Abstract
Glucocorticoid Receptors (GRs) have been identified in all bone cells. The molecular structure of human GR is organized into 3 major functional domains: the N-terminal immunogenic domain, the central DNA-binding domain and the C-terminal ligand-binding domain. Human GR is a product of a gene composed of 10 exons, located in the chromosome 5q31-32. An alternative splicing in exon 9 gives rise to 2 mRNAs encoding the classical hGRα and hGRβ isoforms. Human GRα is present in the cytoplasm of almost all cells, as a multiprotein complex and works as a ligand-dependent transcription factor. In contrast to hGRα, hGRβ is located in the nucleus, does not bind hormone or activate glucocorticoid (GC)-response genes. It works as a dominant negative inhibitor of hGRα. The effects of GCs are - at least in part - mediated via specific GRs (genomic effect), however GCs also have acute non genomic effects. Osteoblasts are the most obvious target of GCs in bone, suppressing their maturation, activity and survival. Osteoblasts stimulate osteoclastic activity through the RANKL-osteoprotegerin-RANK system, but this effect is weaned off rapidly by the incoming suppression of the global osteoblast activity. The direct action of GCs on osteoclasts results almost invariably in a suppression of cell activity. When exposed to high concentrations of GCs, osteocytes undergo a slow process of apoptosis. Osteocytes with their dendritic network sense the skeletal strain and stress of normal daily activities. This continuous stimulus prevents the production of sclerostin and possibly DKK1, which are able to strongly suppress osteoblast formation by interacting with the Wnt system. GCs are thought to stimulate sclerostin secretion from osteocytes.
Keywords: Glucocorticoid, glucocorticoid receptors, osteocyte, N-terminal immunogenic domain, DNA-binding domain, chromosome 5q31-32, hGR isoforms, Osteoblasts, RANKL-osteoprotegerin-RANK system, osteoblast, osteoclast, osteoporosis, immunogenic domain, ligand-binding domain, mitogen-activated protein kinase signaling system, pro-inflammatory cytokines, ubiquitination, sumoylation, TRANSACTIVATION, NFkB, dickkopf-1, TRANSREPRESSION, GC-GR monodimers, RANKL, adipocytic lineage, osteocytic lacunae, Bisphosphonates, sclerostin, osteoclastogenesis, DKK1, apoptosis
Current Pharmaceutical Design
Title: Glucocorticoid Receptors and Bone
Volume: 16 Issue: 32
Author(s): Renato La Corte, Francesco Trotta and Silvano Adami
Affiliation:
Keywords: Glucocorticoid, glucocorticoid receptors, osteocyte, N-terminal immunogenic domain, DNA-binding domain, chromosome 5q31-32, hGR isoforms, Osteoblasts, RANKL-osteoprotegerin-RANK system, osteoblast, osteoclast, osteoporosis, immunogenic domain, ligand-binding domain, mitogen-activated protein kinase signaling system, pro-inflammatory cytokines, ubiquitination, sumoylation, TRANSACTIVATION, NFkB, dickkopf-1, TRANSREPRESSION, GC-GR monodimers, RANKL, adipocytic lineage, osteocytic lacunae, Bisphosphonates, sclerostin, osteoclastogenesis, DKK1, apoptosis
Abstract: Glucocorticoid Receptors (GRs) have been identified in all bone cells. The molecular structure of human GR is organized into 3 major functional domains: the N-terminal immunogenic domain, the central DNA-binding domain and the C-terminal ligand-binding domain. Human GR is a product of a gene composed of 10 exons, located in the chromosome 5q31-32. An alternative splicing in exon 9 gives rise to 2 mRNAs encoding the classical hGRα and hGRβ isoforms. Human GRα is present in the cytoplasm of almost all cells, as a multiprotein complex and works as a ligand-dependent transcription factor. In contrast to hGRα, hGRβ is located in the nucleus, does not bind hormone or activate glucocorticoid (GC)-response genes. It works as a dominant negative inhibitor of hGRα. The effects of GCs are - at least in part - mediated via specific GRs (genomic effect), however GCs also have acute non genomic effects. Osteoblasts are the most obvious target of GCs in bone, suppressing their maturation, activity and survival. Osteoblasts stimulate osteoclastic activity through the RANKL-osteoprotegerin-RANK system, but this effect is weaned off rapidly by the incoming suppression of the global osteoblast activity. The direct action of GCs on osteoclasts results almost invariably in a suppression of cell activity. When exposed to high concentrations of GCs, osteocytes undergo a slow process of apoptosis. Osteocytes with their dendritic network sense the skeletal strain and stress of normal daily activities. This continuous stimulus prevents the production of sclerostin and possibly DKK1, which are able to strongly suppress osteoblast formation by interacting with the Wnt system. GCs are thought to stimulate sclerostin secretion from osteocytes.
Export Options
About this article
Cite this article as:
La Corte Renato, Trotta Francesco and Adami Silvano, Glucocorticoid Receptors and Bone, Current Pharmaceutical Design 2010; 16 (32) . https://dx.doi.org/10.2174/138161210793797924
DOI https://dx.doi.org/10.2174/138161210793797924 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Approaches to Quantification of RNA Targets by PCR Based Techniques
Current Genomics Red Blood Cell-Encapsulated L-Asparaginase: Potential Therapy of Patients with Asparagine Synthetase Deficient Acute Myeloid Leukemia
Protein & Peptide Letters Patent Selections
Recent Patents on Inflammation & Allergy Drug Discovery Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma with Clinical Insight
Current Molecular Medicine Alternative Splicing in Chronic Myeloid Leukemia (CML): A Novel Therapeutic Target?
Current Cancer Drug Targets Design of New Drug Molecules to be Used in Reversing Multidrug Resistance in Cancer Cells
Current Cancer Drug Targets Posttranslational Regulation of O6-Methylguanine-DNA Methyltransferase (MGMT) and New Opportunities for Treatment of Brain Cancers
Mini-Reviews in Medicinal Chemistry Fragment-Based Discovery of Inhibitors of Protein Kinase B
Current Topics in Medicinal Chemistry Palifermin in theManagement of Mucositis in Hematological Malignancies: Current Evidences and Future Perspectives
Cardiovascular & Hematological Agents in Medicinal Chemistry Cytotoxic T Cell Reponses Against Immunoglobulin in Malignant and Normal B Cells: Implications for Tumor Immunity and Autoimmunity
Current Pharmaceutical Design Genes Associated with Epithelial-Mesenchymal Transition: Possible Therapeutic Targets in Ductal Pancreatic Adenocarcinoma?
Anti-Cancer Agents in Medicinal Chemistry Targeting the Nucleus: An Overview of Auger-Electron Radionuclide Therapy
Current Drug Discovery Technologies Myeloid and Lymphoid Neoplasms with Eosinophilia and Abnormalities of PDGFRA, PDGFRB or FGFR1
Current Cancer Therapy Reviews Therapeutic Transfer of DNA Encoding Adenoviral E1A
Recent Patents on Anti-Cancer Drug Discovery An Overview on 2-arylquinolin-4(1H)-ones and Related Structures as Tubulin Polymerisation Inhibitors
Current Topics in Medicinal Chemistry NADPH Oxidases NOXs and DUOXs as Putative Targets for Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Lymphatic Delivery of Anti-HIV Drug Nanoparticles
Recent Patents on Nanotechnology Synergism of Curcumin and Cytarabine in the Down Regulation of Multi-Drug Resistance Genes in Acute Myeloid Leukemia
Anti-Cancer Agents in Medicinal Chemistry Role of Tyrosine Phosphatase Inhibitors in Cancer Treatment with Emphasis on SH2 Domain-Containing Tyrosine Phosphatases (SHPs)
Anti-Cancer Agents in Medicinal Chemistry Chronic Diseases and COVID-19: A Review
Endocrine, Metabolic & Immune Disorders - Drug Targets