Abstract
The dynamics of gene expression are regulated by histone acetylases (HATs) and histone deacetylases (HDACs) that control the acetylation state of lysine side chains of the histone proteins of chromatin. The catalytic activity of these two enzymes remodels chromatin to control gene expression without altering gene sequence. Treatment of cancer has been the primary target for the clinical development of HDAC inhibitors, culminating in approval for the first HDAC inhibitor for the treatment of cutaneous T cell lymphoma. Beyond cancer, HDAC inhibition has potential for the treatment of many other diseases. The HDAC inhibitors phenylbutyric acid, valproic acid, and suberoylanilide hydroxamic acid (SAHA) have been shown to correct errant gene expression, ameliorate the progression of disease, and restore absent synthetic or metabolic activities for a diverse group of non-cancer disorders. These benefits have been found in patients with sickle cell anemia, HIV, and cystic fibrosis. In vitro and in vivo models of spinal muscular atrophy, muscular dystrophy, and neurodegenerative, and inflammatory disorders also show response to HDAC inhibitors. This review examines the application of HDAC inhibition as a treatment for a wide-range of non-cancer disorders, many of which are rare diseases that urgently need therapy. Inhibition of the HDACs has general potential as a pharmacological epigenetic approach for gene therapy.
Current Topics in Medicinal Chemistry
Title: Inhibition of Histone Deacetylases: A Pharmacological Approach to the Treatment of Non-Cancer Disorders
Volume: 9 Issue: 3
Author(s): Norbert L. Wiech, Jed F. Fisher, Paul Helquist and Olaf Wiest
Affiliation:
Abstract: The dynamics of gene expression are regulated by histone acetylases (HATs) and histone deacetylases (HDACs) that control the acetylation state of lysine side chains of the histone proteins of chromatin. The catalytic activity of these two enzymes remodels chromatin to control gene expression without altering gene sequence. Treatment of cancer has been the primary target for the clinical development of HDAC inhibitors, culminating in approval for the first HDAC inhibitor for the treatment of cutaneous T cell lymphoma. Beyond cancer, HDAC inhibition has potential for the treatment of many other diseases. The HDAC inhibitors phenylbutyric acid, valproic acid, and suberoylanilide hydroxamic acid (SAHA) have been shown to correct errant gene expression, ameliorate the progression of disease, and restore absent synthetic or metabolic activities for a diverse group of non-cancer disorders. These benefits have been found in patients with sickle cell anemia, HIV, and cystic fibrosis. In vitro and in vivo models of spinal muscular atrophy, muscular dystrophy, and neurodegenerative, and inflammatory disorders also show response to HDAC inhibitors. This review examines the application of HDAC inhibition as a treatment for a wide-range of non-cancer disorders, many of which are rare diseases that urgently need therapy. Inhibition of the HDACs has general potential as a pharmacological epigenetic approach for gene therapy.
Export Options
About this article
Cite this article as:
Wiech L. Norbert, Fisher F. Jed, Helquist Paul and Wiest Olaf, Inhibition of Histone Deacetylases: A Pharmacological Approach to the Treatment of Non-Cancer Disorders, Current Topics in Medicinal Chemistry 2009; 9 (3) . https://dx.doi.org/10.2174/156802609788085241
DOI https://dx.doi.org/10.2174/156802609788085241 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more
Challenges, Consequences and Possible Treatments of Anticancer Drug Discovery ll
The use of several compounds has been the subject of increasing interest in phytochemistry, biochemistry, and other fields of research at the chemistry-biology-ecosystems interface. In spite of the continued search for new anticancer drugs, cancer remains a leading cause of death. Cancer mortalities are expected to increase to 12.9 million, ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Gene and Stem Cell Therapy in the Treatment of Erectile Dysfunction and Pulmonary Hypertension; Potential Treatments for the Common Problem of Endothelial Dysfunction
Current Gene Therapy Analogs of Cinnamic Acid Benzyl Amide As Nonclassical Inhibitors of Activated JAK2 Kinase
Current Cancer Drug Targets The Accomplices of NF-κB Lead to Radioresistance
Current Protein & Peptide Science Interactions of the Aryl Hydrocarbon Receptor with Inflammatory Mediators:Beyond CYP1A Regulation
Current Drug Metabolism The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases
Current Neuropharmacology Ceramide and Apoptosis: Exploring the Enigmatic Connections between Sphingolipid Metabolism and Programmed Cell Death
Anti-Cancer Agents in Medicinal Chemistry Expression of Histone Acetyltransferase GCN5 and Histone Deacetylase 1 in the Cultured Mouse Preimplantation Embryos
Current Pharmaceutical Design Yin and Yang of Polyphenols in Cancer Prevention: A Short Review
Anti-Cancer Agents in Medicinal Chemistry Theranostic Systems and Strategies for Monitoring Nanomedicine-Mediated Drug Targeting
Current Pharmaceutical Biotechnology Inhibition of Ataxia Telangiectasia-p53-E2F-1 Pathway in Neurons as a Target for the Prevention of Neuronal Apoptosis
Current Drug Metabolism Mesenchymal Stromal Cells: A Promising Cell Source for the Treatment of Inflammatory Cardiomyopathy
Current Pharmaceutical Design The Impact of Molecularly Targeted Therapies Upon the Understanding of Leukemogenesis and the Role of Hematopoietic Stem Cell Transplantation in Acute Promyelocytic Leukemia
Current Stem Cell Research & Therapy P-Glycoprotein Mediated Multidrug Resistance Reversal by Phytochemicals: A Review of SAR & Future Perspective for Drug Design
Current Topics in Medicinal Chemistry Tubulin Maytansine Site Binding Ligands and their Applications as MTAs and ADCs for Cancer Therapy
Current Medicinal Chemistry miR-149 as a Potential Molecular Target for Cancer
Current Medicinal Chemistry Antibody Based Therapies in Acute Leukemia
Current Drug Targets Development of Aptamer-Based Nanomaterials for Biological Analysis
Current Molecular Medicine Carboranylporphyrins for Boron Neutron Capture Therapy of Cancer
Current Medicinal Chemistry - Anti-Cancer Agents MicroRNAs: A Novel Therapeutic Target for Schizophrenia
Current Pharmaceutical Design Targeting Tumors Using Estrogen Receptor Ligand Conjugates
Current Cancer Drug Targets