Abstract
Among the various human cytochrome P450s (CYP450s) that catalyze the biotransformation of xenobiotics, CYP450 2D6 (CYP2D6) is one of the most important based on the number and wide variety of its drug substrates. CYP2D6 shows a high degree of interindividual variability, which is primarily due to the extensive genetic polymorphism that influences its expression and function. A number of drugs have been clinically implicated in major drug-drug interactions (DDI) via CYP2D6 inhibition. In order to avoid or minimize issues related to CYP2D6-mediated DDIs, pharmaceutical companies routinely screen for potential CYP2D6 liability of lead candidates in the early stage of the drug discovery process. This review summarizes the medicinal chemistry tactics employed to mitigate inhibitory activity at CYP2D6, identified through an extensive literature survey covering the 1998-2008 period.
Current Medicinal Chemistry
Title: Medicinal Chemistry Strategies to Reduce CYP2D6 Inhibitory Activity of Lead Candidates
Volume: 16 Issue: 24
Author(s): Bertrand Le Bourdonnec and Lara K. Leister
Affiliation:
Abstract: Among the various human cytochrome P450s (CYP450s) that catalyze the biotransformation of xenobiotics, CYP450 2D6 (CYP2D6) is one of the most important based on the number and wide variety of its drug substrates. CYP2D6 shows a high degree of interindividual variability, which is primarily due to the extensive genetic polymorphism that influences its expression and function. A number of drugs have been clinically implicated in major drug-drug interactions (DDI) via CYP2D6 inhibition. In order to avoid or minimize issues related to CYP2D6-mediated DDIs, pharmaceutical companies routinely screen for potential CYP2D6 liability of lead candidates in the early stage of the drug discovery process. This review summarizes the medicinal chemistry tactics employed to mitigate inhibitory activity at CYP2D6, identified through an extensive literature survey covering the 1998-2008 period.
Export Options
About this article
Cite this article as:
Le Bourdonnec Bertrand and Leister K. Lara, Medicinal Chemistry Strategies to Reduce CYP2D6 Inhibitory Activity of Lead Candidates, Current Medicinal Chemistry 2009; 16 (24) . https://dx.doi.org/10.2174/092986709788803033
DOI https://dx.doi.org/10.2174/092986709788803033 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements