κB, Osteosarcoma, Immunoblotting, Electron Microscopy, Xenograft, Electrophoretic, Immunohistochemistry
Abstract: Genistein, a nontoxic flavonoid compound, has potent antitumor activity in various cancer cells. In the present study, we investigated whether genistein could be employed as a novel strategy to enhance the anti-tumor activity of gemcitabine using human osteosarcoma MNNG/HOS tumor model. In vitro, by MTT, electron microscopy, immunobloting and qRT-PCR assay, we found that the combination treatment of genistein and gemcitabine resulted in stronger growth inhibition and apoptosis induction through the downregulation of NF-κB activity and Akt activation in osteosarcoma cells. Moreover, the synergetic effects were observed when genistein was replaced by PI3K/Akt-pathway inhibitor (LY-294002) or NF-κB inhibitor (BAY11-7082). In vivo, the combination therapy augmented tumor growth inhibition through the down-regulation of NF-κB activity and Akt activation in xenografts. Taken together, these results provide in vitro and in vivo evidence that genistein abrogates gemcitabine-induced activation of NF-κB and increases the chemosensitization of osteosarcoma to gemcitabine. Combination therapy appears as a rational and novel approach for osteosarcoma treatment.
Export Options
About this article
Cite this article as:
Liang Chengzhen, Li Hao, Shen Chengchun, Lai Jianbo, Shi Zhongli, Liu Bing and Tao Hui-min, Genistein Potentiates the Anti-cancer Effects of Gemcitabine in Human Osteosarcoma via the Downregulation of Akt and Nuclear Factor-κB Pathway, Anti-Cancer Agents in Medicinal Chemistry 2012; 12 (5) . https://dx.doi.org/10.2174/187152012800617867
DOI https://dx.doi.org/10.2174/187152012800617867 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Discovery of Lead compounds targeting transcriptional regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
Induction of cell death in cancer cells by modulating telomerase activity using small molecule drugs
Telomeres are distinctive but short stretches present at the corners of chromosomes that aid in stabilizing chromosomal makeup. The resynthesis of telomeres is supported by the activity of reverse transcriptase ribonucleoprotein complex telomerase. There is no telomerase activity in human somatic cells, but the stem cells and germ cells undergo ...read more
Innovative targets in medicinal chemistry
Medicinal chemistry continuously evolves in response to emerging healthcare needs and advancements in scientific understanding. This special issue explores the current landscape of innovative targets in medicinal chemistry, highlighting the quest for novel therapeutic avenues. From traditional drug targets such as enzymes and receptors to emerging targets like protein-protein interactions ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Transcriptionomic Study on Apoptosis of SKOV-3 Cells Induced by Phycoerythrin from <i>Gracilaria lemaneiformis</i>
Anti-Cancer Agents in Medicinal Chemistry Can PPARγ Ligands Be Used in Cancer Therapy?
Current Medicinal Chemistry - Anti-Cancer Agents Molecular Properties and Medical Applications of Peptide Nucleic Acids
Mini-Reviews in Medicinal Chemistry Prevention and Treatment of Bone Metastases
Current Pharmaceutical Design Gambogic Acid is a Novel Anti-cancer Agent that Inhibits Cell Proliferation, Angiogenesis and Metastasis
Anti-Cancer Agents in Medicinal Chemistry Naturally Occurring Steroidal Saponins as Potential Anticancer Agents: Current Developments and Mechanisms of Action
Current Topics in Medicinal Chemistry Self-Assembled Micelles of Amphiphilic PEGylated Drugs for Cancer Treatment
Current Drug Targets Emerging Therapeutic Approaches Based on Nanotechnology for the Treatment of Diseases Associated with Telomere Dysfunction
Mini-Reviews in Medicinal Chemistry EDITORIAL [Hot Topic-I: Molecular and Pharmacological Aspects of Existing and Experimental Bone Anabolic Therapies (Guest Editor: Naibedya Chattopadhyay)]
Current Molecular Pharmacology Complications of Paget Bone Disease: A Study of 69 Patients
Current Rheumatology Reviews Trans-Platinum Complexes with Promising Antitumor Properties
Medicinal Chemistry Reviews - Online (Discontinued) Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases
Current Genomics Na<sup>+</sup>/K<sup>+</sup> ATPase Inhibitors in Cancer
Current Drug Targets miR-126 as a Therapeutic Agent for Diabetes Mellitus
Current Pharmaceutical Design Engineered Nanoparticles Against MDR in Cancer: The State of the Art and its Prospective
Current Pharmaceutical Design Bioactive Triterpenic Acids: From Agroforestry Biomass Residues to Promising Therapeutic Tools
Mini-Reviews in Organic Chemistry Modulation of Tumour-Related Signaling Pathways by Natural Pentacyclic Triterpenoids and their Semisynthetic Derivatives
Current Medicinal Chemistry Nanomaterials of Natural Bioactive Compounds for Wound Healing: Novel Drug Delivery Approach
Current Drug Delivery Nanomedical Applications of Amphiphilic Dendrimeric Micelles
Current Medicinal Chemistry Recent Advances of Small Molecule Focal Adhesion Kinase (FAK) Inhibitors as Promising Anticancer Therapeutics
Current Medicinal Chemistry