Abstract
Innate immune responses in the central nervous system must be tightly regulated as unrestrained activation generates a chronic inflammatory environment that can contribute to neurodegeneration and autoimmunity. Microglia express a wide variety of receptors of the innate immune system and are competent responders to danger. Toll-like receptor-, NOD-like receptor- and RIG1-like receptor mediated activation of microglia leads to the production of pro-inflammatory cytokines and to the upregulation of molecules implicated in activation of the adaptive immune system. Activated microglia are a characteristic feature of many neuroinflammatory disorders and they represent an attractive therapeutic target.
This review describes the mechanisms that are at play to restrain microglia activation under homeostatic conditions, such as CD172a, CD200R, SIGIRR and TREM2-mediated signaling, as well as dynamic inhibitory mechanisms that are at play during inflammatory conditions, such as adenosine receptor-mediated signaling. In addition, intracellular activating and inhibitory signaling cascades are summarized in detail and their therapeutic potential is analyzed.
Keywords: Adenosine receptor, microglia, NOD-like receptor, nuclear factor-B, regulation, RIG1-like receptor, Toll-like receptor, innate immunity, pattern-recognition receptors, PRR, PAMPs, DAMPs, leucine-rich repeats, interferon-regulatory factor, MyD88, TRAM, SARM, Alzheimer's disease, NACHT domain, caspase recruitment domain, MHCII, Listeria monocytogenes, Staphylococcus aureus, N. meningitidis, B. burgdorferi, S. pneumoniae, XIAP, flaviviruses, vesicular stomatitis virus, West Nile virus, coronavirus, mouse hepatitis virus, SIGIRR, ITIM, DC-SIGN, ADORA, TRIAD3A, TRAIL, RIP1, IFN therapy, deubiquitinating enzyme, NEMO, SIKE, Glucocorticoid receptor, ICEBERG, CD172a, CD200R, TREM2
CNS & Neurological Disorders - Drug Targets
Title: Regulation of Innate Immune Responses in the Central Nervous System
Volume: 10 Issue: 1
Author(s): Jeffrey J. Bajramovic
Affiliation:
Keywords: Adenosine receptor, microglia, NOD-like receptor, nuclear factor-B, regulation, RIG1-like receptor, Toll-like receptor, innate immunity, pattern-recognition receptors, PRR, PAMPs, DAMPs, leucine-rich repeats, interferon-regulatory factor, MyD88, TRAM, SARM, Alzheimer's disease, NACHT domain, caspase recruitment domain, MHCII, Listeria monocytogenes, Staphylococcus aureus, N. meningitidis, B. burgdorferi, S. pneumoniae, XIAP, flaviviruses, vesicular stomatitis virus, West Nile virus, coronavirus, mouse hepatitis virus, SIGIRR, ITIM, DC-SIGN, ADORA, TRIAD3A, TRAIL, RIP1, IFN therapy, deubiquitinating enzyme, NEMO, SIKE, Glucocorticoid receptor, ICEBERG, CD172a, CD200R, TREM2
Abstract: Innate immune responses in the central nervous system must be tightly regulated as unrestrained activation generates a chronic inflammatory environment that can contribute to neurodegeneration and autoimmunity. Microglia express a wide variety of receptors of the innate immune system and are competent responders to danger. Toll-like receptor-, NOD-like receptor- and RIG1-like receptor mediated activation of microglia leads to the production of pro-inflammatory cytokines and to the upregulation of molecules implicated in activation of the adaptive immune system. Activated microglia are a characteristic feature of many neuroinflammatory disorders and they represent an attractive therapeutic target.
This review describes the mechanisms that are at play to restrain microglia activation under homeostatic conditions, such as CD172a, CD200R, SIGIRR and TREM2-mediated signaling, as well as dynamic inhibitory mechanisms that are at play during inflammatory conditions, such as adenosine receptor-mediated signaling. In addition, intracellular activating and inhibitory signaling cascades are summarized in detail and their therapeutic potential is analyzed.
Export Options
About this article
Cite this article as:
J. Bajramovic Jeffrey, Regulation of Innate Immune Responses in the Central Nervous System, CNS & Neurological Disorders - Drug Targets 2011; 10 (1) . https://dx.doi.org/10.2174/187152711794488610
DOI https://dx.doi.org/10.2174/187152711794488610 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
Call for Papers in Thematic Issues
Heart and Brain Axis Targets in CNS Neurological Disorders
Recently there has been a surge of interest in delving deeper into the complex interplay between the heart and brain. This fascination stems from a growing recognition of the profound influence each organ holds over the other, particularly in the realm of central nervous system (CNS) neurological disorders. The purpose ...read more
Lifestyle Interventions to Prevent and Treat Cognitive Impairment and Dementia
More than 55 million people live with dementia worldwide. By 2050, the population affected by dementia will exceed 139 million individuals. Mild cognitive impairment (MCI) is a pre-dementia stage, also known as prodromal dementia, affecting older adults. MCI emerges years before the manifestation of dementia but can be avoidable and ...read more
Pathogenic Proteins in Neurodegenerative Diseases: From Mechanisms to Treatment Modalities
The primary objective of this thematic issue is to elucidate the molecular mechanisms by which pathogenic proteins contribute to neurodegenerative diseases and to highlight current and emerging therapeutic strategies aimed at mitigating their effects. By bringing together cutting-edge research and reviews, this issue aims to: 1.Enhance Understanding: Provide a comprehensive ...read more
Role of glial cells in autism spectrum disorder: Molecular mechanism and therapeutic approaches
Emerging evidence suggests that glial cells may play a pivotal role in neuroanatomical and behavioral changes found in autism spectrum disorder (ASD). Many individuals with ASD experience a neuro-immune system abnormalities throughout life, which implicates a potential role of microglia in the pathogenesis of ASD. Dysfunctional astrocytes and oligodendrocytes were ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
CD248: Reviewing its Role in Health and Disease
Current Drug Targets Editorial [Hot Topic: Targeted Therapies in Oncology (Guest Editor: Monica M. Mita)]
Current Drug Targets A Fresh Prospect of Extracellular Matrix Hydrolytic Enzymes and Their Substrates
Current Pharmaceutical Design Immune Modulation by Ionizing Radiation and its Implications for Cancer Immunotherapy
Current Pharmaceutical Design Molecular Markers of Angiogenesis and Metastasis in Lines of Oral Carcinoma after Treatment with Melatonin
Anti-Cancer Agents in Medicinal Chemistry Recent Developments in Boron Neutron Capture Therapy (BNCT) Driven by Nanotechnology
Current Chemical Biology Recent Findings Confirm LIM Domain Kinases as Emerging Target Candidates for Cancer Therapy
Current Cancer Drug Targets Use of Novel m6A Regulator-mediated Methylation Modification Patterns in Distinct Tumor Microenvironment Profiles to Identify and Predict Glioma Prognosis and Progression, T-cell Dysfunction, and Clinical Response to ICI Immunotherapy
Current Pharmaceutical Design Targeting Signaling Pathway by Curcumin in Osteosarcoma
Current Molecular Pharmacology Na, K-ATPase as a Biological Target for Gold(III) Complexes: A Theoretical and Experimental Approach
Current Medicinal Chemistry Comparison of Anticancer Properties of Annona muricata L. Acetonic and Methanolic Leaf Extracts
The Natural Products Journal HDAC4-mediated Deacetylation of Glutaminase Facilitates Glioma Stemness
Current Cancer Drug Targets Inhibitors of Cyclin Dependent Kinases: Useful Targets for Cancer Treatment
Current Cancer Drug Targets Endothelial Progenitor Cells: Hope Beyond Controversy
Current Cancer Drug Targets Exploring a Novel Target Treatment on Breast Cancer: Aloe-emodin Mediated Photodynamic Therapy Induced Cell Apoptosis and Inhibited Cell Metastasis
Anti-Cancer Agents in Medicinal Chemistry Application of Spray-drying and Electrospraying/Electospinning for Poorly Watersoluble Drugs: A Particle Engineering Approach
Current Pharmaceutical Design Survey on the Techniques for Classification and Identification of Brain Tumour Types from MRI Images Using Deep Learning Algorithms
Recent Advances in Computer Science and Communications Enzyme-responsive Nanoparticles for Anticancer Drug Delivery
Current Nanoscience A Combination of Two Antioxidants (An SOD Mimic and Ascorbate) Produces a Pro-Oxidative Effect Forcing Escherichia coli to Adapt Via Induction of oxyR Regulon
Anti-Cancer Agents in Medicinal Chemistry Advances in Synergistic Combinations of Chinese Herbal Medicine for the Treatment of Cancer
Current Cancer Drug Targets