Abstract
During the process of tumorigenesis, certain cancers are known to develop deficiencies in one or more major pathways of DNA damage repair, rendering them critically dependent on alternative repair processes for maintaining genomic integrity and viability. Targeting these alternative DNA repair mechanisms is a potentially highly-specific anticancer strategy, as their inhibition is theoretically toxic only to tumor cells and not to normal tissues. We will review here the rationale behind this strategy and provide examples of its application. We will also discuss several as yet unanswered questions surrounding this strategy, including whether human cancers frequently harbor synthetically lethal interactions in DNA repair and, if so, how patients might be identified who would benefit from targeting such interactions.
Keywords: Radiation, chemotherapy, DNA repair, double-strand break repair, non-homologous end joining, homologous recombination, Tumorigenesis, Homologous recobmination, Mutation, Tumor-specific phenotype, PARP inhibitor, BRCA-defective tumors, Translocation, Genetic mutation, Amplification, Oncogenic stress, Cytotoxic drugs, Radiomimetics, NHEJ, PARP proteins, PARP inhibitors, Biomarkers, Oncology
Current Drug Targets
Title: Targeting Synthetic Lethality in DNA Damage Repair Pathways as an Anti-Cancer Strategy
Volume: 11 Issue: 10
Author(s): Benjamin J. Moeller, Wadih Arap and Renata Pasqualini
Affiliation:
Keywords: Radiation, chemotherapy, DNA repair, double-strand break repair, non-homologous end joining, homologous recombination, Tumorigenesis, Homologous recobmination, Mutation, Tumor-specific phenotype, PARP inhibitor, BRCA-defective tumors, Translocation, Genetic mutation, Amplification, Oncogenic stress, Cytotoxic drugs, Radiomimetics, NHEJ, PARP proteins, PARP inhibitors, Biomarkers, Oncology
Abstract: During the process of tumorigenesis, certain cancers are known to develop deficiencies in one or more major pathways of DNA damage repair, rendering them critically dependent on alternative repair processes for maintaining genomic integrity and viability. Targeting these alternative DNA repair mechanisms is a potentially highly-specific anticancer strategy, as their inhibition is theoretically toxic only to tumor cells and not to normal tissues. We will review here the rationale behind this strategy and provide examples of its application. We will also discuss several as yet unanswered questions surrounding this strategy, including whether human cancers frequently harbor synthetically lethal interactions in DNA repair and, if so, how patients might be identified who would benefit from targeting such interactions.
Export Options
About this article
Cite this article as:
J. Moeller Benjamin, Arap Wadih and Pasqualini Renata, Targeting Synthetic Lethality in DNA Damage Repair Pathways as an Anti-Cancer Strategy, Current Drug Targets 2010; 11 (10) . https://dx.doi.org/10.2174/1389450111007011336
DOI https://dx.doi.org/10.2174/1389450111007011336 |
Print ISSN 1389-4501 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-5592 |
Call for Papers in Thematic Issues
Drug-Targeted Approach with Polymer Nanocomposites for Improved Therapeutics
Polymer nanocomposites have been recognized as an advanced and cutting-edge technique in drug targeting administration. These materials combine the unique features of nanoparticles with the adaptability of polymers to produce highly personalized drug administration devices. Integrating nanoparticles containing pharmaceuticals into a polymer matrix enables researchers to regulate the rates at ...read more
New drug therapy for eye diseases
Eyesight is one of the most critical senses, accounting for over 80% of our perceptions. Our quality of life might be significantly affected by eye disease, including glaucoma, diabetic retinopathy, dry eye, etc. Although the development of microinvasive ocular surgery reduces surgical complications and improves overall outcomes, medication therapy is ...read more
Therapeutic Chemical and RNA Design with Artificial Intelligence
Computer-Aided Drug Design (CADD) has emerged as a fundamental component of modern drug discovery. Molecular docking facilitates virtual screening on a large scale through structural simulations. However, traditional CADD approaches face significant limitations, as they can only screen known compounds from existing libraries. PubChem, as the most widely used chemical ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Gefitinib Targets EGFR Dimerization and ERK1/2 Phosphorylation to Inhibit Pleural Mesothelioma Cell Proliferation
Current Cancer Drug Targets Editorial [Hot Topic Ion Fluxes and Cancer (Guest Editors: Luca Munaron and Annarosa Arcangeli)]
Recent Patents on Anti-Cancer Drug Discovery Cathepsin L Induces Proangiogenic Changes in Human Omental Microvascular Endothelial Cells via Activation of the ERK1/2 Pathway
Current Cancer Drug Targets Porphyrin-based Sensitizers in the Detection and Treatment of Cancer: Recent Progress
Current Medicinal Chemistry - Anti-Cancer Agents Genetic Mechanisms and Aberrant Gene Expression during the Development of Gastric Intestinal Metaplasia and Adenocarcinoma
Current Genomics Recent Patents on Anti-Cancer Potential of Helenalin
Recent Patents on Anti-Cancer Drug Discovery Intestinal Targeting of Drugs: Rational Design Approaches and Challenges
Current Topics in Medicinal Chemistry The Role of ABC Transporters in Drug Resistance, Metabolism and Toxicity
Current Drug Delivery New Insight into P-Glycoprotein as a Drug Target
Anti-Cancer Agents in Medicinal Chemistry Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer
Current Topics in Medicinal Chemistry Structural Analysis for Colchicine Binding Site-Targeted ATCAA Derivatives as Melanoma Antagonists
Medicinal Chemistry Urokinase-type Plasminogen Activator (uPA) and its Receptor (uPAR): Development of Antagonists of uPA / uPAR Interaction and their Effects In Vitro and In Vivo
Current Pharmaceutical Design Role of Innate Immune System in Inflammation and Cardiac Remodeling After Myocardial Infarction
Current Vascular Pharmacology Patent Selections
Recent Patents on Biotechnology The Membrane-targeted Alkylphosphocholine Erufosine Interferes with Survival Signals from the Extracellular Matrix
Anti-Cancer Agents in Medicinal Chemistry Development on PEG-modified Poly (Amino Acid) Copolymeric Micelles for Delivery of Anticancer Drug
Anti-Cancer Agents in Medicinal Chemistry Liposomes as Versatile Platform for Cancer Theranostics: Therapy, Bio-imaging, and Toxicological Aspects
Current Pharmaceutical Design Research Progress of Aging-related MicroRNAs
Current Stem Cell Research & Therapy Cytokines, Inflammation and Colon Cancer
Current Cancer Drug Targets Inhibitors of HDACs - Effective Drugs Against Cancer?
Current Cancer Drug Targets