Abstract
Metal ions, particularly copper, zinc and iron, are implicated in several amyloidogenic neurodegenerative disorders. In the brain, as elsewhere in the body, metal ion excess or deficiency can potentially inhibit protein function, interfere with correct protein folding or, in the case of iron or copper, promote oxidative stress. The involvement of metal ions in neurodegenerative disorders has made them an emerging target for therapeutic interventions. One approach has been to chelate and sequester the ions and thus limit their potential to interfere with protein folding or render them unable to undergo redox processes. Newer approaches suggest that redistributing metal ions has therapeutic benefits, and recent studies indicate that alleviating cellular copper deficiency may be a plausible way to limit neurodegeneration. In this review we discuss the role of metals in amyloidogenic, neurodegenerative disorders and highlight some mechanisms and compounds used in various therapeutic approaches.
Keywords: Alzheimer's, chelator, copper, iron, neurodegeneration, Parkinson's, prion, redox, Creutzfeldt-Jakob disease, oxidative stress, neurodegenerative disorders, synucleinopathies, synuclein, zinc
Current Topics in Medicinal Chemistry
Title: Reorganizing Metals: the Use of Chelating Compounds as Potential Therapies for Metal-Related Neurodegenerative Disease
Volume: 11 Issue: 5
Author(s): Alison C. Badrick and Christopher E. Jones
Affiliation:
Keywords: Alzheimer's, chelator, copper, iron, neurodegeneration, Parkinson's, prion, redox, Creutzfeldt-Jakob disease, oxidative stress, neurodegenerative disorders, synucleinopathies, synuclein, zinc
Abstract: Metal ions, particularly copper, zinc and iron, are implicated in several amyloidogenic neurodegenerative disorders. In the brain, as elsewhere in the body, metal ion excess or deficiency can potentially inhibit protein function, interfere with correct protein folding or, in the case of iron or copper, promote oxidative stress. The involvement of metal ions in neurodegenerative disorders has made them an emerging target for therapeutic interventions. One approach has been to chelate and sequester the ions and thus limit their potential to interfere with protein folding or render them unable to undergo redox processes. Newer approaches suggest that redistributing metal ions has therapeutic benefits, and recent studies indicate that alleviating cellular copper deficiency may be a plausible way to limit neurodegeneration. In this review we discuss the role of metals in amyloidogenic, neurodegenerative disorders and highlight some mechanisms and compounds used in various therapeutic approaches.
Export Options
About this article
Cite this article as:
C. Badrick Alison and E. Jones Christopher, Reorganizing Metals: the Use of Chelating Compounds as Potential Therapies for Metal-Related Neurodegenerative Disease, Current Topics in Medicinal Chemistry 2011; 11 (5) . https://dx.doi.org/10.2174/156802611794785181
DOI https://dx.doi.org/10.2174/156802611794785181 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more
Challenges, Consequences and Possible Treatments of Anticancer Drug Discovery ll
The use of several compounds has been the subject of increasing interest in phytochemistry, biochemistry, and other fields of research at the chemistry-biology-ecosystems interface. In spite of the continued search for new anticancer drugs, cancer remains a leading cause of death. Cancer mortalities are expected to increase to 12.9 million, ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Induced Pluripotent Stem Cells in Regenerative Medicine and Disease Modeling
Current Stem Cell Research & Therapy Red Cell Glycolytic Enzyme Disorders Caused by Mutations: An Update
Cardiovascular & Hematological Disorders-Drug Targets Extracellular Superoxide Dismutase (EC-SOD) Quenches Free Radicals and Attenuates Age-Related Cognitive Decline: Opportunities for Novel Drug Development in Aging
Current Alzheimer Research miR-126 as a Therapeutic Agent for Diabetes Mellitus
Current Pharmaceutical Design Synthetic and Natural Products as Iron Chelators
Current Topics in Medicinal Chemistry Cannabinoids
Current Drug Targets - CNS & Neurological Disorders The Novel Multi-Target Iron Chelator, M30 Modulates HIF-1α-Related Glycolytic Genes and Insulin Signaling Pathway in the Frontal Cortex of APP/PS1 Alzheimer’s Disease Mice
Current Alzheimer Research Selective Acetyl- and Butyrylcholinesterase Inhibitors Reduce Amyloid-β Ex Vivo Activation of Peripheral Chemo-cytokines From Alzheimer's Disease Subjects: Exploring the Cholinergic Anti-inflammatory Pathway
Current Alzheimer Research Alzheimer's Disease: A Systemic Review of Substantial Therapeutic Targets and the Leading Multi-functional Molecules
Current Topics in Medicinal Chemistry The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders
Current Neuropharmacology Impaired Insulin Sensitivity and Secretion in Patients with Alzheimer’s Disease: The Relationship with Other Atherosclerosis Risk Factors
Current Vascular Pharmacology Quetiapine Modulates Conditioned Anxiety and Alternation Behavior in Alzheimer’s Transgenic Mice
Current Alzheimer Research A Randomized, Double-Blind, Placebo-Controlled, 16-Week Study of the H<sub>3</sub> Receptor Antagonist, GSK239512 as a Monotherapy in Subjects with Mild-to-Moderate Alzheimer’s Disease
Current Alzheimer Research The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection
Current Neuropharmacology Current Therapeutic Molecules and Targets in Neurodegenerative Diseases Based on in silico Drug Design
Current Neuropharmacology Therapeutic Macromolecular Iron Chelators
Current Medicinal Chemistry Clinical Evaluation of the Effect of Blueberries Consumption on Chronic Diseases, Illness Prevention and Health Promotion
The Natural Products Journal Epigenetics in Alzheimers Disease: a Focus on DNA Modifications
Current Pharmaceutical Design Glutamate Receptors in Microglia
CNS & Neurological Disorders - Drug Targets Identification of Potent Caspase-3 Inhibitors for Treatment of Multi- Neurodegenerative Diseases Using Pharmacophore Modeling and Docking Approaches
CNS & Neurological Disorders - Drug Targets