Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Polyketide Synthase 13 (Pks13) Inhibition: A Potential Target for New Class of Anti-tubercular Agents

Author(s): Sonia Khola, Sachin Kumar, Neeru Bhanwala and Gopal L. Khatik*

Volume 24, Issue 27, 2024

Published on: 18 September, 2024

Page: [2362 - 2376] Pages: 15

DOI: 10.2174/0115680266322983240906055750

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Tuberculosis is one of the deadly infectious diseases that has resurfaced in multiple/ extensively resistant variants (MDR/XDR), threatening humankind. Today’s world has a higher prevalence of tuberculosis (TB) than it has ever had throughout human history. Due to severe adverse effects, the marketed medications are not entirely effective in these forms. So, developing new drugs with a promising target is an immense necessity. Pks13 has emerged as a promising target for the mycobacterium. The concluding step of mycolic acid production involved Pks13, a crucial enzyme that helps form the precursor of mycolic acid via the Claisen-condensation reaction. It has five domains at the active site for targeting the enzyme and is used to test chemical entities for their antitubercular activity. Benzofurans, thiophenes, coumestans, N-phenyl indoles, and β lactones are the ligands that inhibit the Pks13 enzyme, showing potential antitubercular properties.

Keywords: Tuberculosis, Mycobacterium, Polyketide synthase, Inhibitors, Multi-drug resistance, Mycolic acid.

Graphical Abstract
[1]
Kaufmann, S.H.E.; Schaible, U.E. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol., 2005, 13(10), 469-475.
[http://dx.doi.org/10.1016/j.tim.2005.08.003] [PMID: 16112578]
[2]
Spekker, O.; Hunt, D.R.; Berthon, W.; Paja, L.; Molnár, E.; Pálfi, G.; Schultz, M. Tracking down the white plague. chapter three: Revision of endocranial abnormally pronounced digital impressions as paleopathological diagnostic criteria for Tuberculous meningitis. PLoS One, 2021, 16(3), e0249020.
[http://dx.doi.org/10.1371/journal.pone.0249020] [PMID: 33740029]
[3]
Devi, A.; Pahuja, I.; Singh, S.P.; Verma, A.; Bhattacharya, D.; Bhaskar, A.; Dwivedi, V.P.; Das, G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell. Mol. Immunol., 2023, 20(6), 600-612.
[http://dx.doi.org/10.1038/s41423-023-01028-7] [PMID: 37173422]
[4]
Mishra, R.; Shukla, P.; Huang, W.; Hu, N. Gene mutations in Mycobacterium tuberculosis: Multidrug-resistant TB as an emerging global public health crisis. Tuberculosis (Edinb.), 2015, 95(1), 1-5.
[http://dx.doi.org/10.1016/j.tube.2014.08.012] [PMID: 25257261]
[5]
Perveen, S.; Sharma, R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem. Pharmacol., 2022, 197, 114906.
[http://dx.doi.org/10.1016/j.bcp.2021.114906] [PMID: 34990594]
[6]
Beggs, C.B.; Noakes, C.J.; Sleigh, P.A.; Fletcher, L.A.; Siddiqi, K. The transmission of tuberculosis in confined spaces: An analytical review of alternative epidemiological models. Int. J. Tuberc. Lung Dis., 2003, 7(11), 1015-1026.
[PMID: 14598959]
[7]
Wejse, C.; Gustafson, P.; Nielsen, J.; Gomes, V.F.; Aaby, P.; Andersen, P.L.; Sodemann, M. TBscore: Signs and symptoms from tuberculosis patients in a low-resource setting have predictive value and may be used to assess clinical course. Scand. J. Infect. Dis., 2008, 40(2), 111-120.
[http://dx.doi.org/10.1080/00365540701558698] [PMID: 17852907]
[8]
Yuan, T.; Sampson, N.S. Hit generation in TB drug discovery: From genome to granuloma. Chem. Rev., 2018, 118(4), 1887-1916.
[http://dx.doi.org/10.1021/acs.chemrev.7b00602] [PMID: 29384369]
[9]
Borsari, C.; Ferrari, S.; Venturelli, A.; Costi, M.P. Target-based approaches for the discovery of new antimycobacterial drugs. Drug Discov. Today, 2017, 22(3), 576-584.
[http://dx.doi.org/10.1016/j.drudis.2016.11.014] [PMID: 27890671]
[10]
Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 529-564.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120] [PMID: 15822188]
[11]
Campaniço, A.; Moreira, R.; Lopes, F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem., 2018, 150, 525-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.020] [PMID: 29549838]
[12]
Raman, K.; Yeturu, K.; Chandra, N.; Target, T.B. targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst. Biol., 2008, 2(1), 109.
[http://dx.doi.org/10.1186/1752-0509-2-109] [PMID: 19099550]
[13]
Bahuguna, A.; Rawat, D.S. An overview of new antitubercular drugs, drug candidates, and their targets. Med. Res. Rev., 2020, 40(1), 263-292.
[http://dx.doi.org/10.1002/med.21602] [PMID: 31254295]
[14]
Kiwuwa, M.S.; Charles, K.; Harriet, M.K. Patient and health service delay in pulmonary tuberculosis patients attending a referral hospital: A cross-sectional study. BMC Public Health, 2005, 5(1), 122.
[http://dx.doi.org/10.1186/1471-2458-5-122] [PMID: 16307685]
[15]
Cheon, S.A.; Cho, H.H.; Kim, J.; Lee, J.; Kim, H.J.; Park, T.J. Recent tuberculosis diagnosis toward the end TB strategy. J. Microbiol. Methods, 2016, 123, 51-61.
[http://dx.doi.org/10.1016/j.mimet.2016.02.007] [PMID: 26853124]
[16]
Goletti, D.; Petruccioli, E.; Joosten, S.A.; Ottenhoff, T.H.M. Tuberculosis biomarkers: From diagnosis to protection. Infect. Dis. Rep., 2016, 8(2), 6568.
[http://dx.doi.org/10.4081/idr.2016.6568] [PMID: 27403267]
[17]
Nicol, M.P.; Zar, H.J. New specimens and laboratory diagnostics for childhood pulmonary TB: Progress and prospects. Paediatr. Respir. Rev., 2011, 12(1), 16-21.
[http://dx.doi.org/10.1016/j.prrv.2010.09.008] [PMID: 21172670]
[18]
Onyebujoh, P.; Zumla, A.; Ribeiro, I.; Rustomjee, R.; Mwaba, P.; Gomes, M.; Grange, J.M. Treatment of tuberculosis: Present status and future prospects. Bull. World Health Organ., 2005, 83(11), 857-865.
[PMID: 16302043]
[19]
Swaminathan, S.; Deivanayagam, C.N.; Rajasekaran, S.; Venkatesan, P.; Padmapriyadarsini, C.; Menon, P.A.; Ponnuraja, C.; Dilip, M. Long term follow up of HIV-infected patients with tuberculosis treated with 6-month intermittent short course chemotherapy. Natl. Med. J. India, 2008, 21(1), 3-8.
[PMID: 18472696]
[20]
Id, B.D.; Desta, K.; Fekade, R.; Amare, M.; Tadesse, M.; Id, G.D.; Zerihun, B.; Getu, M.; Sinshaw, W.; Seid, G. The epidemiology of first and second-line drug-resistance Mycobacterium tuberculosis complex common species: Evidence from selected tb treatment initiating centers in Ethiopia. PLoS One, 2021, 110, 1-13.
[21]
Robertson, G.T.; Ramey, M.E.; Massoudi, L.M.; Carter, C.L.; Zimmerman, M.; Kaya, F.; Graham, B.G.; Gruppo, V.; Hastings, C.; Woolhiser, L.K.; Scott, D.W.L.; Asay, B.C.; Eshun-Wilson, F.; Maidj, E.; Podell, B.K.; Vásquez, J.J.; Lyons, M.A.; Dartois, V.; Lenaerts, A.J. Comparative analysis of pharmacodynamics in the C3HeB/FeJ mouse tuberculosis model for DprE1 inhibitors TBA-7371, PBTZ169, and OPC-167832. Antimicrob. Agents Chemother., 2021, 65(11), e00583-e21.
[http://dx.doi.org/10.1128/AAC.00583-21] [PMID: 34370580]
[22]
Lechartier, B.; Hartkoorn, R.C.; Cole, S.T. In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(11), 5790-5793.
[http://dx.doi.org/10.1128/AAC.01476-12] [PMID: 22926573]
[23]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; De-costerd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[http://dx.doi.org/10.1002/emmm.201303575] [PMID: 24500695]
[24]
Tiberi, S.; Vjecha, M.J.; Zumla, A.; Galvin, J.; Migliori, G.B.; Zumla, A. Accelerating development of new shorter TB treatment regimens in anticipation of a resurgence of multi-drug resistant TB due to the COVID-19 pandemic. Int. J. Infect. Dis., 2021, 113(Suppl. 1), S96-S99.
[http://dx.doi.org/10.1016/j.ijid.2021.02.067] [PMID: 33713815]
[25]
Sarathy, J.P.; Gruber, G.; Dick, T. Re-understanding the mechanisms of action of the anti-mycobacterial drug bedaquiline. Antibiotics (Basel), 2019, 8(4), 261.
[http://dx.doi.org/10.3390/antibiotics8040261] [PMID: 31835707]
[26]
Sarathy, J.P.; Ragunathan, P.; Cooper, C.B.; Upton, A.M.; Grüber, G. Crossm without retaining the parental drug’s uncoupler activity. Antimicrob. Agents Chemother., 2020, 64, 8-13.
[http://dx.doi.org/10.1128/AAC.01540-19]
[27]
Portevin, D.; de Sousa-D’Auria, C.; Houssin, C.; Grimaldi, C.; Chami, M.; Daffé, M.; Guilhot, C. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in Mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 314-319.
[http://dx.doi.org/10.1073/pnas.0305439101] [PMID: 14695899]
[28]
Wang, X.; Zhao, W.; Wang, B.; Ding, W.; Guo, H.; Zhao, H.; Meng, J.; Liu, S.; Lu, Y.; Liu, Y.; Zhang, D. Bioorganic chemistry identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads. Bioinorg. Chem., 2021, 114, 2-11.
[29]
Gavalda, S.; Léger, M.; van der Rest, B.; Stella, A.; Bardou, F.; Montrozier, H.; Chalut, C.; Burlet-Schiltz, O.; Marrakchi, H.; Daffé, M.; Quémard, A. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J. Biol. Chem., 2009, 284(29), 19255-19264.
[http://dx.doi.org/10.1074/jbc.M109.006940] [PMID: 19436070]
[30]
Zhang, W.; Lun, S.; Wang, S.H.; Jiang, X.W.; Yang, F.; Tang, J.; Manson, A.L.; Earl, A.M.; Gunosewoyo, H.; Bishai, W.R.; Yu, L.F. Identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis. J. Med. Chem., 2018, 61(3), 791-803.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01319] [PMID: 29328655]
[31]
Wang, X.; Zhao, W.; Wang, B.; Ding, W.; Guo, H.; Zhao, H.; Meng, J.; Liu, S.; Lu, Y.; Liu, Y.; Zhang, D. Identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads. Bioorg. Chem., 2021, 114, 105110.
[http://dx.doi.org/10.1016/j.bioorg.2021.105110] [PMID: 34175719]
[32]
Jenni, S.; Leibundgut, M.; Maier, T.; Ban, N. Architecture of a fungal fatty acid synthase at 5 A resolution. Science, 2006, 311(5765), 1263-1267.
[http://dx.doi.org/10.1126/science.1123251] [PMID: 16513976]
[33]
Gastambide-Odier, M.; Lederer, E.; Scarselli, V.; Gastambide-odier, M.; Lederer, E. Biosynthesis of corynomycolic acid from two molecules of palmitic acid. Nature, 1959, 184(4698)(Suppl. 20), 1563-1564.
[http://dx.doi.org/10.1038/1841563b0] [PMID: 13826789]
[34]
Lea-Smith, D.J.; Pyke, J.S.; Tull, D.; McConville, M.J.; Coppel, R.L.; Crellin, P.K. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J. Biol. Chem., 2007, 282(15), 11000-11008.
[http://dx.doi.org/10.1074/jbc.M608686200] [PMID: 17308303]
[35]
Pandey, S.; Singh, A.; Yang, G.; d’Andrea, F.B.; Jiang, X.; Hartman, T.E.; Mosior, J.W.; Bourland, R.; Gold, B.; Roberts, J.; Geiger, A.; Tang, S.; Rhee, K.; Ouerfelli, O.; Sacchettini, J.C.; Nathan, C.F.; Burns-Huang, K. Characterization of Phosphopantetheinyl Hydrolase from Mycobacterium tuberculosis. Microbiol. Spectr., 2021, 9(2), e00928-e21.
[http://dx.doi.org/10.1128/Spectrum.00928-21] [PMID: 34550010]
[36]
Wachi, M. Amino Acid Exporters in Corynebacterium Glutamicum BT - Corynebacterium. In: Biology and Biotechnology; Yukawa, H.; Inui, M., Eds.; Springer: Berlin, Heidelberg, 2013; pp. 335-349.
[37]
Xia, F.; Zhang, H.; Yang, H.; Zheng, M.; Min, W.; Sun, C.; Yuan, K.; Yang, P. Targeting polyketide synthase 13 for the treatment of tuberculosis. Eur. J. Med. Chem., 2023, 259, 115702.
[http://dx.doi.org/10.1016/j.ejmech.2023.115702] [PMID: 37544185]
[38]
Ioerger, T.R.; O’Malley, T.; Liao, R.; Guinn, K.M.; Hickey, M.J.; Mohaideen, N.; Murphy, K.C.; Boshoff, H.I.M.; Mizrahi, V.; Rubin, E.J.; Sassetti, C.M.; Barry, C.E., III; Sherman, D.R.; Parish, T.; Sacchettini, J.C. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One, 2013, 8(9), e75245.
[http://dx.doi.org/10.1371/journal.pone.0075245] [PMID: 24086479]
[39]
Albert, W. Burgstahler and Leonard R. Worden. Coumarone. Org. Synth., 1966, 46, 28.
[40]
Sapkal, S.B.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. An efficient synthesis of benzofuran derivatives under conventional/nonconventional method. Chin. Chem. Lett., 2010, 21(12), 1439-1442.
[http://dx.doi.org/10.1016/j.cclet.2010.06.038]
[41]
Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S.; Gouda, M.A. Synthesis of benzofuran derivatives via different methods. Synth. Commun., 2014, 44(16), 2285-2312.
[http://dx.doi.org/10.1080/00397911.2014.894528]
[42]
Zhao, W.; Wang, B.; Liu, Y.; Fu, L.; Sheng, L.; Zhao, H.; Lu, Y.; Zhang, D. Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis. Eur. J. Med. Chem., 2020, 189, 112075.
[http://dx.doi.org/10.1016/j.ejmech.2020.112075] [PMID: 31986405]
[43]
Singh, N.; Polkam, N.; Kant, R.; Pradesh, U.; Anireddy, J. Design, synthesis and evaluation of 4h-chromene-4-one analogues as potential anti-bacterial and anti-fungal agents. Chem. Biol. Lett., 2020, 7, 27-40.
[44]
Fakhr, I.M.I.; Radwan, M.A.A.; El-Batran, S.; Abd El-Salam, O.M.E.; El-Shenawy, S.M. Synthesis and pharmacological evaluation of 2-substitutedbenzo[b]thiophenes as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1718-1725.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.034] [PMID: 18433939]
[45]
Wilson, R.; Kumar, P.; Parashar, V.; Vilchèze, C.; Veyron-Churlet, R.; Freundlich, J.S.; Barnes, S.W.; Walker, J.R.; Szymonifka, M.J.; Marchiano, E.; Shenai, S.; Colangeli, R.; Jacobs, W.R., Jr; Neiditch, M.B.; Kremer, L.; Alland, D. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat. Chem. Biol., 2013, 9(8), 499-506.
[http://dx.doi.org/10.1038/nchembio.1277] [PMID: 23770708]
[46]
Meena, C.L.; Singh, P.; Shaliwal, R.P.; Kumar, V.; Kumar, A.; Tiwari, A.K.; Asthana, S.; Singh, R.; Mahajan, D. Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2020, 208, 112772.
[http://dx.doi.org/10.1016/j.ejmech.2020.112772] [PMID: 32920342]
[47]
Cleghorn, L.A.T.; Ray, P.C.; Odingo, J.; Kumar, A.; Wescott, H.; Korkegian, A.; Masquelin, T.; Lopez Moure, A.; Wilson, C.; Davis, S.; Huggett, M.; Turner, P.; Smith, A.; Epemolu, O.; Zuccotto, F.; Riley, J.; Scullion, P.; Shishikura, Y.; Ferguson, L.; Rullas, J.; Guijarro, L.; Read, K.D.; Green, S.R.; Hipskind, P.; Parish, T.; Wyatt, P.G. Identification of morpholino thiophenes as novel Mycobacterium tuberculosis inhibitors, targeting QcrB. J. Med. Chem., 2018, 61(15), 6592-6608.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00172] [PMID: 29944372]
[48]
Tahlan, K.; Wilson, R.; Kastrinsky, D.B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S.W.; Walker, J.R.; Alland, D.; Barry, C.E., III; Boshoff, H.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1797-1809.
[http://dx.doi.org/10.1128/AAC.05708-11] [PMID: 22252828]
[49]
Nikolakopoulos, G.; Figler, H.; Linden, J.; Scammells, P.J. 2-Aminothiophene-3-carboxylates and carboxamides as adenosine A1 receptor allosteric enhancers. Bioorg. Med. Chem., 2006, 14(7), 2358-2365.
[http://dx.doi.org/10.1016/j.bmc.2005.11.018] [PMID: 16314104]
[50]
Wang, P.; Batt, S.M.; Wang, B.; Fu, L.; Qin, R.; Lu, Y.; Li, G.; Besra, G.S.; Huang, H. Discovery of novel thiophene-arylamide derivatives as DprE1 inhibitors with potent antimycobacterial activities. J. Med. Chem., 2021, 64(9), 6241-6261.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00263] [PMID: 33852302]
[51]
Lun, S.; Xiao, S.; Zhang, W.; Wang, S.; Gunosewoyo, H.; Yu, L.F.; Bishai, W.R. Therapeutic potential of coumestan Pks13 inhibitors for tuberculosis. Antimicrob. Agents Chemother., 2023, 95(5), 1-8.
[PMID: 33558290]
[52]
Bhukya, B.; Alam, S.; Chaturvedi, V.; Trivedi, P.; Kumar, S.; Khan, F.; Negi, A.S.; Srivastava, S.K. Brevifoliol and its analogs: A new class of anti-tubercular agents. Curr. Top. Med. Chem., 2021, 21(9), 767-776.
[http://dx.doi.org/10.2174/1568026620666200528155236] [PMID: 32484109]
[53]
Gupta, V.; Ambatwar, R.; Bhanwala, N.; Khatik, G.L. Coumarin as a privileged and medicinally important scaffold in the treatment of tuberculosis. Curr. Top. Med. Chem., 2023, 23(16), 1489-1502.
[http://dx.doi.org/10.2174/1568026623666230330084058]
[54]
Zhang, W.; Lun, S.; Wang, S.S.; Cai, Y.P.; Yang, F.; Tang, J.; Bishai, W.R.; Yu, L.F. Structure-based optimization of coumestan derivatives as polyketide synthase 13-thioesterase(Pks13-TE) Inhibitors with improved hERG profiles for Mycobacterium tuberculosis treatment. J. Med. Chem., 2022, 65(19), 13240-13252.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01064] [PMID: 36174223]
[55]
Zhang, W.; Lun, S.; Liu, L.L.; Xiao, S.; Duan, G.; Gunosewoyo, H.; Yang, F.; Tang, J.; Bishai, W.R.; Yu, L.F. identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis. part II. J. Med. Chem., 2019, 62(7), 3575-3589.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00010] [PMID: 30875203]
[56]
Zhang, W.; Liu, L.; Lun, S.; Wang, S.S.; Xiao, S.; Gunosewoyo, H.; Yang, F.; Tang, J.; Bishai, W.R.; Yu, L.F. Design and synthesis of mycobacterial pks13 inhibitors: Conformationally rigid tetracyclic molecules. Eur. J. Med. Chem., 2021, 213, 113202.
[http://dx.doi.org/10.1016/j.ejmech.2021.113202] [PMID: 33516983]
[57]
Zeiler, E.; Korotkov, V.S.; Lorenz-Baath, K.; Böttcher, T.; Sieber, S.A. Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP. Bioorg. Med. Chem., 2012, 20(2), 583-591.
[http://dx.doi.org/10.1016/j.bmc.2011.07.047] [PMID: 21855356]
[58]
Cavalier, J.F.; Spilling, C.D.; Durand, T.; Camoin, L.; Canaan, S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur. J. Med. Chem., 2021, 209, 112908.
[http://dx.doi.org/10.1016/j.ejmech.2020.112908] [PMID: 33071055]
[59]
Goins, C.M.; Sudasinghe, T.D.; Liu, X.; Wang, Y.; O’Doherty, G.A.; Ronning, D.R. Characterization of tetrahydrolipstatin and stereoderivatives on the inhibition of essential Mycobacterium tuberculosis lipid esterases. Biochemistry, 2018, 57(16), 2383-2393.
[http://dx.doi.org/10.1021/acs.biochem.8b00152] [PMID: 29601187]
[60]
Lehmann, J.; Cheng, T.Y.; Aggarwal, A.; Park, A.S.; Zeiler, E.; Raju, R.M.; Akopian, T.; Kandror, O.; Sacchettini, J.C.; Moody, D.B.; Rubin, E.J.; Sieber, S.A. An antibacterial β‐lactone kills Mycobacterium tuberculosis by disrupting mycolic acid biosynthesis. Angew. Chem. Int. Ed., 2018, 57(1), 348-353.
[http://dx.doi.org/10.1002/anie.201709365] [PMID: 29067779]
[61]
Uppumavuluri, N.T.; Krovvidi, S.R.; Mailavaram, R.P.; Mohanty, S.K.; Deb, P.K.; Venugopala, K.N. Pks 13 inhibitors—a promising target for future antitubercular agents. Med. Chem. Res., 2023, 32(8), 1574-1588.
[http://dx.doi.org/10.1007/s00044-023-03107-w]
[62]
Cai, Y.; Zhang, W.; Lun, S.; Zhu, T.; Xu, W.; Yang, F.; Tang, J.; Bishai, W.R.; Yu, L. Design, Synthesis and biological evaluation of n-phenylindole derivatives as pks13 inhibitors against Mycobacterium tuberculosis. Molecules, 2022, 27.
[63]
Bugaenko, D.I.; Karchava, A.V.; Yurovskaya, M.A. Synthesis of indoles: Recent advances. Russ. Chem. Rev., 2019, 88(2), 99-159.
[http://dx.doi.org/10.1070/RCR4844]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy